
remote sensing  

Article

Classification of Very-High-Spatial-Resolution Aerial
Images Based on Multiscale Features with Limited
Semantic Information

Han Gao , Jinhui Guo *, Peng Guo and Xiuwan Chen

����������
�������

Citation: Gao, H.; Guo, J.; Guo, P.;

Chen, X. Classification of Very-High

-Spatial-Resolution Aerial Images

Based on Multiscale Features with

Limited Semantic Information.

Remote Sens. 2021, 13, 364. https://

doi.org/10.3390/rs13030364

Received: 22 December 2020

Accepted: 19 January 2021

Published: 21 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 100871, China;
hgao@pku.edu.cn (H.G.); peng_guo@pku.edu.cn (P.G.); xwchen@pku.edu.cn (X.C.)
* Correspondence: guojh_rs@pku.edu.cn

Abstract: Recently, deep learning has become the most innovative trend for a variety of high-spatial-
resolution remote sensing imaging applications. However, large-scale land cover classification
via traditional convolutional neural networks (CNNs) with sliding windows is computationally
expensive and produces coarse results. Additionally, although such supervised learning approaches
have performed well, collecting and annotating datasets for every task are extremely laborious,
especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In
this work, we propose a new object-oriented deep learning framework that leverages residual
networks with different depths to learn adjacent feature representations by embedding a multibranch
architecture in the deep learning pipeline. The idea is to exploit limited training data at different
neighboring scales to make a tradeoff between weak semantics and strong feature representations
for operational land cover mapping tasks. We draw from established geographic object-based
image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial
reasoning and optimize the classification boundaries. We evaluated the proposed approach on two
subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better
classification accuracy (88.9%) compared to traditional object-based deep learning methods and
achieves an excellent inference time (11.3 s/ha).

Keywords: deep learning; aerial imagery; convolutional neural network; object-based classification

1. Introduction

Advances in optical sensors and the popularity of unmanned aerial vehicles (UAVs)
have accelerated the development of very-high-spatial-resolution (VHR) remote sensing
data. The availability and accessibility of vast amounts of VHR data have fostered powerful
techniques and demonstrated promising results in a broad range of applications, such as
land cover mapping, emergency response planning, and city modeling [1–4]. Classification
of VHR satellite or aerial images, i.e., imagery in the meter to subdecimeter resolution
range, has always been one of the challenges of geospatial information data processing [5].
The spatial extent of the area in the image is related to the resolution, which is why
the classification of finer-resolution remote sensing images can provide more detailed
semantic information for other spatial applications [6–8]. It should be noted that the
classification of overhead images is different from that of natural images. The latter
commonly focuses on the identification of the image categories from numerous images,
which corresponds to scene classification in the analysis of remote sensing images. Remote
sensing image classification or land cover classification, however, automatically assigns
each pixel to a set of predefined land cover labels or themes [9]. Due to the scale effect, VHR
images usually contain various heterogeneous landscapes, which are difficult for models
to predict accurately. In geospatial observation, understanding the type of object is usually
a prerequisite for other advanced tasks, such as change detection, target recognition, and
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scene understanding [10–13]. Land cover mapping is a complicated process with numerous
factors influencing the quality of the final product [14]. Researchers and practitioners have
undertaken considerable effort to utilize various approaches individually or in combination,
establishing a relationship between remotely sensed data and the real world [15].

In the early days, spectral variables were used to classify pixels into certain types based
on statistical supervised or unsupervised machine learning algorithms [16,17]. In this stage,
research focused on pixel-based methods with limited training samples [15]. However,
VHR imaging sensors sacrifice spectral resolution to obtain spatial details. Considering the
efficiency and accuracy in the implementation of classification, pixel-based methods are
unsuitable for aerial images due to the higher within-class spectral variability and very
large number of pixels [18]. Moreover, given that VHR images provide more detailed spa-
tial structures and textural features of land covers, which may consist of different materials
with unique spectral signatures, pixel-based methods tend not to assign them into correct
types at the semantic level. These issues have prevailed, leading to a paradigm shift from
pixel-based to object-oriented methods [19,20]. It treats images as a collection of relatively
homogeneous pixel groups composed of spatially contiguous pixels of similar texture,
color, and shape to be classified. Rather than feeding the classifier with the individual spec-
tral properties of pixels, object-oriented methods manually engineer a high-dimensional
set of features incorporating spectral, geometrical, textural, and contextual properties of
objects. In this way, the local spatial component and relationships to neighboring pixels
are considered when encoding robust and discriminative information. Labeling clusters
of pixel groups also potentially reduces the computational burden of spatial reasoning,
which is beneficial to VHR image classification. Compared to pixel-based classification, the
geographic object-based image analysis (GEOBIA) method achieves satisfactory results,
which have a more appealing visual effects and higher accuracy [21–24]. However, this
strategy still faces several challenges in practice, such as the selection of parameters and
the need for handcrafted features [25]. Although innovative approaches to automatic im-
plementation are constantly being proposed, such conventional machine learning systems
still require careful engineering and a considerable number of domain experts to design
a feature extractor, which brings uncertainties to the results. These problems raised the
interest of the community in solutions avoiding algorithmically defining specific features,
solutions that are extensively studied under the deep learning paradigm [10].

The development of machine learning has experienced two waves: shallow learning
and deep learning. Deep learning methods are representation-learning methods with mul-
tiple representation levels obtained by composing simple but nonlinear modules that each
transform the representation at one level into a representation at a higher, slightly more ab-
stract, level [26]. The aim of deep learning for classification is to train a parametric learning
feature extraction system jointly with a classifier in an end-to-end manner. Convolutional
neural networks (CNNs), for instance, utilize the hierarchical level of neural networks and
convolution operations to amplify aspects of the input that are important for discrimina-
tion and to suppress irrelevant variations [27,28]. The hierarchical structures allow the
combination of low-level features (such as spectral and textural features) to form a more
abstract high-level feature representation, synthesizing multilevel features to express the
complex patterns in the data [29]. The advent of deep learning has led to renewed interest
in neural networks in the remote sensing community and has achieved significant success
in many image analyses tasks, including land cover classification, scene classification,
change detection and object detection [10,12,30–38]. Early studies concerning land cover
classification based on deep learning mostly focused on feature representations or learn-
ing, while the final classification used other simpler classifiers [39]. With the increase in
CNN-based models being explored, end-to-end architectures have been proven to be more
robust [38]. In remote sensing, pixel-based CNN classification involves the partitioning of
the original image into small patches, and the trained network predicts a single label for
the central pixel in each patch [30,40,41]. Although the information of neighboring pixels
can improve the accuracy of center-pixel prediction, the pixelwise labeling method still
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does not solve the problem of misclassification caused by spectral and textural variability.
In addition, considering the existence of overlapping areas, moving a sliding window
across the entire image pixel by pixel is computationally intensive and spatially redundant
for VHR images. Therefore, even in the paradigm of deep learning, object-based CNNs
are still more suitable than pixel-based CNNs for VHR images [7,42–44]. Similarly, the
object-based CNN approach for land cover classification consists of two main steps: (i) the
original image is segmented into homogeneous regions, and (ii) object-based classification
is performed using the CNN model. The object-based CNN integrates the advantages
of edge-preserving objects and the capabilities of the CNN classifier to generate more
consistent land cover maps. Moreover, the number of model predictions is substantially
reduced, and the overall processing step is accelerated.

Recently, the use of semantic segmentation or dense prediction algorithms has rapidly
increased in VHR image segmentation, object detection and classification applications [45–51].
Numerous fully convolutional-like networks with various tricks have been proposed, and
state-of-the-art results have been achieved in standard benchmark datasets. Semantic
segmentation assigns a predefined semantic label to each pixel in an image [52]. It takes
the earlier task of image segmentation to a new level by clustering parts of an image that
belong to the same object class. It usually applies end-to-end dense prediction networks to
achieve pixel-level prediction. During this process, basic and detailed information from
VHR images is further abstracted into complex spatial relationships and distributions.
Understanding these abstractions from a global perspective is especially important for
the analysis of remote sensing images at the semantic level. However, dense prediction
architectures rely on feeding pixelwise labels of all categories to extract rich semantics and
accurate boundary information. Obtaining such annotations usually requires extensive and
expensive manual work, which becomes the major limitation of semantic segmentation
methods. Therefore, it is more practical to rely on weak (or lazy) labels as training data.

Previous studies have set several basic principles for a high-performing and practical
land cover classification model: (i) discriminating and independent features can be captured
automatically without relying on explicit algorithms, (ii) spatial-related information is
considered in the training and prediction phase, and (iii) the power of the model can be
activated without massive training samples and dense labeling. In this paper, a multiscale
object-oriented deep learning framework is proposed to solve the problems from the
perspective of practical application. The three main contributions of our work can be
summarized as follows:

1. Integrate a new multiscale input strategy and the object-based CNN approach for VHR
remote sensing image classification at subdecimeter resolution with limited samples.

2. Design a multibranch neural network structure for obtaining multiscale fusion fea-
tures. Each branch is composed of residual modules with different depths that act as
backbone for feature extracting.

3. Develop a weak labeled UAV image dataset of rural landscape for land cover classifica-
tion to verify the practical feasibility of the proposed approach under various scenarios.

The proposed framework draws from established object-based methods as an auxiliary
module to feed the model with objects of different scales, making the feature maps involve
more contextual information contained in the limited samples. Detailed information about
the multiscale input strategy and multibranch structures is introduced in the next section.

2. Methodology

The proposed approach mainly consists of three steps: (i) clustering pixels into ob-
jects for multiscale input, (ii) training a multiscale residual neural network (ResNet) for
classification and then (iii) optimizing the boundaries of the classification results. To avoid
large computations and reduce the salt-and-pepper effect, this study uses a clustering
algorithm to obtain meaningful segments instead of traditional pixel patches as the basic
computational unit (Section 2.1). Although the superpixels are homogeneous descriptions
of texture, color, and other features in accordance with the visual sense, they still lack
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spatial relationships and semantic scene information. Therefore, by using the multiscale
neighborhood information of superpixels as inputs, multiscale features of the same target
superpixel are obtained for the deep neural network, which can boost the classification
performance to a certain extent. This multiscale feature extraction method requires the
construction of a multiscale CNN (Section 2.2). In this paper, we propose a network called
a multiscale object-based network (MONet). MONet first utilizes superpixel neighbor-
hoods at three scales as inputs. Then, it combines the feature maps obtained from three
residual networks and loads them into the fully connected layer for classification. To
further optimize the boundaries and reduce classification noise, this approach employs
larger-scale multiresolution segmentation and a conditional random field (CRF) module
for postprocessing (Section 2.3).

2.1. Presegmentation

Feature representation based on pixels is commonly used in traditional remote sensing
image classification. In most pixel-based remote sensing image classification methods, the
neighborhood of each pixel is used as the input of the network. However, the process
will lead to excessive computing. For example, predicting a 1000 × 1000 pixel image
requires a neighborhood of 10e6 pixels as the network input. The complexity of the method
increases dramatically as the image size increases. In addition, pixelwise methods tend to
obtain more detailed classification results than other methods. However, the boundaries
between various objects are more broken. To resolve these issues, this paper uses feature
representation based on oversegmentation, also known as superpixels. Superpixels are
a group of connected pixels with similar texture, color, and brightness characteristics.
There are some classical superpixel algorithms, such as quick shift, simple linear iterative
clustering (SLIC) and compact watershed, which have been used in previous object-based
classification studies [53–55]. The visualization results of the above algorithms are provided
in Figure 1. In this paper, we finally select the quick shift algorithm to generate superpixels
as the input of the CNN. As shown in Figure 1, for aerial image at subdecimeter resolution,
the quick shift method can provide finer ground object boundaries than other methods.
The segmentation results in dark areas (such as distinguishing shadows and roofs) are
much better than for SLIC and compact watershed. In addition, quick shift does not need
to manually set the number of segments for images of different sizes, which is beneficial
for an automated classification pipeline.
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Quick shift is a fast image segmentation algorithm based on an approximate kernelized
mean-shift method and is a kind of local mode-seeking algorithm. It utilizes both color
information (LAB color space) and image location information to compute hierarchical
segmentation on multiple scales simultaneously. Specifically, the quick shift algorithm
regards each pixel (x, y) in the image and its d-dimensional pixel value I(x, y) as a sample
from a (d+2)-dimensional vector space. It then calculates the probability density estimate
for each pixel (with a Gaussian kernel of standard deviation), which is defined as:

E(x, y) = P(x, y, I(x, y)) = ∑
x′y′

1

(2πσ)d+2 exp

− 1
2σ2

 x− x′

y− y′

I(x, y)− I(x′, y′)

 (1)

Then, the quick shift algorithm constructs a tree that connects each image pixel to its
nearest neighbor with a higher density value, i.e.,

P
(
x′, y′, I

(
x′, y′

))
> P(x, y, I(x, y)) (2)

Each pixel is connected to the nearest higher-density pixel parent that achieves the
minimum distance:

dist(x, y) = min(x′ ,y′)>P(x,y)

((
x− x′

)2
+
(
y− y′

)2
+ ‖I(x, y)− I

(
x′, y′

)
‖2

2

)
(3)

Three main parameters influence the algorithm: the ratio, kernel size and maximum
distance. The ratio is the tradeoff between the distance in the color space and the distance in
the image space (larger values give more importance to color). The kernel size controls the
scale of the local density approximation. The larger the size is, the larger the neighborhoods
of pixels considered. The maximum distance determines the level in the hierarchical
segmentation that is produced. In our experiments, these three parameters were set to 0.5,
3 and 6, respectively.

Using the similarity of pixels to divide images into nonoverlapping groups can reduce
the computational complexity without sacrificing accuracy. Moreover, superpixels can
better reflect the structural information and spatial topological relationships of typical
ground objects. However, superpixels are homogeneous segments that contain only limited
semantic information. Thus, as will be illustrated in Section 2.2, multiscale bounding boxes
are used to enrich the semantic information of superpixels in practice.

2.2. Framework of MONet

VHR images contain complex objects and rich semantic information. Even objects
such as cars, road signs, and chimneys in natural images can be observed in these remote
sensing images. Deep neural networks are only as good as the input data, and representing
the features extracted from such images through dense annotation with a dense prediction
architecture is extremely time consuming and labor intensive. As mentioned in Section 1,
a practical classification method for VHR images should satisfy the strong feature repre-
sentation and weak labeling. When coarse labeling is inevitable, a new scheme needs to
be designed to learn the comprehensive feature distributions through limited samples.
The sparse sample points are augmented into meaningful objects (superpixels) through
the clustering algorithm in the presegmentation stage. However, superpixels contain only
the intrinsic properties of the land cover type without taking into account the contextual
and distribution information. Such semantic features of the target superpixel should be
learned by the model. Considering the scale issues in neighboring information and spatial
relationship analysis, multiscale feature extraction and fusion are imperative: that is where
MONet comes from.

The architecture of the proposed MONet model is shown in Figure 2. For each
superpixel in the presegmentation stage, the neighborhoods at three scales are extracted as
the network inputs. The multiscale superpixel neighborhood selection strategy used in this
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paper is as follows: the small-scale input is the bounding box of the target superpixel, the
medium-scale input is the expanded neighborhood of the bounding box, and the large-scale
input should be able to contain the 8-connected superpixels of the bounding box at least.
Considering the average size of superpixels in our subdecimeter-resolution datasets, these
three scales are set to 24, 48 and 72 pixels in the following experiments, respectively. The
different input scales serve different purposes. The smallest input focuses on providing
the intrinsic properties of the target superpixel, which is informative and specifically for
feature extraction. Larger inputs involve adjacent information of the target superpixel,
which enables the model to learn the spatial relation and distribution at different scales.
Multiscale inputs expand the vision of object-based CNNs and enhance their feature-
extracting ability when there are not enough references.
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Since the multi-inputs are at three different scales, MONet consists of three correspond-
ing and independent branches with different network depths. While avoiding overfitting,
multi-depth design can lighten the whole network. Deep neural networks often suffer from
the vanishing gradient problem. Similar to ResNet [56], this paper uses skip connections to
address this issue. The main part of MONet is composed of many residual blocks. Each
convolutional layer is followed by batch normalization (BN) and rectified linear unit (ReLU)
activation layers. A skip connection connects two convolutional layers to form a residual
block, as shown in Figure 3. To perform downsampling, some residual blocks contain a
stride of 2 or 3. The small-scale input contains exclusive and noncontextual information,
so the corresponding shallow branch contains only three residual blocks. The other two
scales contain richer semantic environment information; therefore, deeper network is used
(with six and nine residual blocks, respectively). The feature maps of different scales are
finally downsampled so that the size of the output feature maps remains the same (i.e.,
12 × 12). The network ends with a feature fusion module. The concatenated features are
input into a fully connected (FC) layer with softmax for classification. In the network
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training process, the three network branches are trained simultaneously. After the loss is
evaluated, backpropagation is performed to update the parameters of the three networks.

2.3. Boundary Refinement

Deeper neural networks excel at representing high-level features and can achieve
state-of-the-art classification performance. However, the deep layers of the network have
larger receptive fields and can yield only smooth responses. As a result, accurate location
and detailed boundary information are lost. There are three commonly used ways to
address the localization problem. One method is to use the image segmentation results to
further constrain the boundary. Another method is to use upsampling layers combined
with techniques such as skip connections to recover accurate boundary information. For
example, some U-shaped convolutional networks, such as U-Net [57] and SegNet [58],
achieved good accuracy using this method. The other method introduces a CRF module
into the network. In this paper, we employ both image segmentation and a CRF in the
boundary refinement process.

Superpixels can provide rough boundary information in the prediction and final
labeling stage. However, due to the limitation of the fast clustering algorithm, this kind of
boundary information cannot accurately describe the boundaries of some land cover types
that are similar in color or texture. The multiresolution segmentation (MRS) algorithm
is first utilized to further constrain the boundaries, especially those of large-scale objects
such as buildings and roads. The MRS algorithm is based on the fractal net evolution
approach (FNEA) [59] and is a bottom-up region-merging technique based on local criteria
that begins with one pixel of an image object. The adjacent image objects are merged
one by one in a pairwise manner to form a larger object. The underlying optimization
procedure minimizes the weighted heterogeneity, which includes the color and shape
heterogeneity [60]. After segmentation, a voting scheme is employed to determine the
category of the object.

Then, a CRF is used to further refine the boundary. A CRF is a kind of discriminative
undirected probabilistic graphical model, and it is widely used to boost models’ ability to
capture fine details. Previous works employed a locally connected CRF as a postprocessing
method. With the advent of DeepLab [61], a densely connected CRF [62] has almost become
a standard postprocessing module for semantic segmentation. The dense CRF employs the
following energy function:

E(x) = ∑
i

ψi(xi) + ∑
i<j

ψij
(
xi, xj

)
(4)

where x is the set of label assignments for the pixels. The first term is the unary potential,
which can be computed independently for each pixel based on the output of the network.
The second term is the pairwise potential, which uses a fully connected graph to connect
all the pairs of pixels in the image. It is defined as follows:

ψij
(

xi, xj
)
= µ

(
xi, xj

)[
w1 exp

(
−
∣∣pi − pj

∣∣2
2θ2

α
−
∣∣Ii − Ij

∣∣2
2θ2

β

)
+ w2 exp

(
−
∣∣pi − pj

∣∣2
2θ2

γ

)]
(5)

where µ is the label compatibility function, and w1 and w2 are the linear weights of the
two Gaussian kernels. The first kernel is the appearance kernel, which depends on both
pixel positions p and the RGB color I. The appearance kernel ensures that nearby pixels
with similar colors have the same label. The second kernel is the smoothness kernel,
which removes small and isolated regions and enforces smoothness. θα, θβ and θγ are
hyperparameters that determine the size of the kernels. In our experiments, they were set
to 60, 10 and 3, respectively.

The dense CRF performs message passing by using Gaussian filtering in the feature
space, which enables the model to utilize highly efficient probabilistic inference. It takes
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only a few seconds to process a 5000 × 5000 pixel image and is very suitable for practical
boundary refinement.

3. Experiments

In the experiments, we verify the effectiveness of the proposed MONet model. The
data and experimental information are presented in Sections 3.1–3.3. Section 3.4 describes
the comparison results based on the evaluation metrics. Further analyses and discussions
of the results are provided in Section 4.

3.1. Dataset Description

To evaluate the effectiveness and generalization ability of the proposed method, the
model was applied to two challenging datasets. The first dataset is the Vaihingen dataset,
which is a publicly available benchmark dataset provided by the International Society for
Photogrammetry and Remote Sensing (ISPRS) [7]. It consists of 38 true orthophoto (TOP)
images of the town of Vaihingen in Germany and describes the typical objects in urban
scenes: roads, water, buildings, cars, trees, and grass (Figure 4). The Vaihingen dataset
contains 3 available channels (infrared, red and green) with a ground sampling distance
of 9 cm, and each patch has a size of nearly 2500 × 2000 pixels. Note that the original
dataset’s digital surface model (DSM) data and the related products are not involved in our
experiments. Among these 38 TOP images, 10 TOP images with ground-truth labels were
randomly selected for the experiments. The Vaihingen scene has a very high resolution
that can resolve complex and challenging urban patterns, such as different sizes of cars,
chimneys on roofs, and parking lots.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 21 
 

 

red, blue, and green bands. The whole dataset generally contains 36 patches, and each 
patch is approximately 5000 × 5000 pixels (as shown in Figure 5). Among them, 11 patches, 
which mainly contain eight classes (i.e., floating plants, roads, crops, trees, shrubs, bare 
soils, buildings, and water), were randomly chosen for our experiments. Since the 
Xiangliu dataset does not contain a complete reference map, we labeled them manually 
according to careful visual interpretation and field surveying (Figure 5c). Note that only 
coarse labels were used here, which can be easily obtained by selecting point, line, and 
polygon regions of interest (ROIs) using an interaction tool. The Xiangliu dataset was col-
lected for two reasons: (1) the dataset was used as a complement to the Vaihingen dataset. 
Rural scenes contain comprehensive land cover types and face the main challenges of 
VHR classification, especially for the detailed mapping of complex objects. For example, 
it is difficult to discriminate between trees and floating plants and between crops and 
shrubs. (2) Most semantic segmentation methods require intensive ground-truth images 
with accurate boundary information in the training process. However, obtaining pixel-
level annotations usually requires considerable time and expensive manual work. Thus, 
this dataset is utilized to investigate the practicality of the proposed method for fast re-
mote sensing image interpretation. 

 
Figure 4. The Vaihingen dataset and its reference map. (a) Overview of the Vaihingen dataset, (b) the whole image of one 
patch, and (c) the corresponding reference map. 

 
Figure 5. The Xiangliu dataset and its reference map. (a) Overview of the Xiangliu dataset, (b) the whole image of one 
patch, and (c) the corresponding reference map. 

Figure 4. The Vaihingen dataset and its reference map. (a) Overview of the Vaihingen dataset, (b) the whole image of one
patch, and (c) the corresponding reference map.

Most existing VHR datasets are urban scenes. To evaluate the proposed method thor-
oughly under various scenarios, we collected our own rural dataset at Xiangliu Reservoir
(Nanning, China) using a Feima-V100 unmanned aerial vehicle equipped with a digital
camera. The Xiangliu dataset has a resolution of 10 cm/pixel and contains three chan-
nels: red, blue, and green bands. The whole dataset generally contains 36 patches, and
each patch is approximately 5000 × 5000 pixels (as shown in Figure 5). Among them,
11 patches, which mainly contain eight classes (i.e., floating plants, roads, crops, trees,
shrubs, bare soils, buildings, and water), were randomly chosen for our experiments. Since
the Xiangliu dataset does not contain a complete reference map, we labeled them manually
according to careful visual interpretation and field surveying (Figure 5c). Note that only
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coarse labels were used here, which can be easily obtained by selecting point, line, and
polygon regions of interest (ROIs) using an interaction tool. The Xiangliu dataset was
collected for two reasons: (1) the dataset was used as a complement to the Vaihingen
dataset. Rural scenes contain comprehensive land cover types and face the main challenges
of VHR classification, especially for the detailed mapping of complex objects. For example,
it is difficult to discriminate between trees and floating plants and between crops and
shrubs. (2) Most semantic segmentation methods require intensive ground-truth images
with accurate boundary information in the training process. However, obtaining pixel-level
annotations usually requires considerable time and expensive manual work. Thus, this
dataset is utilized to investigate the practicality of the proposed method for fast remote
sensing image interpretation.
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3.2. Training Procedure

To demonstrate the robustness of the proposed method, we randomly selected approx-
imately 80,000 pixels from the Vaihingen dataset and selected approximately 90,000 pixels
from the Xiangliu dataset as the training sample. Since the original Vaihingen dataset is
class-imbalanced, a nonrepresentative model may be built. For example, the number of
car samples (1.5%) is much smaller than that of other classes (roads (31.4%), water (1.1%),
buildings (32.7%), trees (19.0%) and grass (14.3%)). Since cars are a class with complex
structures, and we want to test the proposed method’s representativeness of high-level
features, we chose a few more car samples manually. Then, 75% of the samples are selected
for training, and the remaining samples are used for testing. Detailed information about
the training and test samples is reported in Tables 1 and 2.

Table 1. Detailed information on the training and test samples from the Vaihingen dataset.

Class Legend Training Test

Roads
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Table 2. Detailed information on the training and test samples from the Xiangliu dataset. 

Class Legend Training Test 

Floating plants  2674 911 

Roads  3779 1196 

Crops  14,979 4922 

Trees  14,350 4749 

Shrubs  18,252 6248 

Bare soil  8095 2726 

Buildings  1464 454 

Water  4485 1480 
Total \ 68,078 22,686 

Remote sensing image datasets with ground-truth labels are scarcer and harder to 
obtain than image datasets in the computer vision field. Data augmentation has become a 
necessity to enhance the generalization ability of neural networks and reduce overfitting. 
It creates transformed versions of the training images that belong to the same class as the 
original image. Transformations include a range of operations from the field of image ma-
nipulation, such as rotation, flipping, shifting, and zooming. Since remote sensing images 
are usually less variable than other images, the experiment performs only random angular 
rotation and flip operations on the training samples. To reduce shadow effects on the VHR 
images, random brightness shifting is also performed. In this way, we expand the size of 
the training set and the model can benefit from the artificially created variations of the 
samples. 

18,856 6375

Water
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Remote sensing image datasets with ground-truth labels are scarcer and harder to 
obtain than image datasets in the computer vision field. Data augmentation has become a 
necessity to enhance the generalization ability of neural networks and reduce overfitting. 
It creates transformed versions of the training images that belong to the same class as the 
original image. Transformations include a range of operations from the field of image ma-
nipulation, such as rotation, flipping, shifting, and zooming. Since remote sensing images 
are usually less variable than other images, the experiment performs only random angular 
rotation and flip operations on the training samples. To reduce shadow effects on the VHR 
images, random brightness shifting is also performed. In this way, we expand the size of 
the training set and the model can benefit from the artificially created variations of the 
samples. 
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necessity to enhance the generalization ability of neural networks and reduce overfitting. 
It creates transformed versions of the training images that belong to the same class as the 
original image. Transformations include a range of operations from the field of image ma-
nipulation, such as rotation, flipping, shifting, and zooming. Since remote sensing images 
are usually less variable than other images, the experiment performs only random angular 
rotation and flip operations on the training samples. To reduce shadow effects on the VHR 
images, random brightness shifting is also performed. In this way, we expand the size of 
the training set and the model can benefit from the artificially created variations of the 
samples. 
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original image. Transformations include a range of operations from the field of image ma-
nipulation, such as rotation, flipping, shifting, and zooming. Since remote sensing images 
are usually less variable than other images, the experiment performs only random angular 
rotation and flip operations on the training samples. To reduce shadow effects on the VHR 
images, random brightness shifting is also performed. In this way, we expand the size of 
the training set and the model can benefit from the artificially created variations of the 
samples. 
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Table 2. Detailed information on the training and test samples from the Xiangliu dataset.

Class Legend Training Test

Floating plants
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Remote sensing image datasets with ground-truth labels are scarcer and harder to
obtain than image datasets in the computer vision field. Data augmentation has become a
necessity to enhance the generalization ability of neural networks and reduce overfitting.
It creates transformed versions of the training images that belong to the same class as the
original image. Transformations include a range of operations from the field of image
manipulation, such as rotation, flipping, shifting, and zooming. Since remote sensing
images are usually less variable than other images, the experiment performs only random
angular rotation and flip operations on the training samples. To reduce shadow effects on
the VHR images, random brightness shifting is also performed. In this way, we expand the
size of the training set and the model can benefit from the artificially created variations of
the samples.

The model was trained for 64 epochs with a batch size of 128. We employed the
stochastic gradient optimizer Adam [63] with a learning rate of 0.001 and used learning
rate reduction to prevent overfitting. More precisely, the learning rate was reduced when
there was no improvement for 5 epochs. L2 regularization was used in all the convolutional
layers. For batch normalization, epsilon was set to 0.001, and the momentum was set
to 0.99. We used the categorical cross-entropy loss function to represent the difference
between the prediction and ground-truth labels, which can be calculated as

−
M

∑
c=1

yo,c log(po,c) (6)

where M is the number of possible class labels, yo,c is a binary indicator (0 or 1) of whether
class label c is the correct classification for observation o, and po,c is the model’s predicted
probability that observation o is in class c.

The model was implemented in Python 3.7.0 using the Keras 2.2.4 deep learning
library, which is a high-level neural network API written in Python. TensorFlow 1.13 [64]
was utilized as a backend for the training. All the training steps and experiments ran on
a machine equipped with an Intel Core i7-7800X CPU, 16 GB of RAM, and one NVIDIA
GeForce RTX 2080 Ti GPU to accelerate the training process.

3.3. Evaluation Metrics

Two different metrics are employed to evaluate the classification performances: the
overall accuracy (OA) and F1 score. Four combinations of predicted and true conditions
are possible (Table 3), which are defined as true positives (TPs), true negatives (TNs), false
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positives (FPs) and false negatives (FNs). Then, these metrics can be calculated as below:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(10)

Table 3. Basic states used in computing metrics.

True Condition

Condition Positive Condition Negative

Predicted condition
Predicted condition positive TP FP
Predicted condition negative FN TN

3.4. Method Comparison

We compared the MONet with other classification methods including pixel-based,
patch-based CNN and object-based CNN methods by classifying all two datasets. More
specifically, the comparison methods we chose were:

XGBoost [65]: This method is the most well-known decision-tree-based ensemble
algorithm that utilizes a gradient boosting framework, which is trained by spectral features
to predict semantic labels for aerial or satellite imagery.

Spectral-spatial residual network (SSRN) [66]: This network takes raw 3D cubes as
input data and uses two spectral and two spatial residual blocks consecutively to learn
discriminative features from spectral signatures and spatial contexts.

Object-based CNN (OCNN) [27]: OCNN consists of a classical AlexNet-like CNN
architecture as the feature extractor and an object-based shape constraint module. The
backbone is composed of 8 blocks of layers. The first 5 blocks are convolutional layers,
and the last 3 blocks are fully connected layers. In between, there are some max-pooling
and ReLU activation layers. Dropout and batch normalization layers are also utilized to
avoid overfitting.

Three branches of MONet (denoted by MONet_1, MONet_2 and MONet_3 from
the smallest scale to the largest scale): To validate the effectiveness of the multiscale
strategy, three branches of MONet are extracted for comparison. Each branch involves the
corresponding input size and network depth described in Section 2.2.

The selection of methods for comparison follows the principle that the selected models
should be classical and reproducible. XGBoost, as an advanced machine learning algorithm,
represents the pixel-based classification method; SSRN is a well performed and open-source
CNN model specially designed for patch-based land cover classification; OCNN is a pioneer
work in the fields of object-based CNN methods for VHR image classification. In addition,
we split the multibranch structure of MONet, and each branch is added to the comparison
experiment as an independent model. In this way, we verify the necessity of the multiscale
strategy and the performance of residual modules with different depth in feature extraction.
Note that all the methods share the same experimental parameters in our experiments,
such as the batch size, number of epochs, and learning rate. The detailed quantitative and
qualitative results are presented below.

Table 4 presents the quantitative results for XGBoost, SSRN, OCNN and MONet on
the Vaihingen dataset. MONet achieves the highest OA (i.e., 85.2%) compared to other
methods, and XGBoost achieves the lowest OA (i.e., 73.2%). MONet outperforms OCNN on
most classes and has fewer parameters. Detailed qualitative results are shown in Figure 6.
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Table 4. Results on the Vaihingen dataset. For each row, the highest accuracy is shown in bold.

XGBoost SSRN OCNN MONet_1 MONet_2 MONet_3 MONet

Roads 0.701 0.728 0.829 0.792 0.817 0.840 0.848
Water 0.728 0.919 0.882 0.848 0.903 0.978 0.965

Buildings 0.822 0.847 0.910 0.851 0.894 0.885 0.912
Cars 0.669 0.614 0.848 0.714 0.797 0.787 0.796
Trees 0.778 0.790 0.818 0.831 0.839 0.828 0.845
Grass 0.570 0.718 0.738 0.699 0.733 0.754 0.734

F1 0.730 0.780 0.840 0.800 0.830 0.840 0.850
OA 0.732 0.779 0.843 0.804 0.835 0.841 0.852
# of

parameters \ 47,518 181,854 28,918 31,150 31,686 91,742
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As shown in Table 5, MONet results in a better classification accuracy than the other
methods on the Xiangliu dataset. MONet_3 has slightly better OA on the shrubs and bare
soil classes. Figure 7 shows the comparison results in detail. To assess the practicality of the
methods, their prediction times are presented in Table 6. Further discussion of the results
can be found in Section 4.
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Table 5. Results on the Xiangliu dataset. For each row, the highest accuracy is shown in bold.

XGBoost SSRN OCNN MONet_1 MONet_2 MONet_3 MONet

Fl. plants 0.553 0.875 0.945 0.676 0.787 0.850 0.970
Roads 0.776 0.860 0.942 0.774 0.842 0.883 0.957
Crops 0.482 0.877 0.956 0.813 0.881 0.916 0.947
Trees 0.601 0.890 0.903 0.850 0.891 0.901 0.919

Shrubs 0.569 0.862 0.917 0.830 0.904 0.924 0.908
Bare soil 0.707 0.800 0.828 0.825 0.869 0.891 0.871
Buildings 0.756 0.778 0.959 0.821 0.888 0.927 0.975

Water 0.809 0.920 0.985 0.947 0.962 0.978 0.987
F1 0.610 0.870 0.920 0.830 0.890 0.910 0.930

OA 0.607 0.866 0.918 0.828 0.887 0.911 0.925
# of

parameters \ 47,593 182,253 35,833 38,065 38,601 112,481
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Table 6. Experiments on prediction times (1000 × 1000 pixels, average over 10 folds).

XGBoost SSRN OCNN MONet_1 MONet_2 MONet_3 MONet

Time (s) 4.3 634.7 192.2 8.8 9.3 10.0 11.3

4. Discussion
4.1. Effects of MONet and the Multiscale Strategy

Deep learning methods can avoid using handcrafted features and automatically extract
more distinguishing features than traditional machine learning methods. As shown in
Tables 4 and 5, the CNN-based methods outperform XGBoost in terms of the classification
accuracy. The classification maps of XGBoost show a strong salt-and-pepper phenomenon
on both two datasets, which is common problem of pixelwise methods. Although the
accuracies of some of the classes are not too far apart by the other methods, it cannot
ensure the completeness of ground objects to achieve the intraclass consistency. Moreover,
due to the lack of spectral information in the VHR images, XGBoost has no ability to
distinguish the types of land covers that are easily confused visually. Categories with large
spectral differences can be distinguished by pixel values alone, while similar objects or
scenes require high-level features for classification. For instance, floating plants look almost
the same as other plants (i.e., crops, shrubs, and trees) from above, despite their slightly
different textures (Figure 7). XGBoost misclassified floating plants as trees and shrubs
since it lacks the ability to extract high-level features, while the CNN-based methods can
make use of contextual information when distinguishing floating plants from other plants
(Figure 7).

MONet can become a deeper neural network than SSRN and OCNN by utilizing
skip connections, which enhances the network’s ability to represent high-level semantic
information. Given that MONet has a deeper network architecture, the top-level nodes have
larger receptive fields, which makes it possible to make full use of the surrounding semantic
information. It can be seen from Figure 6 that MONet performs better when distinguishing
between buildings and roads than when distinguishing between other pairs of classes.
Trees and grass can also be distinguished well. Similarly, the classification performances of
crops, trees and shrubs are also significantly improved by MONet. In addition, MONet
is more robust to changes in lighting conditions. As shown in Figures 6 and 7, building
shadows and cloud shadows barely have an impact on the classification results. However,
for the classification of cars, OCNN outperformed MONet. Since OCNN makes predictions
on each center pixel, the predictions for cars are more refined. The ground objects in the
Vaihingen dataset vary across quite different scales, and the superpixels generated in the
presegmentation step are relatively uniform in scale. Therefore, the classification accuracy
of cars is slightly lower than that of OCNN.

The scheme of embedding a multibranch architecture in the deep learning pipeline
significantly improves the feature extraction capability of the network. It can be seen from
Figure 8 that as the network depth increases, the classification accuracy generally improves.
It is worth mentioning that under the multiscale strategy, the discrimination accuracy
of floating plants and roads in Xiangliu dataset is significantly higher than that of any
single-branch model. The reason is that these two land cover types have typical spatial
distribution characteristics, and the multiscale strategy can learn them more effectively. For
example, the characteristic that floating plants are surrounded by water can be used as a
key spatial relation to distinguish them from other plants. Similarly, the shape features of
road superpixels can only be effectively represented at a certain scale. Such increases in
accuracy proves the advantage of multiscale input using semantic information in the case
of limited samples. While the multiscale strategy improves the classification accuracy of
complex objects at different scales, simple classes such as water and bare soil can hardly
benefit from the multiscale strategy. The multiscale strategy does not cause redundancy
by combining networks of different depths; instead, it takes advantage of the semantic
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information at different scales and improves the semantically representative ability of
the network.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 21 
 

 

scenes require high-level features for classification. For instance, floating plants look al-
most the same as other plants (i.e., crops, shrubs, and trees) from above, despite their 
slightly different textures (Figure 7). XGBoost misclassified floating plants as trees and 
shrubs since it lacks the ability to extract high-level features, while the CNN-based meth-
ods can make use of contextual information when distinguishing floating plants from 
other plants (Figure 7). 

MONet can become a deeper neural network than SSRN and OCNN by utilizing skip 
connections, which enhances the network’s ability to represent high-level semantic infor-
mation. Given that MONet has a deeper network architecture, the top-level nodes have 
larger receptive fields, which makes it possible to make full use of the surrounding se-
mantic information. It can be seen from Figure 6 that MONet performs better when dis-
tinguishing between buildings and roads than when distinguishing between other pairs 
of classes. Trees and grass can also be distinguished well. Similarly, the classification per-
formances of crops, trees and shrubs are also significantly improved by MONet. In addi-
tion, MONet is more robust to changes in lighting conditions. As shown in  
Figures 6 and 7, building shadows and cloud shadows barely have an impact on the clas-
sification results. However, for the classification of cars, OCNN outperformed MONet. 
Since OCNN makes predictions on each center pixel, the predictions for cars are more 
refined. The ground objects in the Vaihingen dataset vary across quite different scales, 
and the superpixels generated in the presegmentation step are relatively uniform in scale. 
Therefore, the classification accuracy of cars is slightly lower than that of OCNN. 

The scheme of embedding a multibranch architecture in the deep learning pipeline 
significantly improves the feature extraction capability of the network. It can be seen from 
Figure 8 that as the network depth increases, the classification accuracy generally im-
proves. It is worth mentioning that under the multiscale strategy, the discrimination ac-
curacy of floating plants and roads in Xiangliu dataset is significantly higher than that of 
any single-branch model. The reason is that these two land cover types have typical spatial 
distribution characteristics, and the multiscale strategy can learn them more effectively. 
For example, the characteristic that floating plants are surrounded by water can be used 
as a key spatial relation to distinguish them from other plants. Similarly, the shape fea-
tures of road superpixels can only be effectively represented at a certain scale. Such in-
creases in accuracy proves the advantage of multiscale input using semantic information 
in the case of limited samples. While the multiscale strategy improves the classification 
accuracy of complex objects at different scales, simple classes such as water and bare soil 
can hardly benefit from the multiscale strategy. The multiscale strategy does not cause 
redundancy by combining networks of different depths; instead, it takes advantage of the 
semantic information at different scales and improves the semantically representative 
ability of the network. 

 
Figure 8. Experiments on the multiscale strategy for the Vaihingen (left) and Xiangliu (right) datasets. Figure 8. Experiments on the multiscale strategy for the Vaihingen (left) and Xiangliu (right) datasets.

4.2. Effects of Boundary Refinement

By combining an object-oriented mechanism and a postprocessing module, the pro-
posed framework can predict the precise contour of target objects, reduce the salt-and-
pepper effect, and obtain smoother classification results. As shown in Figures 9 and 10,
both the qualitative and quantitative results have been improved. Parking lots, roads and
roofs with similar construction materials share similar spectral properties, which makes
them difficult to distinguish. Superpixels generated by the proposed method can use
low-level boundary information to effectively solve this problem. In addition, MONet uses
postprocessing to further optimize the boundary information.
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To understand the contributions of the boundary refinement module, we compared
the classification results before and after postprocessing. The postprocessing step improves
the overall accuracy of classification results from 84.3% to 85.2% for the Vaihingen dataset
and from 89.8% to 92.5% for the Xiangliu dataset. Obviously, for the Vaihingen dataset,
postprocessing does not play a key role and only slightly improves the f1 score of buildings,
water and roads (from 0.90 to 0.91, 0.93 to 0.97 and 0.84 to 0.86, respectively) because the
superpixels generated in the presegmentation step have a small and relatively uniform
scale, while buildings and roads are large-scale objects. Therefore, there will be inevitable
loss of accuracy and boundary information. Postprocessing can be used to alleviate this
problem. Although the improvement in accuracy is relatively limited, a visual assessment
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of the results shows that the qualitative improvement is non-negligible. Figure 10 shows
that buildings are better distinguished after boundary refinement. The classification noise
was reduced, and the object boundaries were strengthened, which proves the efficiency of
this module. For the Xiangliu dataset, a significant improvement in the classification of
most classes was achieved by postprocessing. As shown in Figure 10, roads and crops are
classified into more regular segments. The classification results of trees are also smoother.
The small gaps between trees are merged into an entire segment, which makes it eas-
ier for manual interpretation and thematic map production, such as vectorization and
shapefile generation.

4.3. Advantages and Limitations

Combined with a deep neural network, the proposed object-oriented classification
method can consider both high-level semantics and low-level geometry information. Fur-
thermore, MONet has other practical advantages: (1) most state-of-the-art semantic seg-
mentation approaches rely heavily on fully pixelwise annotations, which are hard to obtain
in practice. MONet utilizes “lazy” labels that can be easily collected by point, line, and
polygon ROI selection, which reduces the burden of manual annotations. It is more practi-
cal in the fast interpretation of remote sensing images and the thematic map production
process. (2) MONet involves more parameters than traditional machine learning methods
but has much fewer parameters than most semantic segmentation networks, which often
involve millions of parameters to train. Therefore, the size of the training samples required
by MONet will be much smaller, and the training time will be much shorter. In addition,
deep learning is particularly suitable for utilizing computational hardware such as GPUs
to accelerate the training process. (3) The pixel-based CNN methods receive fixed-size
patches centered on each image pixel as input; then, every single pixel is predicted by the
corresponding image region of the specific patch. However, the required computational
power sometimes exceeds the capacity of available resources since most remote sensing
images have very large file sizes. As shown in Table 6, it takes several minutes to predict
a whole 1000 × 1000 pixel image, and the calculation time increases exponentially as the
image size increases. The proposed object-oriented method uses superpixels as the basic
unit for prediction, which requires a much shorter prediction time.

Despite all the advantages that this model can provide, our method still has some
limitations, especially when the objects in the images vary across quite different scales.
For example, the classification accuracy of cars by MONet is lower than that of the other
methods. There are two main reasons for this phenomenon: (1) the number of car samples
is much smaller than that of the other classes. (2) The sizes of the cars are very different
from the size of the objects in the other classes to be classified, and it is difficult to determine
a suitable segmentation scale for all the classes. That leads to another issue that has not
been studied in this paper: the effects of segmentation parameters on experimental results.
At this stage, the choice of segmentation parameters still stays on the interpretation of
visualization results. In addition, the multiscale network used in this paper takes inputs
of different sizes. More specifically, the inputs of MONet_1, MONet_2, and MONet_3
are 24 × 24, 48 × 48, and 72 × 72 pixels, respectively. In multiscale network feature
fusion, different data fusion weights are not considered in our paper. Although inputs
of different sizes can make full use of the semantic information surrounding superpixels,
nearby superpixels are more relevant than distant ones according to the principle of spatial
autocorrelation. Therefore, the size of the input data is inversely related to the relevance of
the target superpixels. The larger the input scale of the data is, the smaller the proportion
containing the target superpixel information, and the less it can help in the classification.
The weights of the features extracted at different scales should be different. Considering
the limitations of time and computing resources, adaptive multiscale weighted feature
fusion will be further considered in future research so that the feature fusion process can
be more meaningful and practical.
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5. Conclusions

In this study, we proposed an object-oriented multiscale CNN for practical and opera-
tional VHR remote sensing image classification tasks. By combining multiscale residual
networks, the method in this paper can effectively extract both low-level visual features
and high-level semantic features with limited training data. To solve the problem of los-
ing boundary information in deep neural networks, this paper employs multiresolution
segmentation and a CRF for postprocessing. The results show that the method performs
well on two challenging datasets and proves that it can be effectively used for VHR remote
sensing image classification. In addition, the method requires only coarse-labeled training
data, and the prediction process is fast, which makes it more practical for fast interpretation.
However, there are still some limitations in this study. For example, for objects with large
differences in scale, the classification accuracy is lower than that from other methods. In
future research, the following aspects can be studied further: (1) the postprocessing steps
are relatively independent of the method, so it will be better if the CRF is directly integrated
into the network in an end-to-end manner; (2) different weights should be set in the feature
fusion process.
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