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Abstract: The temporal non-stationarity of land use and cover change (LUCC) processes is one
of the main sources of uncertainty that may influence the calibration and the validation of spatial
path-dependent LUCC models. In relation to that, this research aims to investigate the influence of the
temporal non-stationarity of land change on urban growth modeling accuracy based on an empirical
approach that uses past LUCC. Accordingly, the urban development in Rennes Metropolitan (France)
was simulated using fifteen past calibration intervals which are set from six training dates. The study
used Idrisi’s Cellular Automata-Markov model (CA-Markov) which is an inductive pattern-based
LUCC software package. The land demand for the simulation year was estimated using the Markov
Chain method. Model validation was carried out by assessing the quantity of change, allocation,
and spatial patterns accuracy. The quantity disagreement was analyzed by taking into consideration
the temporal non-stationarity of change rate over the calibration and the prediction intervals, the
model ability to reproduce the past amount of change in the future, and the time duration of the
prediction interval. The results show that the calibration interval significantly influenced the amount
and the spatial allocation of the estimated change. In addition to that, the spatial allocation of change
using CA-Markov depended highly on the basis land cover image rather than the observed transition
during the calibration period. Therefore, this study provides useful insights on the role of the training
dates in the simulation of non-stationary LUCC.
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1. Introduction

Spatially explicit land use and cover change (LUCC) models are developed in order to
improve the understanding of the spatial systems dynamic and behavior, develop hypoth-
esis, predict future LUCC, and support policy makers in taking rational decisions [1–6].
Several reviews show that these computational models vary widely in underlying the
theoretical assumptions and methodological approaches [6–10]. Land change modeling
approaches can be arranged according to their relative emphasis on pattern versus process
and projection versus explanation [11]. Most LUCC modeling software packages are em-
pirical approaches based on past land change [12]. They rely on historical data for their
calibration to project future changes [13]. The most popular LUCC models developed to
simulate real-world urban processes are cellular automata models [14].

LUCC modeling continues to raise several issues and particularly those related to
the calibration and validation processes. The calibration process consists in obtaining the
values of the transition rule parameters that enable data-driven models to more accurately
reproduce observed past tendencies [10,14,15]. Statistical approaches and machine learning
algorithms are largely used in calibrating land use models [10]. The main recent advances
in the calibration of LUCC models focus on the neighborhood effect, spatial patterns, and
application of landscape metrics [10,16,17].
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Achieving an appropriate level of credibility in LUCC models’ performance for land-
scape planning decision support requires a proper validation [18,19]. According to [11],
successful application of these models requires that model choices respect modeling goals.
Furthermore, [11] argue that sensitivity analysis, pattern validation, uncertainty sources,
and structural validation should be taken into consideration in the practice of land change
models. Therefore, a consistent methodology for assessing model accuracy is mandatory
in performing cross-model comparisons and clarify trade-offs among quantity, allocation,
and spatial configuration accuracy components [19,20]. In addition to that, there are many
challenges and conceptual problems associated with the use of empirical land change
models [1,20,21]. According to [1], the main restrictive assumptions are the linear correla-
tion between predictors and dependent variables, temporal stationarity, spatial autocorre-
lation, and unidirectional causal change. Actually, there are several non-stationarity issues
that are raising challenges in LUCC modeling. Some of these main issues concern (1) the
large share of non-changing land which has a tendency of skewing validation measures
and calibration procedures, (2) the change over time of land change processes, and (3) the
change over time of land change drivers.

The non-stationarity of LUCC processes is one of the main sources of uncertainty that
may influence the calibration of models. In fact, LUCC involves nonlinear socioeconomic
and biophysical processes, non-stationary drivers over time and space, and feedback re-
sponses among variables [7,15,22–24]. According to [24], modeling the timing and the
system changes tendency is crucial because of non-stationarity and systemic changes in
land-use change projections. These changing drivers and processes influence the cali-
bration [10,23,25–27] and outcomes of empirical models [24,25,28,29]. In addition to that,
it is challenging for available algorithms to capture the dynamic and nonlinear human–
environment processes that drive complex land changes [5,23,26].

The stationarity of LUCC dynamics is systematically assumed in the majority of
LUCC modeling frameworks, which restricts the usefulness of empirically-fitted LUCC
models [1]. Indeed, many land change modeling applications often stress the assessment of
the model’s predictive performance without taking into consideration the non-stationarity
of involved processes and drivers [5,10,20,30–32]. Actually, these studies apply the same
set of parameters and explanatory variables when a calibrated model is extrapolated in
the validation time interval [10]. Thus, model performance may be underestimated in
replicating past land use dynamics when LUCC is assumed to remain unfluctuating over
time [26].

Though an extensive body of literature exists on LUCC modeling approaches, only
a few applications tackle the temporal non-stationarity in land change [24,26,27,29,33].
As pointed out by [34], the spatially non-stationary relationships between driving factors
and land use and land cover (LULC) categories in the transition rules are often neglected
in many studies. As pointed by [35], the relationship between non-stationary processes
and the predictability of land changes has not yet been explored. Some solutions are
nevertheless proposed to overcome the limitations of the Markov chain approach, which
assumes the stationarity of the transition probabilities over the calibration and prediction
intervals [15]. For example, [33] use the Flow matrix to measure the temporal instability of
the annual change among the time intervals that compose the time extent. As an alternative
to the Markov matrix, the proposed Flow matrix expresses the sizes of the transitions
among categories between two dates [15,33]. Recently, [34] analyzed the role of the spatial
non-stationarity of change in the process of LUCC simulation by combining geographically
weighted logistic regression and Cellular Automata (CA)-Markov model. Moreover, [29]
investigate how the use of historical maps may affect the quality of the calibration process
of the cellular automata urban models. However, the trade-offs of choosing one calibration
interval over another needs to be justified in order to avoid any negative consequence of
an arbitrary choice effect on the model’s output.

The purpose of this research is to investigate the influence of the non-stationarity of
land change on the modeling accuracy of an urban growth model over time. It seeks to
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distinguish between the inaccuracies due to the model’s behavior and the disagreements
resulting from the non-stationarity of input data over the calibration and validation time
extent. The application was conducted to Rennes Metropolitan area (France). It consists
in simulating future urban development using different calibration intervals based on
past LUCC. With five input LULC maps for 2003, 2006, 2010, 2011, 2012, and 2015, fifteen
discrete time intervals were used in order to parameterize the model and then project LUCC
for 2018. The simulated LULC maps for 2018 were compared to the actual map based on
the quantity, allocation, and spatial patterns accuracy. The study used the CA-Markov
software package, which is available in the IDRISI Selva raster-based spatial analysis
software [12,36]. CA-Markov is referred to as spatially explicit, inductive pattern-based,
and expert knowledge-driven model [12]. CA-Markov model uses the Markov chain
approach to compute the transition potential matrix. In CA-Markov, the suitability map is
generated by establishing a relationship between explanatory drivers and observed land
use and land cover map using a multi-criteria evaluation (MCE) method [12,37,38].

2. Materials and Methods
2.1. Definitions and Statements

This article uses three terms to describe time: extent, interval, and duration [33].
Temporal extent is the period of time between the first date 2003 and the last date 2018 in
a time series data. Interval is a period for which data exist both at an initial date and at
a subsequent date. The calibration interval [T0, T1] was used to parameterize the model,
whereas the simulation interval [T1, T2] was used to simulate the future urban growth
for the desired simulation date T2. Based on LULC maps for 2003, 2006, 2010, 2011, 2012,
and 2015, fifteen training intervals within the time extent were implemented to calibrate
the model and then to simulate developed areas for 2018: [2003, 2006], [2003, 2010], [2003,
2011], [2003, 2012], [2003, 2015], [2006, 2010], [2006, 2011], [2006, 2012], [2006, 2015], [2010,
2011], [2010, 2012], [2010, 2015], [2011, 2012], [2011, 2015], and [2012, 2015]. Duration is
the amount of time of any interval. Furthermore, the temporal stability and the temporal
stationarity terms are used interchangeably to describe the degree to which the rate of the
actual land change is still consistent over time extent [33,39,40].

For each simulation, only one single interval using only two input LULC maps from
two different training dates can be used for calibrating the model, whereas the start of the
simulation interval is also the end of the calibration interval. The calibration of CA-Markov
is based on one basis LULC image, which is also the calibration endpoint (T1). Duration
is the amount of time of any period. Furthermore, the terms temporal stability, temporal
homogeneity, and temporal stationarity are used synonymously to establish the validity
of model assumptions, and to explore whether the rate of land change trajectories is still
consistent over time [33,39–41].

Many land cover datasets and remote sensing images such as CORINE Land Cover
database and large-scale 30-m land cover maps are delivered with a certain spatial and
temporal accuracy that is often unsuitable for the temporal slight change analysis in an
urban landscape. Consequently, the observed change can be simply due to misclassification
errors especially in small zones undergoing slow rate of change as in the current research
study area. Accordingly, for temporal land change analysis requirements and modeling
purposes over fifteen years from 2003 to 2018, all the input LULC maps are performed
using image interpretation. The manual digitization of urban areas is carried out from the
ESRI’s World Imagery basemap in ArcGIS Online. World Imagery provides satellite and
aerial imagery with a ground resolution of 1 m or less, for example, the satellite images
used for mapping impervious surfaces in 2018 are provided with an accuracy of 8.5 m
and a ground resolution that varies between 30 and 50 cm. In addition to that, increased
built-up areas between 2003 and 2018 are mapped using visual interpretation of historical
Google Earth’s free and public high-resolution images whose resolution varies according
to the source of data.
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2.2. Study Area

Rennes Metropolitan is located in the northwest of France (Figure 1). In 2012, it
summed up to 705 km2 and had a population of 4,120,717 inhabitants that were dispersed
between 37 municipalities. Rennes Metropolitan is one of the booming areas in the west
of France. Since the late 50s, Rennes Metropolitan has acquired strong experience in land
management and urban planning.
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2.3. Dataset and Land Change Analysis
2.3.1. Dependent Variables—Past LUCC

Spatiotemporal urban development dynamic from 2003 to 2018 was analyzed at 15 m
resolution using LULC maps for 2003, 2006, 2010, 2011, 2012, 2015, and 2018, which were
manually performed using image interpretation technique (Figure 2).

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 19 

 

2.2. Study Area 
Rennes Metropolitan is located in the northwest of France (Figure 1). In 2012, it 

summed up to 705 km2 and had a population of 4,120,717 inhabitants that were dispersed 
between 37 municipalities. Rennes Metropolitan is one of the booming areas in the west 
of France. Since the late 50s, Rennes Metropolitan has acquired strong experience in land 
management and urban planning. 

 
Figure 1. Rennes Metropolitan area. 

2.3. Dataset and Land Change Analysis 
2.3.1. Dependent Variables—Past LUCC 

Spatiotemporal urban development dynamic from 2003 to 2018 was analyzed at 15 
m resolution using LULC maps for 2003, 2006, 2010, 2011, 2012, 2015, and 2018, which 
were manually performed using image interpretation technique (Figure 2). 

 
Figure 2. Urban development patterns between 2003 and 2018. 

Rennes Metropolitan has known continuous population growth between 2003 and 
2018, which led to significant urban expansion and spatial landscape pattern changes 

Figure 2. Urban development patterns between 2003 and 2018.



Remote Sens. 2021, 13, 468 5 of 20

Rennes Metropolitan has known continuous population growth between 2003 and
2018, which led to significant urban expansion and spatial landscape pattern changes
(Figure 2). Analysis of historical LUCC between 2003 and 2018 revealed a continuous and
significant increase in the developed areas of Rennes Metropolitan with an average annual
rate of 115 ha/year (Table 1).

Table 1. Urban growth in Rennes Metropolitan from 2003 to 2018.

Date Area (ha) Percentage of Landscape (%) NP ENND_MN Period Annual Change (ha/Year) Growth Rate (%)

2003 11,399 18.6 240 105 - -
2006 11,854 19.3 228 113 2003–2006 152 3.99
2010 12,307 20.1 227 106 2006–2010 113 3.82
2011 12,417 20.2 221 116 2010–2011 110 0.93
2012 12,570 20.5 222 115 2011–2012 153 1.23
2015 12,866 21.0 218 126 2012–2015 99 2.36
2018 13,118 21.4 218 137 2015–2018 84 1.96

Mainly, urban development has occurred through an edge growth process at the
proximity of previously developed areas in order to preserve rural areas and prevent urban
sprawl (Figure 2). The analysis of actual spatial growth patterns shows a non-stationary
dynamic. In addition to that, the urban development process is not spatially homogeneous
and significant differences are observed over time. Moreover, the number of urban patches
(NP) has decreased from 240 in 2003 to 218 in 2018, and the Euclidean mean nearest
neighbor distance (ENND_MN) has slightly increased from 105 m in 2003 to 137 m in
2018 (Table 1).

2.3.2. Independent Variables—Constraints and Potential Driving Factors

The input data that are likely to drive the observed urban growth dynamic in Rennes
Metropolitan area were prepared to calibrate CA-Markov model and set the simulation
rules. These biophysical driving factors covering the same area with the same spatial
resolution (15 m) consisted of the existing developed areas, slope, digital elevation model,
distance to developed areas, distance to major transportation network, excluded areas
from urbanization, and local urban planning document that was designed to establish the
general rules concerning land use at the municipality scale (Figure 3). The slope and main
road maps are unchanged for all the simulations, regardless of the calibration interval.
The distance to developed areas was calculated for the year T1 of every given calibration
interval [T0, T1]. The excluded zones included water bodies, wetlands, woodlands, and
other protected areas with respect to current land use planning documents and guidelines
requirements. The final layer combining all these constraints data was converted into a
binary map in order to constraint future development and preserve natural land resources.
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2.4. CA-Markov Model
2.4.1. Transition Area Matrix Using a Markovian Process

Land change processes are modeled using stochastic models [41,42]. In fact, Markov
processes are stochastic processes in which the state of the system at a given time t+1 is
derived from its state at an earlier time t and independent of its history before a spot of time
t [39]. Actually, Markov chain is a Markov process which is treated as a series of transitions
between certain finite or denumerable possible states of the process. The quantity of land
cover change is calculated by means of a transition area matrix using the Markov chain
model [33,39,42].

Vt + 1 = Mt × Vt (1)

M =
n

∑
1

Pij =

 P11 · · · P1n
... Pij

...
Pn1 · · · Pnn

 (2)

where Vt is the 1-by-n row vector of the input land cover proportion area at an initial time
t, Vt+1 is the 1-by-n row vector of the output land cover proportion area at the subsequent
time t + 1, M is a n × n transition matrix for an interval t + t + 1, Pij expresses the conditional
probability that a pixel of category i at time t transitions to category j by time t + 1, and n is
the number of land cover categories.

The conditional probability of transition for a cell transitioning from the category i at
time t to the category j at the subsequent time t + 1 is calculated by dividing entry Cij(t) of
the raw matrix by the row’s marginal sum. The calibration of the matrix Mt based on a
single past time interval using two observed land cover maps allows making projections of
future land change.

Pij =
Cij

∑n
j=1 Cij

(3)

where Cij is the size of area that transitioned from category i at t to category j at time t + 1,
∑n

j=1 Cij is the row’s marginal sum, and n is the number of land cover categories.
The transition probability matrix for the predicted year is firstly calculated based on

Equation (4). The original transition probability matrix is obtained based on the two former
LULC maps that are used to calibrate the model.

P(t2) = P(t1)∗P (4)

where P(t2) is the state probability of a point of time, P(t1) is the preliminary state probabil-
ity, and P is the original transition probability matrix.

2.4.2. CA-Markov Model

Markov model, which is intrinsically aspatial, lacks spatial dependence of geographi-
cal cells upon changes in neighboring cells [41]. Therefore, the hybrid CA-Markov model
combines the Markov chain that determines the quantity of change and Cellular Automata
in order to spatially allocate the estimated change [12,43]. In fact, the Cellular Automata
approach adds the spatial contiguity role to the Markov model. The cellular entity changes
its state based on both its previous state and adjacent neighbors [43,44]. Therefore, cells
that are close to the existing urban areas have a high probability to change [44]. As a matter
of fact, the spatial allocation of change using CA-Markov is based on the suitability map.
In parallel, other models use the transition potential approach [12,37,38].

Running CA-Markov module in IDRISI program requires inserting the basis land
cover image, the Markov transition areas file, transition suitability image collector, and
filter type. Criteria that determine the most suitable areas for projected urban development
include the excluded protected zones, slope gradient, proximity to roads, and distance
to existing developed areas (Figure 2). Proximity to developed areas is calculated for the
end point (T1) of the calibration interval [T0, T1]. Additionally, the constraints for urban
development are provided in a binary map. Zero is assigned to areas of absolute constraints
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and 1 corresponds to unconstrained areas which have no impact. The transition potentials
are multiplied by the constraints map during the change prediction process. Furthermore,
input factors are previously standardized using IDRISI Fuzzy module. The weight assigned
to each driver (distance to urban areas in the basis image: 0.772; distance to roads: 0.173;
slope: 0.055) are obtained by using the Analytical Hierarchy Process (AHP) method based
on a pair-wise comparison matrix [45,46]. The multi-criteria evaluation (MCE) decision
support tool is employed to compute transition suitability maps (Figure 4) using standard
kernel size of 5 × 5 pixels contiguity filter.
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2.5. Accuracy Assessment

The validity of each simulation output is assessed by comparing the predicted to
the actual urban areas for 2018. The comparison is carried out based on the quantity,
allocation, and spatial patterns disagreements [5,19,20,47,48]. The quantity error is due
to the discrepancy between the estimated and real amounts of change. In parallel, the
allocation disagreement is due to spatial inconsistency. A three-dimensional table is per-
formed using the reference last calibration date (T1) map which is also the basis land
cover image in CA-Markov module, the reference 2018 map, and the predicted 2018
map [49]. The observed change is the union of hits (observed change correctly predicted
as change) and misses (observed change but predicted as persistent), whereas the pre-
dicted change consists of hits and false alarms (observed persistent but predicted as
change) [20,47]. This comparison permits to differentiate between the fits that are due to
the presence of persistent cells (null successes) and the agreements that result from the
correct predicted change and [7,20,49,50].

The calculation of the error due to quantity (Equation (5)) involves the time duration
of the simulation interval (∆TSimulation = 2018 − T1) in addition to the observed (B) and the
predicted (C) annual change rates over the simulation period [T1, 2018].

ErrorQuantity = (B − C) * ∆TSimulation (5)

where ∆TSimulation is the duration of the simulation interval (years), B is the observed
annual change rate over the simulation interval (ha/year), and C is the predicted annual
change rate over the simulation interval (ha/year).
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The majority of the studies dealing with LUCC modeling, especially the accuracy
assessment, tighten the analysis of the error disagreement, which may cause some confu-
sions between the real model performance and the temporal non-stationarity of change.
As illustrated above (Equation (5)), the error due to quantity involves the actual (B) and
the simulated (C) change rate parameters that result from two different and independent
processes. In fact, such processes make the analysis of the error due to quantity difficult.
Accordingly, the quantity of disagreement can be reformulated for better interpretation
and analysis by introducing two additional parameters (Equation (6)). The variable (A–B)
is used to compare the actual change between the calibration and the simulation intervals.
It allows measuring the temporal non-stationarity assumption of the change rate over
the calibration and the simulation intervals. The variable (A–C) allows to evaluate the
ability of the Markov process in estimating the appropriate change rate by replicating the
calibration past change rate (A) in the simulation period. In fact, the estimated change (C)
is determined based on the observed change rate during the calibration interval (A) using
the Markov chain model.

ErrorQuantity = [(A − C) − (A − B)] * ∆TSimulation (6)

where ∆TSimulation is the duration of the simulation interval (years), A is the observed
annual change rate during the calibration interval (ha/year), B is the observed annual
change rate over the simulation interval (ha/year), C is the predicted annual change rate
over the simulation interval (ha/year), (A–C) is a measure of the ability of the model to
replicate the calibration change rate in the simulation interval, and (A–B) is a measure of
the temporal non-stationarity between the calibration and the simulation intervals. (A–B)
equals 0 when the two intervals have the same observed change rate.

In parallel to that, a set of seven commonly used spatial metrics is calculated using
the FRAGSTATS Spatial Pattern Analysis Program for Categorical Maps [51]. Spatial
metrics are implemented to assess the influence of the calibration dataset variability on
the spatial configuration accuracy of the model’s projections [52,53]. Selected metrics,
which are calculated based on the four cells neighborhood rule, comprise the number of
patches (NP), patch density (PD), landscape shape index (LSI), mean patch area (Area-MN),
mean Euclidean nearest neighbor distance (ENND-MN), large patch index (LPI), and patch
aggregation index (AI).

3. Results
3.1. Quantity of Change Estimate

Table 2 shows the temporal instability of the observed change rate between the calibra-
tion (A) and the prediction (B) intervals. The error budget analysis, which was performed
at the study area level, revealed a significant variation in the quantity disagreement of the
estimated change using the Markov chain model.

The results exhibited an error due to quantity ranging from 45 ha to 540 ha with a
standard deviation of 136 ha. The largest error due to quantity (540 ha) was produced by
using the calibration interval [2003, 2006] and the simulation interval [2006, 2018] which
had the largest time duration (Figure 5). The best score (45 ha) was achieved by using the
most recent land cover maps of 2012 and 2015 to calibrate the model.
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Table 2. Land change rate, time duration, and error due to quantity with respect to different calibration intervals.

Calibration Interval Simulation Interval Error

Period ∆T (Year) Observed Rate (A) (ha/Year) Period ∆T (year) Observed Rate (B) (ha/Year) Predicted Rate (C) (ha/Year) Obs.-Pred. (B–C) (ha/Year) A–B (ha/Year) A–C (ha/Year) EQuantity (ha)

2003
3 152

2006
12 105 150 −45 47 2 −5402006 2018

2003
7 130

2010
8 101 129 −28 29 1 −2242010 2018

2003
8 127

2011
7 100 126 −26 27 1 −1822011 2018

2003
9 130

2012
6 91 129 −38 39 1 −2282012 2018

2003
12 122

2015
3 84 121 −37 38 1 −1112015 2018

2006
4 113

2010
8 101 113 −12 12 0 −962010 2018

2006
5 113

2011
7 100 112 −12 13 1 −842011 2018

2006
6 119

2012
6 91 119 −28 28 0 −1682012 2018

2006
9 112

2015
3 84 112 −28 28 0 −842015 2018

2010
1 110

2011
7 100 112 −12 10 -2 −842011 2018

2010
2 132

2012
6 91 131 −40 41 1 −2402012 2018

2010
5 112

2015
3 84 112 −28 28 0 −842015 2018

2011
1 153

2012
6 91 153 −62 62 0 −3722012 2018

2011
4 112

2015
3 84 112 −28 28 0 −842015 2018

2012
3 99

2015
3 84 99 −15 15 0 −452015 2018
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Figure 5. Error due to quantity based on different calibration intervals.

The results also show the ability of the Markov model in reproducing the observed
past change rate in the simulation interval (Table 2). Indeed, the estimated annual growth
rate during the simulation interval (C) fit the actual growth rate during the calibration
interval (A) for all the simulations. Moreover, the observed annual growth rate during the
calibration intervals (A) was higher than the estimated annual growth rate during the pre-
diction interval (C) for all the simulations. The observed difference (A–C) varied from 0 to
2 ha. Therefore, the amount of error due to quantity was primarily determined by the time
duration of the simulation interval and the difference of the observed annual change rate
between the calibration and the simulation intervals. In addition to that, Figure 6 illustrates
a significant variation in the false alarms, misses, and hits. The number of false alarms
was slightly greater than the number of misses for all the examined calibration intervals.
Accordingly, the Markov model overestimated the amount of predicted developed areas
compared to the observed change.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 19 
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For more details, three categories of calibration intervals could be distinguished based
on the distribution of correctness and disagreements. The first group, comprising the
calibration interval [2003, 2006], exhibited the maximum number of hits, false alarms, and
misses compared to other groups. The second group was composed of five calibration
intervals that used 2015 basis land cover image, which was the closest calibration point to
the simulation date (2018). This group provided the best fit of 45 ha by producing fewer
false alarms and misses. At the same time, it yielded the lowest correctness score. Indeed,
the correct predicted cells represented 6% of the total predicted change when using 2015
basis land cover image, whereas it reached 20% when using 2006 basis land cover image.
The last category, summing up to nine calibration intervals using land cover basis images of
2010, 2011, and 2012 was characterized by an intermediate score of correctness and errors.

3.2. Spatial Allocation of Change

Simulated developed areas for 2018 using different calibration time intervals [T0, T1]
were associated with different amounts of spatial correctness and errors (Table 3). The
results point out that both false alarms and misses decreased as the last calibration point (T1)
got closer to the target simulation point (T2 = 2018). They also show that the allocation error
depended highly on the basis land cover image. For example, the allocation disagreement
decreased for 2006, 2010, 2011, 2012, and 2015 basis land cover images. The maximum
allocation error, which accounted for 1810 ha, was associated with the calibration interval
[2003, 2006].

Table 3. Observed vs. predicted changes (ha) based on three-time dimension cross-tabulation.

Intervals False Alarms
2-1-1

Misses
1-2-1

Hits
2-2-1

Persistent
2-2-2

Quantity Error Total Error Allocation Error
Calibration Simulation

2003–2006 2006–2018 1444 905 359 11,854 539 2349 1810

2003–2010
2010–2018

876 659 154 12,306 217 1535 1318

2006–2010 769 681 132 12,306 88 1450 1361

2003–2011

2011–2018

762 580 122 12,416 181 1342 1161

2006–2011 676 594 109 12,416 81 1270 1188

2010–2011 739 654 48 12,416 84 1393 1309

2003–2012

2012–2018

684 459 91 12,569 225 1143 918

2006–2012 628 466 84 12,569 163 1094 931

2010–2012 695 457 92 12,569 237 1152 915

2011–2012 808 443 107 12,569 365 1251 886

2003–2015

2015–2018

343 231 22 12,866 112 573 461

2006–2015 315 232 20 12,866 84 547 464

2010–2015 315 232 20 12,866 83 547 465

2011–2015 316 232 20 12,866 84 549 465

2012–2015 279 235 17 12,866 44 514 471

[T0, T1]: calibration interval, [T1, T2]: simulation interval. T2: target simulation date (2018). 2-1-1: persistent no change but predicted as
change (false alarms). 1-2-1: observed change but predicted as persistent no change (misses). 2-2-1: observed change correctly predicted as
change (hits). 2-2-2: persistent developed areas (null successes).

Table 3 depicts different scores of correctness, errors, and persistent areas depending
on calibration intervals. The error due to allocation tended to decrease as the calibration
interval involved a more recent date as the endpoint (T1). For example, [2003, 2015],
[2006, 2015], [2010, 2015], [2011, 2015], and [2012, 2015] calibration intervals outperformed
the remaining intervals that used maps of 2012, 2011, 2010, and 2006 as the basis land
cover image.

The calibration interval [2003, 2006] provided the largest allocation error (Figure 7),
but also the highest share of hits (Figure 8). The calibration intervals [2003, 2015], [2006,
2015], [2010, 2015], [2011, 2015], and [2012, 2015], which used the most recent basis image
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(2015), presented the lowest amount of allocation disagreement. At the same time, they
yielded the lowest quantity of correctly predicted cells.
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Figure 7. Error due to allocation for 2018 based on different calibration intervals.
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Figure 8. Correct predicted change (hits).

Largely, the allocation error still remained the major error component (Figure 9). It
varied from 71 to 94% of the total error compared to the quantity disagreement that ranged
from 6 to 29%. Moreover, values of the allocation disagreement, which ranged from 461
to 1810 ha, were more dispersed compared to the error due quantity. With a difference of
1349 ha between the minimum and the maximum values, the allocation error presented a
standard deviation of 419 ha.
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Table 4 shows a comparison between the fifteen simulated urban areas for 2018 using
spatial metrics. The results highlight a significant variation, especially in the number
of patches (NP), patch density (PD), mean patch area (Area-MN), and mean distance
(ENND-MN) between different simulated urban patterns for 2018. Other metrics including
landscape shape index (LSI), aggregation (AI), and large patch index (LPI) provided very
small variations which should be carefully interpreted by taking into consideration the
spatial resolution of the input data.

Table 4. Spatial metrics calculated on the observed and predicted developed areas for 2018 based on
different calibration periods.

Calibration Interval NP PD Area-MN ENND-MN LSI AI LPI

2003–2006 124 0.1 120 269 4.5 99.7 3.9

2003–2010 146 0.1 103 217 4.9 99.7 4.6

2006–2010 148 0.1 101 217 5.0 99.7 4.6

2003–2011 149 0.1 102 223 5.0 99.7 4.6

2006–2011 146 0.1 101 223 5.1 99.7 4.6

2010–2011 173 0.1 99 215 5.2 99.7 4.6

2003–2012 149 0.1 102 221 5.1 99.7 4.6

2006–2012 146 0.1 101 222 5.2 99.7 4.6

2010–2012 150 0.1 102 221 5.1 99.7 4.6

2011–2012 141 0.1 112 257 5.0 99.7 4.7

2003–2015 158 0.1 100 214 5.4 99.7 4.6

2006–2015 171 0.1 94 200 5.4 99.7 4.6

2010–2015 171 0.1 94 200 5.4 99.7 4.6

2011–2015 171 0.1 94 200 5.4 99.7 4.6

2012–2015 162 0.1 96 206 5.5 99.7 4.6

Figure 10 illustrates that the allocation of the predicted change was characterized by a
contiguous spatial pattern, because the actual and the simulated urban development have
occurred close to existing developed areas. However, the results indicate that simulated
urban areas in 2018 using CA-Markov did not match the spatial configuration of the
reference change in terms of the total number of urban patches. Actual urban patches
ranged from 240 for 2003 to 218 for both 2005 and 2018, respectively (Table 1). At the same
time, Table 4 shows that the number of the simulated urban patches varied from 124 for
the calibration interval [2003, 2006] to 173 for the calibration interval [2010, 2011].

The number of the simulated urban patches was smaller than the number of the ob-
served patches compared to the actual situation in 2018 and the basis land cover (T1) image.
For example, the simulated patches accounted for 124, while the actual situation in the
reference (T2 = 2018) and the basis (T1 = 2006) LULC maps, respectively, accounted for 218
and 228. Actually, the CA-Markov model underestimated the total number of patches by
simulating an edge-growth pattern due to the combined effect of the user-defined transition
rules and the spatial contiguity filter. CA-Markov has therefore underestimated the number
of developed patches by merging closer urban areas regardless of the calibration interval.
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4. Discussion
4.1. Quantity of Change Estimate

This current study shows that varying the pair training dates caused significant
variations in the estimated amount of the projected developed areas. However, the majority
of LUCC modeling approaches, especially those that use Markovian models, assume that
the spatiotemporal dynamic of land change still remains homogenous over the calibration
and the simulation periods. Such a temporal extrapolation modeling approach may be
consistent only when developing the business-as-usual scenario. However, the assumption
that future land demand can be solely estimated by extrapolating past tendency could
be erroneous in many cases [12]. In fact, estimating the amount of change based on
temporal extrapolation modeling process is unable to deal with intermediate changes and
temporal discontinuity over time. Actually, demographic, political, socioeconomic, and
environmental changes lead to non-stationary urban land demand and spatial patterns
over time.

Furthermore, [5] point out that the strict assumption associated with a Markov process
can lead to conceptual problems when the calibration and the simulation intervals consist of
different time durations. Still, the current study demonstrates that the differences between
the calibration and the simulation intervals’ time durations did not matter. For example,
the calibration interval [2012, 2015] and the simulation interval [2015, 2018], which had the
same short time duration (∆T = 3), yielded the best quantity agreement (Table 2). However,
the quantity disagreement using the calibration interval [2006, 2012] and its corresponding
simulation interval [2012, 2018] accounted for 168 ha even if they consisted of the same
time duration (∆T = 6). Actually, the amount of quantity disagreement resulted from the
combination of the observed annual change rates during the calibration and the simulation
intervals, the simulation time duration, and the predicted annual change rate during the
simulation interval (Equation (6)).

The results reveal that a low score of error due to quantity did not automatically
mean that the model was efficient enough (Equation (6)). In fact, the error due to quantity
provides a useful measure of model performance only if the observed annual change
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rate remains stationary over the calibration and the validation intervals (A − B = 0).
Conversely, the calibration intervals [2006, 2010], [2006, 2012], [2006, 2015], [2010, 2015],
[2011, 2012], [2011, 2015] and [2012, 2015] had A = C, which means that the Markov model
performed perfectly in estimating the appropriate annual change rate. In addition to that,
the predicted change rate fit the actual change rate during the calibration period. In this case,
the error disagreement was due to the temporal non-stability (A–B) of the urban growth
intensity over time. Moreover, the estimated amount of change during the simulation
interval using the Markov technique was lower than the baseline for all the calibration
intervals. In fact, the difference (A–C) between the observed annual growth rate during
the calibration interval (A) and the predicted annual growth rate during the prediction
interval (C) showed that the Markov method tended to underestimate the amount of the
predicted developed areas. Systematically, many studies that deal with LUCC modeling
validation techniques under the stationarity assumption [5,47] underestimate the real
predictive performance of models in replicating the past amount of change in the future. In
fact, they usually attribute the error due to the temporal non-stationarity of land change
to the model limitations. Accordingly, the proposed method to analyze the quantity
disagreement components will be useful in assessing the real accuracy of models. It permits
to distinguish between the capacity of the adopted modeling framework in reproducing
past tendency and the non-stationarity of land change over the calibration and simulation
time intervals. The modeling framework includes not only the model’s behavior but
also the modeler’s methodological choices, particularly in determining the simulation
transition rules using a knowledge-driven approach such as in CA-Markov change potential
evaluation. In addition to that, assessing LUCC simulation accuracy is a critical task
which requires high change detection accuracy. In fact, misregistration of the satellite
images and misalignment of different data sources drop the accuracy of the detected
change [13,20]. Thus, the current study used manual image interpretation for mapping
historical LUCC because mismatched data and classification errors will ultimately lead
to inaccurate predictions and bias in the model performance assessment, especially in
landscapes experiencing small changes.

4.2. Spatial Allocation of Change

The results point out that using different calibration time intervals [T0, T1] resulted
in significant variations in the amount of hits and allocation disagreement. The error
due to allocation, which depends on the spatial allocation process that is based on the
change potential map, tended to decrease as the calibration interval used a recent end-
point reference map (T1). In fact, false alarms and misses dropped as the last calibra-
tion point (T1) got closer to the target simulation point (T2). For example, the shortest
(∆TCalibration = 3) calibration interval [2003, 2006], which was associated with the longest
(∆TSimulation = 12) simulation interval [2006, 2018], provided the maximum allocation er-
ror, but also the highest share of the correct allocated urban cells. Conversely, all of the
calibration intervals that used the most recent basis image (T1 = 2015 and ∆TSimulation = 3)
yielded the lowest amount of the misallocation pixels, but also the lowest quantity of hits.
Moreover, the allocation error constituted the major error component. It varied from 71 to
94% of the total error, compared to the quantity disagreement that ranged only from 6 to
29%. In addition to that, the values of the allocation disagreement were more dispersed
compared to the error due quantity. Therefore, future improvements should focus more on
the spatial allocation of the change process.

The spatial patterns of the simulated urban areas using CA-Markov did not per-
fectly match the spatial configuration of the reference map. Significant variations were
observed in the number of patches (NP), mean patch area (Area-MN), and mean distance
(ENND-MN) between the different simulated LULC maps for 2018. For example, the
number of the simulated urban patches was smaller than the number of the observed ones
in the reference land use map (T2), but also smaller than the basis land cover image (T1)
itself. In addition to that, the analysis of the spatial metrics showed that as the basis land
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cover image (T1) got more closer to the simulation target (T2), the number of patches, patch
density, and shape index increased, while mean patch area and mean distance decreased.

Overall, the simulated spatial patterns were relatively realistic even they were slightly
more compact compared to the actual situation. In fact, the CA-Markov model tends to
generate compact spatial patterns by simulating the new individual urban cells mainly
adjacent to the existing urban areas in the basic land cover image. For the fifteen simulations,
CA-Markov exhibited limitations in dealing with the spatial allocation of the individual
patches. This shortcoming can have a negative effect when reproducing past spreading
development trends using a path-dependent approach. This behavior of CA-Markov was
probably due to the theoretical approach that was applied on the growth modeling using
CA models [52]. Actually, a CA-based approach includes feedback mechanisms due to the
proximity effect [12,16]. Accordingly, the urbanization level of the local neighborhood of a
grid cell strongly influences the allocation of new developed patches [52]. In CA-Markov,
the neighborhood filter leads to a suitability score decrease as the candidate pixels are
getting away from the existing built-up areas [12]. Nevertheless, the simulated compact
spatial patterns cannot be explained only by the neighborhood filter effect. In fact, the
effect of the simulation framework related to selected driving forces and change potential
evaluation approach should not be neglected. For instance, the current research used the
change potential map which was specifically elaborated using a user knowledge-driven
approach in order to reproduce the actual dominant edge growth pattern.

Regarding spatial allocation, the simulated change using the CA-Markov model was
more determined by the last calibration date rather than the transition that has occurred
during the calibration interval. Hence, non-stationary change processes cannot be captured
based on the CA-Markov empirical approach. Actually, one of the main differences between
CA-Markov and other LUCC software packages within the Idrisi program is the change
potential map that is used in the spatial allocation of change. CA-Markov is based on
the suitability map, which does not take into consideration the spatial patterns of past
changes during the calibration period [12]. In fact, the suitability map is elaborated based
on the relationships between the selected explanatory drivers and only one available land
use map. According to [37], the reference map used by CA-Markov for transforming and
weighting input variables is the state of LULC at the last calibration date. Conversely, the
reference map in Multi-Layer Perceptron (MLP), SimWeight, and Logistic Regression (LR)
methods corresponds to the transition probability map, which takes into account spatial
patterns of past changes from the first to the last calibration dates.

4.3. Implications on the Model Performance and Outputs

Using appropriate time series input data and calibration intervals is extremely impor-
tant when the objective is to reproduce past change patterns and validate empirically based
LUCC model under the hypothesis of temporal homogeneity. Otherwise, significant errors
could be induced, especially when past trend-based models are used in the simulation
of path-dependent land use scenarios [33]. In fact, the results revealed how outcomes
and accuracy scores of the Markov chain and CA-Markov models vary significantly with
respect to selected calibration dates. The magnitude of measured residues is largely due to
the non-stationarity of the observed land change over the calibration and the prediction
intervals rather than the inadequacy of Markov model. Therefore, the validation interval
needs to be consistent with the calibration interval in terms of the amount and spatial
patterns of change. This requirement will lead to a better evaluation of the model ability in
reproducing past-trend dynamics. [27] propose the estimation of the degree of significance
of selected training dates using long time series of LULC maps. Subsequently, several
calibration intervals should be included based on the research objective, types of errors to
be assessed (quantity, allocation, and spatial patterns), and trade-offs in the model accuracy.
The variation in the size and intensity of change across time intervals has to be determined.
For instance, the quantitative method developed by [54] can be employed to unify size
measurements and stationarity of land changes by time interval. In addition to that, the
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comparison of Markov matrices associated with different time intervals can be performed
using a variety of methods that have been developed to adjust conditional probabilities of
transitions (Equation (3)) to represent an equivalent duration [33,39–41].

The assessment of spatial allocation requires that the validation interval should match
the reference quantity during the calibration interval because of the sensitivity of the
pattern metrics to the quantity of each category [11]. According to [55], evaluating spatial
allocation accuracy of models is difficult when the quantity error is large. Thus, the ability
of models to predict spatial allocation can be better assessed when the quantity of change
is correctly estimated [55]. For example, the calibration interval [2012, 2015], which yields
the least quantity error, can be used to examine the ability of the model to replicate past
spatial patterns in the prediction interval [2015, 2018]. Furthermore, artificially simulated
images with specific properties can also be generated in case of lack of actual calibration
data that are required to assess the model’s performance in reproducing specific aspects of
past changes.

Spatiotemporal non-stationarity of LUCC still remains a complex issue. It involves
several parameters including selected calibration time points (long vs. short time duration),
input calibration data characteristics (spatial and thematic accuracy), scale of investigation,
and underlying processes (global vs. local approach). According to [53], low spatial
resolution and thematic accuracy may result in a more generalized structure of the mapped
urban land cover objects, thus leading to an overestimation of landscape homogeneity.
Conversely, relevant structures may get lost in a highly heterogeneous pattern due to a
detailed landscape classification [53].

The number of training dates and the duration of calibration intervals depend on
the research objective, observed intensity, and spatial patterns of past change, availability
of data, and model inputs requirement. In addition to that, it is a necessity to deal with
the risk of extrapolating and generalizing the observed change that has occurred during
the calibration interval. According to [13], the temporal extent of the calibration period
also affects the simulated LUCC results using models that rely on historical data for their
calibration. In fact, a long time calibration interval privileges global trends while tending
to average out the extreme tendencies [15]. However, fluctuations due to noise or one-off
events are more likely to be captured in a short calibration interval. In addition to that, [12]
indicated that the suitability approach is likely to perform better and be more stable as
the simulation is carried out over a long period with non-stationary change patterns.
According to [10], longtime interval might cause a high number of misses, but also a high
share of hits. For example, the shortest time calibration interval [2003, 2006], corresponding
to the simulation interval [2006, 2018], which was the longest simulation period (∆T = 12),
accounted for the highest quantity and allocation errors, but also the highest number of
correct predicted cells. However, the shortest calibration interval [2012, 2015], associated
with the shortest simulation interval [2015, 2018], yielded the lowest hits but also the lowest
quantity and allocation disagreements.

Furthermore, [7] have already developed an assessment framework that represents the
ability of multiple human-environmental models in addressing the tridimensional spatial,
temporal, and human-decision making real-world complexity. Models with a high value
for temporal complexity may incorporate multiple time steps, long duration, and capacity
to handle time lags or feedback responses [7]. For instance, the calibration of the SLEUTH
CA-based urban growth model [56] requires four reference dates compared to the majority
of existing LUCC models that are limited to two calibration dates only. Other simulation
tools like Land Change Modeler [20] are calibrated based on one single past time interval
using only two reference land cover maps. As pointed out by [15], the temporal resolution
of LUCC models includes the number of available calibration dates and time intervals. In
fact, [29] and [24] have found that the number of time-points used in the calibration of a
CA-based model significantly influences the calibration result.



Remote Sens. 2021, 13, 468 18 of 20

5. Conclusions

The influence of the non-stationarity of land change on the calibration and the accuracy
assessment of the inductive pattern-based LUCC models is seldom addressed in the
literature review. Actually, the stationarity of land change over time is frequently assumed
in the majority of LUCC modeling studies. Regarding this, this research aimed at informing
users on the influence of the calibration interval on the outputs of LUCC models and their
validity estimation. In fact, taking into consideration the non-stationarity of the land
change dynamic is a requisite to provide better estimation of the predictive performance of
path-dependent LUCC models.

The findings, specifically, demonstrate the influence of varying the calibration time
points on the simulation of non-stationary urban growth spatiotemporal dynamic using a
CA-Markov model. They exhibited significant variations in the quantity and the spatial
allocation agreements with respect to the selected key training dates. For all fifteen exam-
ined calibration intervals, the results showed that the Markov model performed better in
estimating the annual change rate of the urban growth based on historical data. However,
the analysis of the simulated spatial patterns showed that the CA-Markov model tended to
foster compact urban form. In addition to that, the spatial pattern accuracy of CA-Markov
depended highly on the basis land cover image rather than the observed transition during
the calibration period.

At last, the study suggests the use of the appropriate calibration and simulation
intervals during which the amount and the spatial patterns of change are stationary. It also
recommends the distinction between the non-stationarity of the observed real change and
the inability of the adopted modeling framework, which includes both the model behavior
and the user’s methodological choices, in reproducing past land changes. For that matter,
this paper proposes a useful analysis of errors and correctness variations by examining the
error budget using different calibration intervals based on historical LULC data.
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