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Abstract: Convolutional neural networks (CNNs) are known for their ability to learn shape and 
texture descriptors useful for object detection, pattern recognition, and classification problems. 
Deeper layer filters of CNN generally learn global image information vital for whole-scene or object 
discrimination. In landscape pattern comparison, however, dense localized information encoded in 
shallow layers can contain discriminative information for characterizing changes across image local 
regions but are often lost in the deeper and non-spatial fully connected layers. Such localized fea-
tures hold potential for identifying, as well as characterizing, process–pattern change across space 
and time. In this paper, we propose a simple yet effective texture-based CNN (Tex-CNN) via a fea-
ture concatenation framework which results in capturing and learning texture descriptors. The tra-
ditional CNN architecture was adopted as a baseline for assessing the performance of Tex-CNN. 
We utilized 75% and 25% of the image data for model training and validation, respectively. To test 
the models’ generalization, we used a separate set of imagery from the Aerial Imagery Dataset (AID) 
and Sentinel-2 for model development and independent validation. The classical CNN and the Tex-
CNN classification accuracies in the AID were 91.67% and 96.33%, respectively. Tex-CNN accuracy 
was either on par with or outcompeted state-of-the-art methods. Independent validation on Senti-
nel-2 data had good performance for most scene types but had difficulty discriminating farm scenes, 
likely due to geometric generalization of discriminative features at the coarser scale. In both da-
tasets, the Tex-CNN outperformed the classical CNN architecture. Using the Tex-CNN, gradient-
based spatial attention maps (feature maps) which contain discriminative pattern information are 
extracted and subsequently employed for mapping landscape similarity. To enhance the discrimi-
native capacity of the feature maps, we further perform spatial filtering, using PCA and select eigen 
maps with the top eigen values. We show that CNN feature maps provide descriptors capable of 
characterizing and quantifying landscape (dis)similarity. Using the feature maps histogram of ori-
ented gradient vectors and computing their Earth Movers Distances, our method effectively identi-
fied similar landscape types with over 60% of target-reference scene comparisons showing smaller 
Earth Movers Distance (EMD) (e.g., 0.01), while different landscape types tended to show large 
EMD (e.g., 0.05) in the benchmark AID. We hope this proposal will inspire further research into the 
use of CNN layer feature maps in landscape similarity assessment, as well as in change detection. 
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1. Introduction 
Earth system and environmental data have become abundant via a variety of sources 

ranging from model simulation data, citizen science, amateur drones, airborne sensors, 
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commercial satellites, and easily accessible data such as Landsat [1,2]. These data are avail-
able at unprecedented spatial and temporal resolutions and are widely used for under-
standing processes of environmental change across time and space. Given the rapidity of 
human-induced landscape disturbances, there is increasing interest in using environmen-
tal data resources to not only understand but also characterize and quantify landscape-
scale disturbances, and to support decisions and policies aimed at remediating degraded 
landscapes [3,4].  

Identifying the underlying processes that generate spatial patterns is critical to quan-
tifying changes in patterns across space and time [5]. For instance, we ask questions like, 
where are degraded landscapes common? What types of specific features are common or 
different between geographical locations? Are the underlying processes driving pattern 
changes similar or different across locations? How are degraded ecosystems responding 
to restoration campaigns? Such questions can be addressed through landscape pattern 
comparison. In urban planning and land management, for example, applications that pro-
vide information on images similar to regions under investigation are essential for deci-
sion-making [6]. Traditional landscape similarity analysis tools, however, rely largely on 
change-detection analysis on classified landcover maps to predict or quantify process-
driven changes. While these approaches have been successful, such features are limited 
in uncovering the complex and non-linear nature of process–pattern relationships [7]. 
Moreover, they are also dependent on the accuracy of the underlying map classification 
and incur challenges associated with legend harmonization and consistency/reproducible 
methods for data processing [8]. Furthermore, processes and patterns are both interde-
pendent and affect each other in many ways, thus complicating prediction efforts [9]. As 
the growing historical archive of image data is increasingly being used to develop moni-
toring schemes and tools for understanding complex land-change processes [5], new tools 
capable of extracting structural information from raw, unclassified land-image data are 
needed. 

Machine learning algorithms from computer vision research are capable of learning 
to extract robust descriptors from image data. Such descriptors are useful representations 
of data structure, and hence hold potential for landscape research [10]. For example, 
Tracewski et al. [11] demonstrated the application of deep learning for different landcover 
types characterization. Grinblat et al. [12] also applied deep neural networks for plant 
species identification based on vein morphological patterns. The landscape similarity 
search algorithm proposed by Jasiewicz et al. [13] illustrates the potential of computer 
vision approaches to discover (dis)similar landscapes across space. Recently, Buscombe 
and Ritchie [14] demonstrated that deep convolutional neural networks (CNN) account 
for spatial context and hence are effective for classifying spatially structured datasets. 
Thus, CNN models can be considered a recent class of spatially explicit models [15]. 

Computer vision models, such as CNNs, contain filter banks which engage in spatial 
learning, to extract spatially discriminative features of increasing complexity through 
weight-sharing [16]. Lower CNN layer feature maps contain local information that cap-
tures fine-grain discriminative patterns useful for similarity mapping, while deeper-layer 
features lack geometric invariance, which weakens their robustness to map finely detailed 
landscape patterns across variable scenes [17]. The layers of CNNs can preserve repre-
sentative information about an input image with varying rotation and illumination [18]; 
consequently, pretrained CNNs can be employed to extract features for characterizing 
dynamic texture and dynamic scenes [19]. CNN filters demonstrate consistent response 
to useful local regions of images; based on this property, Li et al. [20] proposed a Pattern-
Net that utilizes deconvolution (i.e., up-sampling) to discover discriminative and repre-
sentative patterns in images. In a related study, Lettry et al. [21] introduced a model ca-
pable of detecting repeated patterns in images. The authors provide evidence that con-
sistent small patterns can be strongly expressed in the shallower layers and hence are de-
tected as major repetitions. Given the importance of texture in landscape aerial scenes, 
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these properties may be particularly useful in recognizing different types of landscape 
scenes in aerial and satellite image data. 

A variety of CNN architectures have been proposed to resolve image-classification 
problems in recent years [22,23]. CNN layer depth, input size, and even training strategies 
adopted may influence the model performance and competitiveness with traditional ma-
chine learning techniques [24]. For instance, to learn multi-scale features which are robust 
to scale variation, and thus reduce misclassification rates, Liu et al. [25] proposed a 
method in which randomly cropped image patches are used for model development. 
Gong et al. [26] also introduced a saliency-based feature extraction framework with anti-
noise transfer network and found the approach to yield high classification accuracy on 
benchmark datasets. CNNs with feature concatenation or fusion modules are simple but 
effective feature extraction frameworks that have been adopted to combine local and 
global image features for improving the performance of many scene classification and 
other pattern recognition tasks [27–29]. Ye et al. [30] presented a multi-stage model that 
extracts and fuses low-, middle-, and high-level features, and obtained 95% accuracy on 
the Aerial Image Dataset (AID). Kang et al. [31] also developed a network that captures 
contextual information via the fusion of deep and shallow features to improve ship-detec-
tion accuracy. A framework with dilated convolution and skip connections was found to 
learn multiresolution discriminative features for scene classification [32]. Similarly, Gao 
et al. [33] proposed a network in which feature maps generated from input images are 
passed on to a concatenating layer, forming a combined feature map with richer discrim-
inative information. The authors concluded that their method significantly improved hy-
perspectral image classification. In a related study, Huang and Xu [34] used weighted 
concatenation to combine features across all CNN layers, yielding overall accuracy of 95% 
in AID. Similarly, Zeng et al. [35] developed a two-branch CNN in which local and global 
features are independently extracted and concatenated. With extensive experiments, the 
authors demonstrated that feature concatenation resulted in over 90% accuracy for most 
scene classes in AID. 

Despite the state-of-the-art performance of current CNN architectures, deep learning 
algorithms are generally perceived as “black-boxes” in both computer vision and across 
other domains; consequently, there have been intensifying calls to interrogate and reveal 
the inner workings of deep learning models in disciplines such as geography [36]. Visual-
izing spatial attention maps (i.e., feature maps) is a fairly simple method of exploring how 
CNNs learn and make decisions on an input image. The approach may be gradient-based 
and involve computing network output changes with respect to input [37], or utilizing a 
deconvolution network that projects image features over a plane [38]. Zhou et al. [39] also 
proposed converting the linear decision (regression) layer into a convolutional layer for 
generating class-based attention maps. To improve gradient-based feature map quality, 
guided backpropagation has also been introduced [40]. As these approaches do not al-
ways produce class-specific feature maps [41], Selvaraju et al. [42] proposed Grad-CAM, 
which integrates guided backpropagation and class activation maps, and thus yielding 
class-discriminative spatial attention maps. In a related research, Omeiza et al. [43] pro-
posed Smooth Grad-CAM++ to improve the spatial resolution and localization of patterns 
in feature maps. Class-selective relevance mapping has also been proposed to derive fea-
ture maps that contain the most discriminative regions of interest in medical images [44]. 

In this study, we focused on gradient-based convolutional feature maps. Gradient 
with respect to an input image, is a sensitivity map measuring how changes at an input 
pixel spatial location affect changes in CNN model predictions [42]. Given an input image, 
if small changes to its pixels correspond to a large network output change, then it follows 
that such pixels encode “significant” spatial information. The above novel approaches to 
visualize and interpret CNN feature maps have been used extensively to evaluate and 
improve models’ performance. However, we consider such CNN features to have poten-
tial for image similarity matching and retrieval. For example, a global representation vec-
tor extracted from a CNN has been shown to improve object-image retrieval on Oxford 



Remote Sens. 2021, 12, 492 4 of 26 
 

 

and Paris datasets [45,46]. As demonstrated in recent studies, CNNs with feature concat-
enation framework incorporate fine-grain textural details which encode relatively signif-
icant discriminative patterns [27,28]. Traditional CNN architectures, on the other hand, 
tend to focus largely on processing input images and feature tensors from individual lay-
ers. Thus, traditional CNNs have the tendency to discard tangible proportions of original 
image texture, as well as CNN layer features that contain discriminative information. To 
this end, we propose training and deploying a texture-encoded CNN model (Tex-CNN) 
to evaluate landscape similarity. Our Tex-CNN is a simple, yet computationally efficient 
feature concatenation architecture for generating discriminative feature maps. In order to 
compare our proposal with existing techniques, a classical CNN was trained. Using the 
trained Tex-CNN and the classical CNN, we derived feature maps, to compare different 
or repeating spatial patterns across space. Given the discriminative learning behavior of 
convolutional filters, feature maps are sometimes sparse; to reduce the CNN feature maps 
to a compact representation that best encodes patterns in a given landscape, principal 
component analysis (PCA) was further performed, and feature maps with the highest 
eigen values were selected. The histogram of oriented gradients (HoG) vector was then 
extracted from each map for comparison using the Earth Movers Distance (EMD) algo-
rithm.  

The contribution of this study is, therefore, two-fold. (1) A gradient-based convolu-
tional feature map approach to landscape similarity analysis was proposed. Using gradi-
ent-based features, the proposed landscape similarity assessment utilizes significant spatial 
patterns in a query and a candidate image for comparison. (2) A landscape similarity met-
ric capable of detecting within- and between-landscape types was developed. The pro-
posed metric effectively discriminates farm landscapes from mountainous, as well as for-
ested, landscapes. The paper is arranged as follows: We first illuminate the importance of 
spatial feature maps in landscape comparison; next, the methodological pipeline is pre-
sented, followed by results, discussion, and conclusion. 

2. Related Work 
Prior to the emergence of state-of-the-art of CNNs capable of detecting and classify-

ing objects and patterns, image texture processing was one of the earliest applications in 
which CNNs were employed to extract discriminative local features [47,48]. 

2.1. Representing Patterns in CNN Feature Maps 
Convolutional feature maps can be thought of as spatial activation features encoding 

discriminative regions within a given input image [49]. A feature map can also be viewed 
as detection scores resulting from the application of a filter over spatial locations in a 2D 
image; the activation value obtained at the i-th location quantifies the importance of the 
pixel at that location [50]. Such locations may be linked, at least conceptually, to “land-
scape features of interest” or those areas of the landscape that are discriminative of the 
landscape scene label. The potential of a convolutional-feature-based approach in urban 
landscape change detection was presented in El Amin [51]. The authors demonstrated that 
CNN features can perform higher than “hand-crated features” and other state-of-the-art 
techniques. In related research, Albert [52] showed that features extracted from CNNs 
trained discriminatively on urban imagery effectively compare neighborhood similarity 
across European cities. 

In landscape research where local-to-global changes or pattern similarity are some-
times of interest, CNN maps can be helpful. Feature maps represent local response regions 
of filters and thus encapsulate valuable pattern information [41]. These local regions also 
encode information pertaining to the underlying pattern-generating process. Feature 
maps from convolutional layers represent local descriptors of particular image regions 
which can be aggregated into global descriptors for image retrieval [53]. An image-re-
trieval framework is also closely related to the landscape-pattern comparison problem. 
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For instance, CNN activations containing pronounced spatial information can be utilized 
for detecting repeated patterns [21]. The challenge to detect repetitive spatial patterns is 
similar to landscape similarity analysis problem. It has been illustrated that convolutional 
layer activations are local region descriptors and outperform many state-of-the-art de-
scriptors [48,49]; thus, if these feature maps are well-pooled, a compact representation of 
a given landscape can be derived. Additionally, Zagoruyko and Komodakis [41] have 
shown that feature maps represent “knowledge learned” by a given network about the 
underlying pattern and can be transferred to other networks, to improve pattern detec-
tion. Furthermore, classical machine-learning algorithms for pattern detection or classifi-
cation, such as Random Forest, Support Vector Machine, and Maximum Likelihood being 
employed in landscape research, can be coupled with deep feature extraction models to 
boost performance [54]. For example, it has been shown that feeding features from CNNs 
to other models improve results [29]. We therefore postulate that CNN-feature-based 
frameworks hold the potential to enable the detection and quantification of spatially pat-
terned processes. 

2.2. CNN-Feature-Based Image Retrieval 
Image retrieval is an active research area in this era of “big data”, where the objective 

is to find a set of images that are the most similar to a given query image. Content-based 
image retrieval (CBIR) is a widely applied technique for retrieving images in databases. 
In CBIR, low-level image descriptors (e.g., color, texture, and structure) are extracted to 
form an image representation; a suitable measure is then selected to estimate similarity 
between images. Several algorithms have been proposed for an improved CBIR. For ex-
ample, Unar et al. [55] combine both visual and textual features for image retrieval. Zhang 
et al. [43] also developed an algorithm that segments an image into salient, non-salient, 
and shadowed regions, in order to extract spatially relevant information. Earth observa-
tion data now available in various archives could provide a wealth of information through 
effective search and retrieval techniques [6]. 

Recent research has shifted towards the use of features extracted from deep convo-
lutional layers of CNNs for image matching and retrieval [46,56]. The use of deep convo-
lutional features for image retrieval is demonstrated in a study conducted by Babenko et 
al. [53]. Chen et al. [45] propose region-of-interest deep convolutional representation for 
image retrieval. Their approach first identifies regions of interest and proceeds to extract 
features from the fully connected layer. Shi and Qian [46] also adapted the region-of-in-
terest-based approach called strong-response-stack-contribution, by exploring spatial and 
channel contribution, to generate a more compact global representation vector for an ob-
ject-based image retrieval challenge. Cao et al. [50] applied adaptive matching by splitting 
feature maps and later spatially aggregating them into regions of interest for comparison. 
Liu et al. [57] proposed extracting and pooling subarrays of feature maps as local de-
scriptors for visual classification task and found that the method outperforms features 
from fully connected layers. The aforementioned applications hold potential for designing 
resource management and decision-making applications in geography. 

3. Materials and Methods 
3.1. Models’ Architecture 

In the context of landscape similarity mapping, global shape information present in 
fully connected layers is of less significance, as landscape patterns often lack unique or 
stable geometry across space. Given that lower layers capture local patterns [16], we con-
catenated multi-layer features, to learn a discriminative representation of the data-gener-
ating process. In feature fusion, feature maps from three convolutional layers (i.e., conv1, 
conv2, and conv3) are concatenated followed by flattening into feature vectors to yield a 
dense layer (denoted FC1). One possible approach to improving CNN features’ discrimi-
native potential is to apply attention pooling strategies that takes the weighted sum of 



Remote Sens. 2021, 12, 492 6 of 26 
 

 

different feature maps instead of concatenating features, as this technique exponentially 
increases model parameters as well. However, we adopted feature concatenation, as it has 
been proven to enable the extraction of multiscale features, potentially obviating the need 
for multiscale inputs during model development [58]. Moreover, attention strategies are 
effective for object recognition tasks but may not tangibly improve landscape pattern dis-
crimination. 

Work similar to our approach is the Andrearczyk and Whelan [59] feature concate-
nation framework. Figure 1 illustrates the architecture of a classical CNN, while Figure 2 
depicts our model architecture. For model design, we build on the VGG16 model archi-
tecture and filter constellation [60]. Thus, 32, 64, and 128 Filters are used in the first, sec-
ond, and third convolutional layers of the classical CNN and the Tex-CNN models. The 
proposed model architecture is intended to be simple with minimum parameters as pos-
sible for field deployment. A model with fewer than three convolutional layers does not 
only limit the number of feature maps available for exploration but may not be able to 
shatter the training data as well. Given the data at hand, models with over four convolu-
tional layers could potentially pose overfitting challenges. 

 
Figure 1. Architecture of a classical convolutional neural network (CNN). The CNN applies convolutional operations, as 
well as max-pooling, to process input tiles, but no feature concatenation is implemented. 

 
Figure 2. Architecture of our proposed texture-based (Tex-) CNN model. Con1, Conv2, and Conv3 denote convolutional 
layers, while FC1 denotes fully connected layer. Concat layer represents concatenation of Conv1, Conv2, and Conv3 fea-
ture maps. 
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3.2. Model Parameterization and Training 
We opted for training our models from scratch, as this approach gives flexibility over 

model architecture. Although there is potential for data limitation, as well as over-fitting, 
in this framework [61], the approach facilitates feature maps comparison, as it ensures 
that features are the direct result of filters learned on data presented to models, compared 
to using pretrained networks in which filters learned from an entirely different domain 
than the task at hand. Given that the input image size is large enough (i.e., 225 × 225), we 
selected 7 × 7 convolutional kernels and used a fixed filter size with stride 1 throughout 
the convolutional layers. Filter receptive field size changes with layer depth and could 
result in profound differences in feature spatial resolution between successive layers. In 
the pooling layers, 2 × 2 max pooling with stride 2 is applied. The receptive field size at 
the third convolutional layer, therefore, becomes 46. We utilized 75% of the sample data 
for training and 25% for validation. To mitigate potential overfitting, 25% drop-out is used 
in convolutional layers, while 50% is applied to the FC1 layer [62]. The rectified linear unit 
(ReLU) is used as the activation function. Multiclass cross-entropy loss function is em-
ployed, and the models are trained for 30 iterations with Adam as the optimizer. Adam 
adaptively computes and updates gradients and is invariant to diagonal scaling of gradi-
ents [63]. The Keras-Tensorflow backend was used for building and supporting computa-
tions required to train the CNN models on a GPU with a NVIDIA-supported graphics 
card. Table 1 summarizes the models’ architecture and parameters. 

Table 1. A summary of models’ architecture and parameters. 

Layer Name Convolution Max-Pooling Activation Drop-Out 
Conv-1 7 × 7 × 32 2 × 2 ReLU 25% 
Conv-2 7 × 7 × 64 2 × 2 ReLU 25% 
Conv-3 7 × 7 × 128 2 × 2 ReLU 25% 

FC1 No No SoftMax 50% 

3.3. Application Context: Landscape Comparison 
Unclassified imagery, which is now ubiquitous due to the availability of sensors of 

varying types, offers the potential for landscape similarity queries. While land-cover clas-
sification in which pixels are labeled (classified) or objects are segmented and character-
ized is a predominant use of aerial and satellite imagery [64], in this modeling framework, 
we focus on characterizing whole scenes or landscapes. An implementation of this would 
be helpful for automating image retrieval and potentially provide a basis for mixed scenes 
and/or novel land-scene categories and/or descriptors. A conceptual representation for 
comparing unclassified images (aka landscapes/scenes) is depicted in Figure 3, using three 
landscapes/scenes denoted as X, Y, and Z, but the representation is expandable to multiple 
landscape types. Given an image, the feature map will be extracted for comparison, using 
EMD. EMD(X, X’), EMD(Y, Y’), and EMD(Z, Z’) compute within-landscape similarity, 
while EMD(X, Y), EMD(Y, Z), and EMD(Z, X) estimate between-landscape similarity. 

Benchmark datasets have long been used in computer vision for model development, 
due to the scarcity of labeled data, and the laborious processes required for generating 
such datasets, yet they remain relatively rare in geospatial research. The aerial imagery 
dataset is composed of high-resolution benchmark data recommended for training scene 
classification models [65]. The AID contains multi-resolution images; the pixel spatial res-
olution varies from about half a meter to eight meters, providing a suitable dataset for 
training classical CNN and Tex-CNN models. A common protocol in computer vision is 
to split a given dataset into training, validation, and test samples. This may sometimes 
result in high-accuracy reports resulting from overfitting. Owing to this caveat, and the 
need to find models capable of generalizing over a range of datasets for field application, 
we propose carrying out further validation by using a dataset from an entirely different 
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sensor. As such, we employed Sentinel data to evaluate the generalizability of the devel-
oped models. Table 2 describes the datasets utilized in this study. 

 
Figure 3. A conceptual framework for unclassified images/scenes comparison. Earth Movers Distance (EMD)(X, X’), 
EMD(Y, Y’), and EMD(Z, Z’) denote within-landscape comparison, while EMD(X, Y), EMD(Y, Z), and EMD(Z, X) represent 
between-landscape comparison. 

Table 2. Data types and specific application. 

Data Source Attribute How Data is Utilized No. of Images 

AID 
Aerial imagery, 
pixel resolution vary  
between 0.5 and 8 m 

Training and testing models,  
and building similarity  
distributions 

9000 images used training (75%) and  
validation (25%). 
900 images used for testing (e.g., deriving 
confusion matrix) 

Sentinel data 
Open-source satellite 
data; 10 m pixel  
resolution 

Visualizing feature maps in  
medium resolution imagery 
 
Demonstrate potential applica-
tion in Sentinel dataset 

600 images used for testing and computing 
confusion matrix.  
 
Image tiles are extracted from sentinel 
scenes at different spatial locations 

3.4. Data Augmentation 
The AID consists of diverse landscape types; however, considering only three land-

scapes reduces the sample size. CNNs are “data hungry” models; thus, training such mod-
els from scratch by using fewer samples and classes is likely to pose data limitation issues 
and overfitting. We therefore attempt to circumvent this challenge via the application of 
data augmentation. To that end, we employ the Keras image data generator API to aug-
ment our training dataset. Given that the AID is multiresolution–image pixel sizes vary 
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from about half a meter to eight meters, scale representation challenges are inherently 
reduced such that scale transformations may not make substantial difference following 
data augmentation. Bearing this in mind, horizontal flips and rotations (i.e., 45–180 de-
grees) were applied to generate enough training data. Three-thousand samples were gen-
erated for each landscape type, and thus yielding 9000 samples for the three landscape 
types: farm, mountain, and forest. A Sentinel dataset was used to test the potential gener-
alizability of the method on medium-resolution satellite imagery. Figure 4 illustrates sam-
ples of AID landscapes used in our experiments. 

 
Figure 4. Selected landscape categories from the AID dataset. Row (a) forest landscape, row (b) farm landscape, and row 
(c) mountain landscape. 

3.5. Activation/Feature Maps Derivation 
Given a trained CNN model, gradient-based activation maps can be computed to 

allow for visualization of localized regions in an image that contribute significantly to a 
given output pattern. Using our trained classification model, activation maps are derived 
via backpropagation of filter responses to input pixel intensities [42]. ReLU is employed 
to constrain the backpropagation process to propagate only positive pixel values that ac-
tivate filters; these pixel positions contain the highest weight and are therefore said to 
encode “significant patterns” or represent the signatures of the underlying pattern-gener-
ating process. 

The gradient-based class activation map proposed by Selvaraju et al. [42] is derived 
as follows: Let ܻ௖ denote the score for a particular landscape scene. The gradient, with 
respect to ܻ௖, is formulated as డ௒೎డ஺೔ೕೖ  ௞ denotes a set of CNN activation maps, and (i, j)ܣ . 

are locations of pixels in the feature maps. Equations (1) and (2) summarize feature maps 
derivation. 

α୩ୡดி௘௔௧௨௥௘ ௠௔௣ ௪௘௜௚௛௧ =       1ܼ ෍ ෍  ߲ܻ௖߲ܣ௜௝௞ถ஻௔௖௞௣௥௢௣௔௚௔௧௜௢௡ ௚௥௔ௗ௜௘௡௧ ௝௜
ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫீ௟௢௕௔௟ ௔௩௘௥௔௚௘ ௣௢௢௟௜௡௚             (1)
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௙௘௔௧௨௥௘ ௠௔௣௖ܮ = ൭෍ ܷܮܴ݁ ௞௖௞ߙ  ௞൱                                                                           (2)ܣ

The weight term ߙ௞௖ captures the “significance” of feature map k for a target land-
scape type/scene. ReLU is applied to the weighted sum of feature maps, yielding heat-
maps whose local regions highlight the most discriminant patterns in images. The result-
ant CNN activation maps pinpoint locations where the model focuses its attention on, 
since such locations contain significant spatial patterns. Therefore, activation maps can be 
referred to as “saliency maps” or “spatial attention maps”. 

3.6. Extracting HoG Vector from Feature Maps 
For each landscape type, 50 scenes across different locations were selected for feature 

map extraction. We note that, since the number of filters in the second convolutional layer 
from which the feature maps are computed is 64, each image correspondingly yields 64 
feature maps. We perform spatial filtering by using PCA to reduce the number of feature 
maps per image. PCA reduces feature map dimensionality, yielding a more compact im-
age descriptor [53]. Such a step is inevitable when CNN feature maps are being compared; 
due to discriminative learning, not all filters respond to input images or pixels, and, as 
such, certain feature maps may contain no features/patterns where a filter is not activated 
by an input image [66][67][68]. Using PCA, a feature map (i.e., eigen map) that has the 
highest eigen value is selected. Next, the HoG vector is extracted from each landscape 
type feature map. HoG has been shown to extract effective image descriptors for pattern 
recognition tasks. For example, human face recognition across standard datasets is found 
to improve, using HoG descriptors [69]. In related research, different plant species were 
effectively recognized from leaf patterns, using HoG descriptors [70]. Setting the spatial 
parameters (i.e., cell size and cells per block) for extracting HoG features, however, re-
quires a careful approach. In our implementation, the HoG vector is extracted by consid-
ering cell size 24 × 24 dimension and cell-per-block = 2 × 2 of each feature map. We deploy 
the EMD, a multivariate histogram distance measure, proposed by Rubner et al. [71], to 
compare the resultant HoG vector representing reference and test feature maps. 

3.7. Formulating the Feature Map Comparison Metric 
In the literature, there are a variety of pattern similarity comparison metrics, yet it is 

challenging to find robust and generic metrics to rely on when it comes to landscape sim-
ilarity comparison. In this section, we illustrate how our convolutional feature map com-
parison metric was derived. Figure 5 is a depiction of our proposed convolutional feature-
based landscape similarity comparison. 

Equations (3) and (4) illustrate our formulation and computation of within- and be-
tween-landscape similarities. ܹ݉݅ݏܮ = ܦܯܧ ቀܩ݋ܪ൫ܮ௅ଵ ௧௬௣௘,௟௢௖௑൯, ݉݅ݏܮܤ௅ଵ,௟௢௖௒൯ቁ  (3)ܮ൫ܩ݋ܪ = ܦܯܧ ቀܩ݋ܪ൫ܮ௅ଵ ௧௬௣௘൯, ௅ଶ ௧௬௣௘൯ቁ  (4)ܮ൫ܩ݋ܪ

where ܮ௅ଵ ௧௬௣௘ and ܮ௅ଶ ௧௬௣௘ represent different landscape categories from different spa-
tial locations. ܹ݉݅ݏܮ and ݉݅ݏܮܤ denote within- and between-landscape type compari-
son, respectively. For ܹ݉݅ݏܮ, we compare similar landscapes; example ܮ௅ଵ ௧௬௣௘, but from 
different locations (e.g., ݈ܻܿ݋݈ ݏݒ ܺܿ݋ ). For example, to compare farm landscapes, ݈ܺܿ݋ will represent a reference landscape, while ݈ܿ݋ ሺܻଵ,ଶ,ଷ…,௡ሻ  denotes farm landscapes 
(e.g., 225 × 225 grids) from other locations of interest. Landscapes whose spatial extents 
are large could be tiled into spatial grids of equivalent dimension as the model input size 
for comparison. 



Remote Sens. 2021, 12, 492 11 of 26 
 

 

 
Figure 5. A framework for CNN-feature-based landscape similarity comparison. Notice that within-landscape comparison 
(WLsim) compares features in similar landscapes type 1 (farm landscapes) and landscape type 2 (forest landscapes), while 
between (an across) landscape comparison (BLsim) cross-compares feature maps in landscape type 1 vs. landscape type 2. ݉݅ݏܮܤ involves a comparison of two disparate landscape types (e.g., forest vs farm). ܩ݋ܪሺ . ሻ computes HoG feature vector, given an input feature map, while ܦܯܧሺ . ሻ esti-

mates HoG feature vector similarity based on the EMD between landscapes. To test the 
proposed metric, 50 images from each landscape type were taken from the AID and ran-
domly split into two subsets, thus yielding 25 images per subset, which are named G1 and 
G2 (e.g., farmG1 and farmG2 each contains 25 images belonging to farm landscapes). Us-
ing the metric, a compact distribution based on EMD is computed for within- and be-
tween-landscape, by comparing each scene type; for example, in farmG1, a selected scene 
is compared with all other scenes in farmG2. This permutation schema is repeated for all 
the 25 scenes in farmG1. 

4. Experimental Results 
4.1. Landscape Type Prediction Models 

Figure 6a–f depicts classification accuracies for landscape types on AID and Sentinel 
data. The confusion matrices are computed by deploying the models on the test images 
from AID and Sentinel datasets (i.e., 900 images for AID and 600 images for Sentinel-2). 
In Figure 6a,b, the Tex-CNN and the classical CNN classification accuracy reports are sim-
ilar except for mountainous scenes where Tex-CNN has higher classification accuracy. In 
Figure 6c,d, the first row of the confusion matrix shows that over 90% of the farm land-
scapes are misclassified as forest in Sentinel dataset. About 70% of the mountain land-
scapes are correctly classified by the Tex-CNN, while the classical CNN achieves only 25% 
classification accuracy. Figure 6e,f shows classification accuracies after fine-tuning the 
models with a combination of AID and Sentinel data. It can be observed that misclassifi-
cation rates for farm landscapes have been substantially reduced.  
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Figure 6. Confusion matrix for landscape-type classification accuracy. (a,b) Tex-CNN and classical CNN accuracy on AID. 
(c,d) Classification accuracy for Tex-CNN and classical CNN on Sentinel dataset. (e,f) Fine-tuned accuracy for Tex-CNN 
and classical CNN, respectively, on a combination of AID and Sentinel test data. 
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Table 3 compares overall accuracy reports, as well as per-landscape type classifica-
tion accuracies for reference state-of-the-art techniques and Tex-CNN on the AID. It can 
be seen that the Tex-CNN is highly competitive and, in some instances, outperforms other 
methods. 

Table 3. Overall accuracy (OA) and selected per-scene class accuracy for reference and our proposed Tex-CNN on the 
AID. 

Methods Farmland (%) Mountain (%) Forest (%) OA (%) 
TEX-Net-LF [72] 95.5 99.9 95.75 92.96 

Fine-Tuned SVM [73] 97.0 99.0 98.0 95.36 
PMS [29] 98.0 99.0 99.0 95.56 

CTFCNN [34] 99.0 100 99.0 94.91 
GCFs + LOFs [35] 94.0 99.0 99.0 96.85 

MF2Net [74] 97.0 91.0 94.0 95.93 
Classical CNN 100 75.0 100 91.67 

Tex-CNN 99.0 90.0 100 96.33 

4.2. Exploring CNN Layer Features Suitability for Landscape Comparison 
Given that CNN layers process inputs hierarchically, feature maps spatial resolution 

become coarser with layer depth: Earlier layers contain finer resolution features, while 
deeper layer representation gives coarser features. We conducted visual assessment of 
feature map quality, as well as the potential utilization of the second- and third-layer fea-
ture maps. Layer-one features were not included in this analysis, as gradient-based fea-
tures cannot be computed by using input image data as the penultimate layer. Figure 7 
depicts feature maps with the highest eigen values extracted from Tex-CNN. The feature 
maps are the result of applying PCA to layer two- and three-feature tensors. Notice how 
the spatial resolution changes across the layers. While layer-two eigen maps are fine-
grained, with distinct patterns (e.g., farm boundaries, tree clusters), this pattern is not 
clearly interpretable in layer-three eigen maps. In Figure 7, row (a), layer-two shows high-
resolution features with conspicuous farm boundaries. Contrarily, layer-three map de-
picts low-resolution features; the boundaries of individual parcels are blurred out. In Fig-
ure 7, row (b), layer-two shows fine-grained clusters of trees; layer-three, on the other 
hand, depicts coarse scale patterns which are not immediately recognizable as forest. 

4.3. Mountainous Terrains 
We hypothesized that feature maps from within-landscape types would have lower 

EMD values, while those originating from disparate classes would have higher EMD val-
ues. We first conducted a Kolmogorov–Smirnov test to ascertain the validity of this hy-
pothesis. As expected, it turns out that between-class feature distributions were statisti-
cally significantly different (݌ < 0.001). A sample of mountain landscapes from the AID 
and Sentinel datasets is depicted in Figure 8. Feature map regions that are highlighted in 
warmer colors represent the most significant discriminative patterns learned by the three 
filters; notice that most of these areas are predominantly less vegetated. Regions with 
cooler (blue) colors are found to be less important, according to the model’s weighting 
decision. Notice also that the filters sometimes perceive similar regions differently in 
terms of significant patterns—pixels that are found to be significant by one filter may be 
seen to have less weight by another filter, due to the discriminative learning behavior of 
CNNs. 

Figure 9 shows the results for comparing mountainous landscapes and farm land-
scape types. It can be seen from Figure 9a,d that feature maps from similar landscapes 
display smaller distances, and hence their distribution falls to the left, characterized by 
smaller EMD. Over 60% of features in Wclass_mount of Figure 9a,b show EMD score of 
0.01, while more than 50% of between class comparison yields EMD values higher than 
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0.05. Moreover, it can be observed that aside from shape differences, there is little overlap 
in the distributions of within class (Wclass_mount, Wclass_farmG1, and Wclass_farmG2).  

 
Figure 7. Original images and visualization of CNN feature maps reflecting their spatial resolution. Row (a) depicts Farm 
landscapes, row (b) shows Forest landscapes, and row (c) represents Mountain landscapes. Column one shows input 
images. Columns two and three are the corresponding feature maps extracted from our Tex-CNN layers two and three, 
respectively. Note that the CNN features are eigen maps with the highest eigen values obtained after applying PCA to 
feature tensors in layers two and three. 
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Figure 8. Mountain sample landscapes. Row (a) shows a sample mountain from Sentinel dataset. Row (b) shows a sample 
mountain from AID dataset. Feature maps are from Filters 48, 51, and 64. 

 
Figure 9. Landscape similarity comparison. EMD similarity distribution for mountain, forest, and farm patterns is depicted 
in (a–d). Mountain feature map comparison is within-class (i.e., mountain vs. mountain). Between-landscape type simi-
larity distribution is derived through mountain vs. farm (a,b), and mountain vs. forest comparisons (c,d). 
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HoG can also be extracted directly from the original data (i.e., raw images) for com-
parison. We demonstrate this by computing EMD over the same set of original images 
used for extracting CNN feature maps. Figure 10a,d presents within-class (i.e., 
Wclass_mount), between-class (i.e., (mountain vs. farm) and (mountain vs. forest) EMD 
distributions. As can be seen in the derived CNN features, the mountain vs. forest com-
parison poses challenges for real image comparison as well. 

 
Figure 10. Original image histogram of oriented gradients (HoG) comparison. Image EMD values distribution for moun-
tain, forest, and farm patterns is depicted in (a–d). (a,b) Show within-class (mountain vs. mountain) and between-class 
(mountain vs. farm); meanwhile, (c,d) depict within-class (mountain vs. mountain) and between-class (mountain vs. for-
est). 

4.4. Farm Landscapes 
Figure 11 presents farm landscape samples and their corresponding feature maps. 

Convolutional filters are randomly selected to illustrate patterns learned on farm land-
scape types. It can be observed that the filters specialize in detecting different features. For 
example, Filter 43 recognizes farm boundaries to be significant patterns, while Filter 8 
weights blocks of vegetated areas higher. As shown in Figure 11a,b, the filters appear to 
assign significance to similar features in both AID and Sentinel datasets.  
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Figure 11. Farm landscapes and feature maps. Row (a) Sentinel dataset and row (b) AID dataset samples. Feature maps 
are extracted from Filters 7, 8, and 43. It can be seen that certain filters (e.g., Filter 43) specialize in detecting farm bound-
aries, while Filters 7 and 8 detect regions with vegetation. 

Figure 12a–d depicts within-landscape feature maps’ similarity (Wclass_farm) and 
between-class similarity (Bclass_mountG1 and Bclass_mountG2, for mountains; 
Bclass_forestG1 and Bclass_forestG2, for forests). The Wclass_farm distribution shows 
most feature maps with EMD values close to zero, and over 65% of the feature maps show 
EMD values of 0.01. Conversely, Bclass_forestG1 and Bclass_mountG1 distributions tend 
to fall towards higher distances, with over 50% of feature maps having EMD value of 0.05. 

4.5. Forested Landscapes 
Forest landscapes from the AID dataset and their feature maps are depicted in Fig-

ure 13a,b. Filters 11, 15, and 53 depict features at varying grain sizes, yet they represent 
discriminative features from an identical forest landscape.  

Figure 14a,b illustrates the similarity distributions for within forest landscape 
(Wclass_forest) and forest vs. farm landscapes (Bclass_farmG1 and Bclass_farmG2). The 
two landscape types show distinct EMD similarity distribution with very little overlap. 
Moreover, high variance is noticeable in the between-landscape comparison. Feature 
maps in within-landscape comparison depict lower EMD scores, with over 60% of fea-
tures showing EMD values of 0.00–0.01, while over 70% feature maps in between-land-
scape comparison show 0.05 EMD similarity scores. Figure 14c,d compares forest land-
scapes with mountains. Within-class distribution (i.e., Wclass_forest) shows lower vari-
ance and relatively shorter EMD scores. However, though the distributions depict differ-
ent shapes, there tend to be substantial overlap in within-class and between-class 
(Bclass_mountG1 and Bclass_mountG2) distributions. 
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Figure 12. Landscape similarity comparison. Wclass_farm denotes within-farm landscape similarity. (a,b) 
Bclass_mountG1 and Bclass_mountG2 are distributions resulting from comparing farm landscapes with mountains. (c,d) 
Bclass_forestG1 and Bclass_forestG2 are distributions generated by comparing farm landscapes with forests. 

 
Figure 13. Forest landscapes from AID dataset. Row (a) denotes a sample image and its feature maps. Row (b) is sample 
of forest landscape from the different location. Notice that Filters 11, 15, and 53 depict features with varying grain sizes, 
yet they originate from an identical forest landscape. 
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Figure 14. Landscape similarity comparison. (a,b) Distributions from within-landscape (Wclass_forest) and forest vs. farm 
landscape types comparison (Bclass_farmG1 and Bclass_farmG2). (c,d) Distributions for forest vs. mountain types com-
parison (Bclass_mountG1 and Bclass_mountG2). 

5. Discussion 
A comparison of the Tex-CNN accuracy reports on the test data, as shown in the 

confusion matrix (Figure 6), emphasizes the promising potential of textural information 
in capturing discriminative patterns. Although the performance of both models is virtu-
ally similar for farm and forested landscapes, we noticed a dramatic difference in the mod-
els’ classification accuracies for mountainous terrain types. Our observation implies that 
the higher accuracy for the Tex-CNN prediction is partly attributable to the model’s ar-
chitecture, which encodes representative features with textural information. The incorpo-
ration of texture features enhances model performance, especially for complex patterns 
and datasets [59,75]. As seen in Figure 13, the feature maps display multi-resolution pat-
terns in the forest landscape types. The feature concatenation method introduced may 
have encouraged the CNN to learn both fine and coarse grain spatial patterns [75]. A com-
parison of the Tex-CNN classification results (e.g., OA) and that of the state-of-the-art 
models in AID is presented in Table 3. The model is highly competitive with existing high-
performing techniques. Per-landscape accuracy shows that our method is either at par or 
outcompetes other methods. It should be emphasized that the model is simple (i.e., small 
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in size) and computationally efficient compared to other models (e.g., References [34,72]). 
Thus, Tex-CNN can be used to extract feature maps with minimum overheard cost. 

In Figure 6c,d, it can be observed that classifying landscapes in Sentinel data is chal-
lenging for both models, as they did not perform up to expectation in the first row of the 
confusion matrix. Over 90% of the farm landscapes tend to be classified as forest (i.e., false 
positive); contrarily, 92% and 79% of forest landscapes are correctly classified by the Tex-
CNN and the classical CNN, respectively. This is partly explained by the relatively low 
spatial resolution of Sentinel’s dataset, as well as the data not being part of the training 
sample. Visual exploration of feature maps in Sentinel data shows most farm boundaries 
disappearing completely in higher layers of the CNN, thus making farm samples appear 
as if they contain only vegetation patterns. The absence of boundary-like patterns likely 
triggers filter responses, leading to the misclassification of farms as forest. A profound 
reduction in misclassification rates, especially for farm landscapes, was achieved by add-
ing Sentinel data (Figure 6e,f). Thus, presenting models with multimodal data at training 
time is likely to improve discriminative learning, while reducing misclassification errors. 

The use of feature maps in pattern recognition is borne from the notion that the hu-
man visual system extracts the most relevant structural information from visual scenes in 
order to make decisions or characterize them semantically [76]. There is a great deal of 
analogy between landscape similarity comparison and assessment of feature maps (dis) 
similarity common in computer vision research [10]. CNN feature maps are continuous-
valued data which can avoid classification problems that arise in landscape research ow-
ing to landcover type discretization and artificial boundaries generation [77]. We adopted 
a novel approach to compare landscapes via the extraction of feature maps from specific 
landscape types. This framework leads to the availability sufficient feature templates de-
scribing a particular landscape and thus enabling robust similarity mapping. The PCA 
method resulted in objective selection of feature maps that best represent a given land-
scape. Feature map dimensionality reduction through PCA has been proven to not de-
grade but further improve the discriminative potential of convolutional features [53]. Fig-
ure 7 shows samples of original images and their corresponding eigen maps. For land-
scape similarity comparison, layer-two feature maps were utilized. As can be seen in the 
figure, layer-two yields compact and high-resolution feature representations than layer-
three. This suggests that layer-two features may be suitable for similarity assessment, 
hence our adoption of the layer’s feature maps. 

In Figure 9a,b, mountainous landscapes show distinct differences with farm land-
scape types. The EMD values for the within class comparison (Wclass_mount) falls largely 
on the left, pointing to shorter distances and hence higher similarity. More than 60% of 
the feature maps show EMD values of 0.01. Over 50%, the feature maps between class 
comparison EMD values are as high as 0.05. This suggests that there exist significant dis-
criminative features between these two distinct landscape types. Song et al. [78] provide 
evidence that, by using feature map distances, it is possible to select the most discrimina-
tive patterns to represent mountainous terrains. The feature maps within the similar land-
scape also tend to depict higher EDM densities, which is an indicator of feature maps 
clustering [39], and high-density (frequency) values imply that a large proportion of fea-
ture maps are similar. Figure 10a–d compares HoG features extracted directly from the 
original images. The EDM distributions are somewhat similar to the CNN feature maps, 
but it can be observed that the CNN features appear to be slightly sensitive; for example, 
fewer images in the between-class comparison fall in EDM of 0–0.01. Moreover, compared 
to the original image HoG features, it can be seen that EMD values’ distribution tends to 
be peakier for within-class and a little flatter for between-class in the CNN feature com-
parison. This suggests that our Tex-CNN features may possess more image descriptors 
compared to raw image pixels. 

When comparing mountains versus forested landscapes, EMD distributions appear 
to overlap. This challenge is not unexpected, given the diverse morphology of mountains 
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in some images, especially given that some mountains contain forest. Furthermore, re-
calling that the model’s performance at predicting mountainous terrains is low, it follows 
that feature maps derived for certain input images that record poor scores may be of lower 
quality for landscape comparison. This suggests that, if a model is optimized to predict a 
particular landscape type with high accuracy, its corresponding feature maps will be of 
better discriminative quality and hence can be suitable for mapping landscape similarity 
[41]. 

Farm landscapes turn out to be the most easily discriminated patterns using the CNN 
model’s feature maps (see Figure 12 a,b). As expected, the within-landscape type compar-
ison shows smaller EMD values for farm feature maps, with between-landscape distribu-
tions falling towards the right. Additionally, there is very little overlap in the distributions 
of within- and between-feature map distributions. Higher EMD values suggest lower sim-
ilarity scores for landscapes being compared. Moreover, within-class feature maps exhibit 
somewhat low variance in EMD values. Over 65% of the Wclass_farm shows 0.01 EMD. 
This shows higher similarity compared to the farm vs. forest comparison, where EMD 
values as large as 0.05 are recorded. The unique vertical and horizontal boundary features 
may be among the discriminative patterns the model learns in farm landscapes. Lower 
layers of CNN are superior in learning edges, blobs, curves, and fine-grained textural pat-
terns [12]. This observation emphasizes the high prediction accuracy recorded for the 
farm-landscapes type, as shown in the confusion matrix (Figure 6). Murabito et al. [76] 
study found that saliency maps, a variant of gradient-based attention maps (i.e., feature 
maps), improve pattern detection. 

Figure 14a–d depicts within-forest landscape and between landscapes, which consist 
of forest vs. farm (e.g., Bclass_farmG1), and forest vs. mountain (e.g., Bclass_mountG1). 
Figure 14a,b emphasizes the existence of distinct discriminative features between forest 
and farm landscapes, as these two distributions show very little overlap. More im-
portantly, within-forest landscape (Wclass_forest) distribution shows lower EMD values, 
suggesting higher similarity scores. More than 60% of the feature maps have EMD values 
of 0.00–0.01, while over 70% of the between-landscape comparison shows 0.05 EMD sim-
ilarity scores. However, the Wclass_forest vs. Bclass_mount distributions show overlaps 
(Figure 14c,d), though the shape of the distributions suggest that the two landscapes be-
long to distinctively different class types. The Kolmogorov–Smirnov test further con-
firmed that the distributions are statistically significantly different (݌ − ݁ݑ݈ܽݒ < 0.001). 

The remote-sensing and spatial-analysis literature has many metrics for comparing 
spatial patterns, yet this domain is largely fractured, and sometimes lacks generic toolsets 
for comparing continuous valued (i.e., unclassified) image data [7]. Amirshahi [79] pro-
posed extracting HoG and applying histogram intersection kernel to compare feature 
maps. Liu et al. [80] also introduced a similarity distribution learning framework, using a 
CNN ensemble to incorporate feature uncertainty similarity at training time. The ex-
tracted features from the trained model are then employed in image retrieval and scene 
classification. Given that CNN feature maps are inherently discriminative and can poten-
tially handle similarity uncertainties, we propose a metric to compare CNN feature maps’ 
similarity via the computation of feature EMD. Our approach applies gradient-based com-
putation to extract discriminative spatial patterns given an input image. The extracted 
feature maps contain local descriptors which are essential for pattern recognition. Utiliz-
ing EMD resolves the problem of histograms’ bin size on similarity scores. 

Our proposed metric effectively distinguishes farm landscape types from non-farm 
landscapes. Mountainous terrains and forested landscapes are discriminated, as their dis-
tributions are significantly different. A highly sensitive spatial pattern domain metric may 
be able to overcome the overlaps seen in forested and mountainous landscapes distribu-
tions. We tested structural similarity and the complex-wavelet structural similarity met-
rics which capture spatial information but did not realize impressive results. We point out 
that our findings demonstrate the challenging nature of the AID dataset and its potential 
suitability for training models; despite containing fewer samples per scene categories, the 
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images can be described as multi-scale (i.e., mountain features’ size vary within the same 
landscape type). Such data can present challenges to CNNs without explicit multi-resolu-
tion encoding [81]. To surmount such a limitation, Li et al. [20] suggested utilizing the last 
convolutional layer filters, since these enable the discovery of locally consistent spatial 
patterns. However, we chose not to apply these features, since they lack full geometric 
invariance, as well as fine-grain textural details [17]. Figure 8 further emphasizes our 
claim, as it illustrates the lower spatial resolution of layer-three feature maps. The last 
layer (i.e., FC1) encodes structure and global information (e.g., shape). As pointed out 
earlier, unlike object recognition, landscape patterns lack definite shapes; hence, features 
from this layer may not improve mountain vs. forest discrimination substantially. Fur-
thermore, given that the FC1 features are 1D vectors, the approach to computing the HoG 
adopted cannot be applied. The bag-of-words approach widely used in CBIR [82] could 
improve mountain vs. forest distinction, but this approach was not considered in this 
work, as it is out of scope. 

The low classification accuracy of the models on Sentinel data (see Figure 6c,d) em-
phasizes the potential effects of spatial resolution on models’ performance. Interestingly, 
however, the Tex-CNN outperforms the classical CNN, as it shows high classification ac-
curacy for mountains. The inclusion of texture information may have improved the 
model’s performance across scales. 

6. Conclusion 
The landscape-similarity mapping problem can be formulated as a challenge to de-

tect repeated patterns, in other words, similar patterns across different locations, as shown 
in a study conducted by Lettry et al. [21]. The problem of comparing landscapes can also 
be considered in the context of image-retrieval tasks, as demonstrated by Yandex and 
Lempitsky [53], using convolutional feature maps. Landscape similarity or change-detec-
tion problems may further be cast as image-quality assessment challenges, as demon-
strated in Reference [79]. In this study, we showed that CNN-based features (aka spatial 
attention maps) contain discriminative descriptors of image quality and, hence, compu-
ting similarity over feature maps can be an effective and generic way to compare land-
scapes. Our approach provides evidence that a generic pattern-comparison metric can be 
developed from highly discriminative feature maps capable of mapping diverse land-
scape types. 

The challenge encountered in the mixing of forest and mountain similarity distribu-
tions points to the potential occurrence of false positives when attempting to make search 
queries between forests and mountains. The models’ performance being consistently low 
for mountains in AID and Sentinel data further emphasizes that scaling of features repre-
sented in feature maps might work for farms and forests but not for mountains. As men-
tioned previously, the morphology of the mountain class is highly variable; moreover, the 
presence of forest on mountains further complicates discrimination between the land-
scapes. In this context, a priori knowledge may help decrease false positives at the time of 
query. Moreover, the relatively low CNN classification accuracy for the mountain land-
scapes likely influenced the quality of feature maps derived from convolutional layer fil-
ters; hence, a higher-performing model would be crucial for deriving highly discrimina-
tive patterns relevant for landscape similarity comparison. 

One potential limitation of the proposal stems from the fact that mixed landscape 
samples were not considered in model development; widening the sample size to include 
scenes that contain a mixture of two or more landcover types could improve the metric’s 
performance, especially in discriminating mountains and forests. Such a fuzzy definition 
of landscape classes may be more useful for landscape-similarity and/or scene-retrieval 
applications in the future, as they more closely align with the complexity of landscapes in 
the real world. Moreover, the nested framework (i.e., PCA and HoG, and EMD) compu-
tations may increase the complexity of the proposed metric. Given that what constitutes 
the best approach to feature map selection approach remains an open question [57], an 
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innovative and objective framework to select feature maps to enhance (dis)similarity de-
tection, as shown by Rui et al. [83] by utilizing feature map separability index, needs fu-
ture consideration. Additionally, further research needs to consider expanding the num-
ber of landscape types so as to test the robustness and generalizability of the proposed 
metric. Independent validation datasets from different sensors, such as Sentinel-2, can be 
challenging for models trained on high-resolution aerial imagery; thus, it is essential that 
future research considers combining samples of multi-modal datasets for model develop-
ment. The utilization of gradient-based CNN feature maps for landscape-change detec-
tion also warrants future research. 
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