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Abstract: Understanding the spectral characteristics of crops in response to stress caused by weeds is
a basic step in improving the precision of agricultural technologies that manage weeds in the field.
This research focused on the competition between corn (Zea mays) and redroot pigweed (Amaranthus
retroflexus), a common weed that strongly reduces corn yield. The aim of this research was to
characterize the physiological changes that occur in corn during early growth because of crop–weed
competition and to examine the ability to detect the effect of competition through hyperspectral
measurements. A greenhouse experiment was conducted, and corn plants were examined during
early growth, with and without weed competition. Hyperspectral measurements were combined
with physiological measurements to examine the reflectance and photosynthetic activity of corn.
Changes were expected to appear mainly in the short-wave infrared region (SWIR) due to competition
for water. Relative water content (RWC), chlorophyll content, photosynthetic rate, and stomatal
conductance were reduced in the presence of weeds, and intercellular CO2 levels increased. Deeper
SWIR light absorption occurred in the weed treatment as expected, accompanied by spectral changes
in the visible (VIS) and near infrared (NIR) ranges. The results highlight the potential of using
spectral measurements as an indicator of competition for water.

Keywords: crop–weed competition; hyperspectral measurements; hyperspectral indices

1. Introduction

The use of remote sensing technologies in agriculture is of great interest, enabling rapid
and non-destructive measurements that can be used for research and field applications.
Many studies have demonstrated the potential of spectral tools for the detection of plant
responses to various biotic and abiotic stressors [1–5]. However, the specific spectral
responses related to plant competition and weed stress are not widely addressed.

Among the many environmental variables that affect crops, weeds are thought to
cause 9% of the world’s yield losses [6]. Proximal and remote sensing techniques are
mostly used for automatic weed control and discrimination between crops and weeds for
site-specific management [7,8]. Hyperspectral sensors are robust for these applications;
however, characterization of the spectral reflectance features of important crops and weed
species over a wide range of environmental conditions is still needed to apply these
methods commercially [9]. While most studies focus on the detection of weeds in the
field, only a few studies have demonstrated the use of remote sensing methods for the
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characterization and detection of crop responses to stress caused by weed interference, and
this topic is addressed in this study.

This study focuses on corn (Zea mays) in the presence of the weed redroot pigweed
(Amaranthus retroflexus), which is a common weed that strongly reduces corn yields [10]. A
study on the effect of redroot pigweed density on corn yield demonstrated a 5% yield loss
when redroot pigweed and corn were planted at the same time [10]. Yield losses in corn
result primarily from weed interference and, therefore, corn has been the subject of much
research investigating the mechanism of crop–weed competition [11]. To avoid major yield
loss, weeds need to be removed shortly after crops emerge or even before emergence [12].
Hence, many studies have focused on investigating competition during the early growth
stages of corn. Various processes during these critical stages lead to a reduction in yield,
some of which are resource dependent and result from changes in water and nutrient
availability [12].

Water is an essential resource for which plants compete, and its shortage causes stress,
with various manifestations. Weedy conditions will cause crops to develop water stress
symptoms, such as lower leaf water potential, reduced leaf stomatal conductance, and
reduced photosynthetic rate at earlier stages [12]. Water stress occurring for a long time
may lead to permanent damage to the photosynthesis process [12]. During the early
vegetative stages of growth, water stress results in reduced height, biomass, and the
rate of new leaf appearance [12]. Water deficit also stimulates stomatal closure through
the changes in turgor pressure of guard cells and endogenous signals [13], leading to
a reduction in mesophyll conductance and hence limiting photosynthesis [14]. Aside
from stomatal regulation, stress affects the photosynthetic mechanism through changes
in pigment concentrations; changes in chlorophyll-a and -b occur under drought [13].
When the rate of photosynthesis is reduced under stress, the plants become more sensitive
to excessive light, which stimulates the production of reactive oxygen species, such as
H2O2, which can cause photo-inhibition and oxidative damage to cell components [14].
Carotenoids and anthocyanins are pigments that play a role in the scavenging mechanism
of reactive oxygen species and therefore accumulate in stressful conditions [13,15]. The
water status of the leaf and concentration of these pigments are detectable and quantified
by hyperspectral sensing, and different indices are developed for their estimation [1,16].

We predicted that the competition with weeds will affect the leaf biochemistry and
photosynthetic activity and, therefore, will alter the reflectance of corn. Only few studies
have focused on the spectral response of plants to resource competition [17,18]. In pine
foliage, there are significant differences in the visible (VIS) range with high reflectance in
young leaves grown under weak competition compared to those in leaves grown under
strong competition [17]. These changes are primarily attributed to a decrease in water
potential. However, reflectance in the infra-red regions was not significantly affected.
Another study focused on the spectral response range, between 400 nm and 900 nm, to
above- and belowground competition in Fraxinus mandshurica leaves [18]. For plants that
were not exposed to competition, reflectance between 500 nm and 700 nm was lower due
to higher pigment content. Hence, the spectral response is a good indicator of stress caused
by competition.

These studies highlight the potential of detecting competition-related processes with
hyperspectral measurements. However, the wide range of available spectral responses to a
complex process such as competition is minimally understood, and is probably affected
by the species involved in the competition and the environment [18]. Therefore, further
research focusing on the spectral response expressing the competition between crop and
weed species is necessary.

There is potential to differentiate crops under weed stress using spectral reflectance
in purple and yellow nutsedge interference with cotton and soybean [19]. Soybeans that
grow with and without weeds are classified based on their leaf reflectance measurements.
However, the physiological changes that lead to the observed spectral signature differences
were not discussed.
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Understanding the link between spectral observation and plant physiology will allow
better evaluation of the remote sensing capabilities for agriculture, as this link is not fully
understood for crop–weed competition. The primary objective of the current study was
to examine the potential of hyperspectral measurements to detect changes that result
from crop–weed competition. The specific objectives were to (i) identify spectral regions
and indices sensitive to weed stress and (ii) characterize the effect of competition on
photosynthesis, pigments, and the plants’ water status.

A field experiment was conducted in which corn plants were grown with and without
redroot pigweed. Physiological changes in corn were hypothesized to mainly affect the
absorption in the short-wave infrared (SWIR) water absorption regions due to competi-
tion for water. Spectral measurements were combined with physiological measurements,
attempting to physiologically explain changes in the hyperspectral signature.

This paper describes the experiment conducted and the different types of measure-
ments, followed by the results of the physiological and the hyperspectral measurements
and spectral analysis. The discussion integrates our findings and the link between the
physiology and hyperspectral signature changes observed.

2. Materials and Methods

The experiment followed a random design. The treatments were randomly assigned
to each pot. The setup included two levels of the treatment (weedy and weed-free corn),
ten replications of each treatment, and a total of 20 experimental units. Heavy soil from
Neve Ya’ar Research Center, Israel (Chromic Haploxererts, fine clayey; montmorillonite;
thermic; 55% clay; 25% silt; 20% sand; 2% organic matter) was put into in 50 L pots. Each
pot was irrigated to its field capacity. Following the irrigation stage, corn was sown with
and without redroot pigweed seeds. The density of redroot pigweed seeds was equal in all
the weed treatment pots (200 seeds per pot). Two corn seeds were sown at a depth of 2.5 cm
with a 15 cm distance between the plants in all pots. The experiment was conducted in a
greenhouse at Midreshet-Ben-Gurion Campus, Ramat-Hanegev, Israel, for 8 weeks between
April and May 2020. According to [12], early vegetative stages of growth are the most critical
regarding crop–weed competition. Therefore, the first measurements were taken when the
corn sprouted 3–4 leaves, 29 days after sowing (DAS). The last day of measurements was
conducted 57 DAS when 5–7 leaves emerged. The measurements were taken between 9:00
and 12:30. The measurements conducted on each day and the sample size are specified in
Table 1. The greenhouse temperatures during the measurements ranged from 20.5–29.2 ◦C.
Plants were irrigated manually once during the experiment 43 DAS.

Table 1. The measurements collected during the experiment, and the sample size for every treatment. DAS: days after
sowing, w: weed treatment, wf: weed-free control.

Measurement
29 DAS

(3–4
Leaves)

34 DAS
(4 Leaves)

38 DAS
(4–5

Leaves)

43 DAS
(4–5

Leaves)

46 DAS
(5–6

Leaves)

51 DAS
(5–6

Leaves)

54 DAS
(5–7

Leaves)

57 DAS
(5–7

Leaves)

w wf w wf w wf w wf w wf w wf w wf w wf

Hyperspectral 10 10 10 10 10 10 9 10 10 10 9 10 9 10 - -
Gas exchange 9 10 - - 9 9 9 10 9 10 - - 9 10 - -

Pigments - - - - - - - - - - - - - - 10 10
Relative water

content - - - - - - - - 5 5 - - - - 10 10

Biomass - - - - - 10 10

Gas exchange measurements were taken using an infrared gas analyzer (Portable
Photosynthetic System LI-6800, Licor, NE, USA). Measurements were taken from the
uppermost fully expanded leaf of one corn plant in each pot at noon. CO2 was set to
400 ppm and photosynthetic photon flux density was set to 800 µmol m−2s−1.

Chlorophyll content was measured on the last day of measurements, 57 DAS (10 samples
from every treatment), as described in [20]. Five leaf discs were cut from the middle section
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of the uppermost fully expanded leaf of one corn plant in each pot for chlorophyll measure-
ment. The leaf discs were immediately placed into 1 mL of dimethyl sulfoxide (DMSO) and
incubated in an oven at 65 ◦C overnight until the tissue was colorless. After incubation,
the samples were diluted with DMSO at a ratio of 1:4, and the absorption was measured
with a spectrophotometer at 665, 650, and 470 nm. Equations (1)–(3) were used to calculate
chlorophyll-a, -b, and total carotenoid content, respectively [20]:

Chl a = 13.34 × A665 − 4.85 × A650 (1)

Chl b = 24.58 × A650 − 6.65 × A665 (2)

Total cartenoids = (1000 × A470−1.29 × Chla − 53.76×Chlb)÷ 220 (3)

A leaf segment of ~9 cm2 was cut from the middle section of the uppermost fully
expanded leaf from one corn plant in each pot to measure relative water content (RWC)
(Equation (4)) [21]. The measurements were conducted 46 DAS (5 samples from every
treatment) and on the last day of measurements, 57 DAS (10 samples from every treatment).
The fresh weight was then measured shortly after cutting. The samples were then placed in
de-ionized water in capped containers overnight to maintain approximately 100% relative
humidity in the container for leaves to reach full hydration, at which point they were
oven-dried at 65 ◦C, 48 h before measuring the dry weight. The relative water content was
then calculated as follows [21]:

RWC(%) =
fresh weight − dry weight

Turgid weight − dry weight
(4)

Adaxial leaf reflectance was measured with a field spectrometer (ASD FieldSpec-4,
Analytical Spectral Devices, Inc., Boulder, CO, USA). The signatures were collected within
the 350 to 2500 nm spectrum at a resolution of one nm. The probe was placed parallel
to the leaf midrib and was turned 90 degrees to retrieve four measurements at different
angles (0◦, 90◦, 180◦, and 270◦). The measurements were taken from the uppermost fully
expanded leaf from one corn plant in each pot, and mean values of these four spectra
were used for statistical analysis. White surface calibration was done before measuring
the first plant, and again every time after sampling six plants. Measurements were taken
with a black background placed on the abaxial side of the leaf. To normalize the reflectance
spectra and allow comparison of individual absorption features from a common baseline,
the continuum removal spectra (Scr) were calculated [22] with ViewSpec-Pro Software.

Ten common narrow-band indices (Table 2) related to different plant traits were
calculated for each leaf measurement, including the structure insensitive pigment index
(SIPI) [23], plant senescence reflectance index (PSRI) [24], modified anthocyanin reflectance
index (mARI) [25], carotenoid reflectance indices (CRI1,CRI2) [26], photochemical re-
flectance index (PRI) [27], leaf water index (LWI) [28], moisture stress index (MSI) [29],
normalized difference water index (NDWI) [30], and water band index (WBI) [31].

The variables were analyzed with two-way ANOVA using DAS and treatment as
explanatory variables. The F-test assumption, normality of residuals, and homogeneity of
variance were tested using the Shapiro–Wilk test and Levene’s test, respectively. In any
case, where the ANOVA assumptions were not met, the data were log-transformed [32].
Hyperspectral data were analyzed in the same way on each of the 2150 wavelengths
independently from 350 to 2500 nm. For the hyperspectral data, if the ANOVA assumptions
were not met, an arc-sinus transformation was applied [32]. Following the ANOVA, a
Student’s t-test was used to compare the means of the different treatments within each
day of measurement. In any case, where the assumption of normality was not met, the
non-parametric Mann–Whitney test was used instead and if variances were found not to be
homogeneous, a t-test for unequal variances was used; if the two assumptions were not met,
the data were log-transformed. Differences between days of measurements were examined
using Tukey’s HSD (Honest significant differences) all pairwise comparisons test.
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Table 2. Summary of the spectral indices used in this study, R = reflectance value at a given
wavelength.

Index Formula Related Variables Reference

Structure insensitive pigment
index (SIPI)

R800−R445
R800+R680

Total pigments [23]

Plant senescence reflectance
index (PSRI)

R680−R500
R750

Total pigments [24]

Modified anthocyanin
reflectance index (mARI)

(
1

R530−570
− 1

R690−710

)
∗

RNIR
Anthocyanins [25]

Carotenoid reflectance index 1
(CRI1)

1
R510

− 1
R550

CRI1 = 1
R510

− 1
R550

Carotenoids [26]

Carotenoid reflectance index 2
(CRI2)

1
R510

− 1
R700

Carotenoids [26]

Photochemical reflectance index
(PRI)

R531−R570
R531+R570

Carotenoids [27]

Leaf water index (LWI) R1300
R1450

Water content [28]
Moisture stress index (MSI) R1599

R819
Water content [29]

Normalized difference water
index (NDWI)

R857−R1241
R857+R1241

Water content [30]

Water band index (WBI) R970
R900

Water content [31]

To better understand the relationship between spectral indices and the physiologi-
cal measurements taken, Pearson correlation coefficients were calculated. All statistical
analyses were performed using the Python programming language and “statsmodels”
library [33].

3. Results
3.1. Physiological Measurments

Differences in photosynthetic rate and stomatal conductance between the weed and
weed-free treatments were found on the second measurement of the first irrigation session
(29–43 DAS) and the two measures remained different until the end of the experiment,
regardless of irrigation 43 DAS (Table 3, Figure 1). The weed treatment resulted in a
significantly lower photosynthetic rate (p < 0.001; Figure 1a), lower stomatal conductance
(p < 0.001; Figure 1b), and higher intercellular CO2 (Ci; p < 0.001; Figure 1c). All variables
were affected by the day of measurement (Table 3). The interaction between the day and
the treatment effected photosynthetic rate (p < 0.001) and Ci (p < 0.001; Table 3).

Table 3. Statistical analysis of physiological measurements—two-way ANOVA with DAS and
treatment as explanatory variables (α = 0.05).

Treatment Effect DAS Effect Interaction Effect

F p-Value F p-Value F p-Value

Photosynthesis 61.855 0.000 29.869 0.000 5.692 0.000
Stomata conductance 30.553 0.000 20.131 0.000 1.561 0.192

Intercellular CO2 18.996 0.000 2.859 0.028 5.974 0.000
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Figure 1. Physiological measurements results. (a) Photosynthetic rate and (b) stomatal
conductance were significantly reduced by the treatment. (c) Intercellular CO2 was
significantly increased by the treatment. Black dashed lines represent the irrigation
performed on 43 days after sowing (DAS). Asterisks represent significant differences
between treatments (Student’s t-test). Blue and Orange letters represent all pairwise
comparison results between days of measurements within each treatment (Tukey’s HSD).
Different letters of the same color are assigned to days that are significantly different.
Weed-free: blue, weedy: orange. (blue ‘a’ is significantly different from blue ‘b’ while blue
“ab” does not differ from both blue ‘a’ nor blue ‘b’. this is applied to all letters respectively)
Weed-free corn: blue line, weed-treated corn: orange line. Error bars represent standard
error of the mean.

The mean Ci remained relatively stable in the weed-free treatment throughout the
experiment (Figure 1c). For the weed-treated corn, the mean Ci increased by 298.46 ppm
during the first irrigation session (29 to 43 DAS), was reduced after irrigation 43 DAS to the
same level as the weed-free corn (71.77 ppm), and then increased again in the following
measurement (340.45 ppm), presenting a tight connection to the change in water availability
resulting from weed competition (Figure 1c).

RWC was measured on the first day after irrigation (46 DAS) and the last day of
measurements (57 DAS). RWC did not differ between the treatments 46 DAS (60%), and
it was significantly lower in the presence of weeds (28%, p < 0.001) 57 DAS (Figure 2a).
Pigment concentrations were measured on the last day of measurements (57 DAS) and
revealed significantly lower chlorophyll-b (2.62 µmolm−2, p < 0.01) and higher carotenoid
concentrations (1.22 µmolm−2, p < 0.05) in the weed treatment, with no significant changes
in chlorophyll-a concentration (Figure 2b). The dry weight of the aboveground biomass of
corn was significantly lower (2.56 g, p < 0.001) for the weed treatment (Figure 2c).
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Figure 2. Relative water content (RWC), pigment concentration, and biomass. (a) No differences in RWC observed after
irrigation 47 DAS, and RWC was significantly reduced by the treatment 57 DAS. (b) Chlorophyll-b content decreased
significantly and carotenoid content increased. (c) The dry weight of corn decreased significantly. Asterisks represent
significant differences between the treatments (Student’s t-test). Error bars represents standard error of the mean. DAS:
days after sowing, RWC: relative water content, Chl: chlorophyll, Car: carotenoids.

3.2. Hyperspectral Measurements

The Scr of the weed-free corn was compared to that of weed-treated corn to reveal
spectral regions that were affected by the weeds. Figure 3a–c presents the treatment effect
p-values at each wavelength, derived by two-way ANOVA. The analysis revealed a signifi-
cant effect (α = 0.05) of the treatment in the VIS (370–470 nm, 604–612 nm), near infrared
(NIR) (1129–1161 nm, 1255–1286 nm), and SWIR regions (1312–1567 nm, 1762–1897 nm,
1984–2493 nm). A more detailed examination of the regions revealed that the average Scr
measured in those regions was consistently low for the weed-free corn on almost all days
of measurements (Figure 4). A significant effect on SWIR absorption bands, with deeper
absorption for weed-free corn, was expected due to the competition for water. The ab-
sorption features of weed-free corn were significantly deeper in the range of 2200–2500 nm
on almost all days of measurements, excluding the first measurement after irrigation,
and the first two measurements of the first irrigation session. This result signifies a tight
bond between the changes in absorption during the drying process. Visible water stress
symptoms (leaf rolling) were first found on the third day of measurement (38 DAS), where
spectral differences occurred in the VIS region (~400–500 nm) and SWIR (~2300–2500 nm).
After the plants were irrigated again (43 DAS), the same pattern appeared in the VIS
region and SWIR. On the last two days of measurement, the weed-treated corn suffered
from major water stress that was exacerbated by extreme weather. This enhanced the
spectral differences between the treatments, and the number of ranges that were found to
be significant on those two days was the largest (Figure 4).
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Figure 3. Spectral differences between the treatments. Y axis represents the p-value for the treatment effect on every
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3.3. Hyperspectral Indices

Hyperspectral indices and simple band ratios associated with different plant traits were
calculated. Four indices significantly differed between the treatments (Figure 5, Table 4): the
leaf water index (LWI), plant senescence reflectance index (PSRI; p < 0.01), photochemical
reflectance index (PRI; p < 0.001), and modified anthocyanin reflectance index (mARI, p < 0.05).
All the indices were significantly affected by the day of measurement, and interaction between
the treatments (except mARI; Table 4). PSRI detected the differences between treatments at
the beginning of the first irrigation session (34, 38 DAS), with lower values in the presence
of weeds (Figure 5a). The differences from 39 DAS until the end of the experiment were not
significant. PRI was significantly reduced by the weeds from the end of the first irrigation
session until the end of the experiment, excluding the first measurement after irrigating the
plants (Figure 5b). LWI was the only water index that detected differences, presenting a
significant reduction in the presence of weeds (Figure 5c). LWI changed significantly between
different days of measurements only in the weed-treated corn (Figure 5c), suggesting rela-
tively stable leaf water content in the weed-free corn throughout the experiment. However,
differences between the treatments at the end of the experiment at the advanced stages of
water competition were mainly detected. mARI was higher in the presence of weeds dur-
ing the second irrigation session (46, 54 DAS), indicating high anthocyanin content in corn
(Figure 5d). The correlation between the selected indices and the gas exchange measure-
ments was tested using Pearson’s correlation (Figure 6). PRI was the best predictor of the
photosynthetic rate and Ci concentration: a positive moderate correlation to photosynthetic
rate (R = 0.64) and stomatal conductance (R = 0.53), negative moderate correlation to Ci
(R = 0.5), mARI was moderately and negatively correlated with changes in photosynthetic
rate (R = 0.63) and stomatal conductance (R = 0.55).
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Figure 4. Absorption trends. Mean Scr in spectral regions that were significantly affected by the treatment on different days
during the experiment. Black dashed lines represent the irrigation performed on 43 DAS. Asterisks represent the regions
and day of measurement where significant differences between treatments were observed (Student’s t-test). Weed-free corn
(blue line) presented deeper absorption than weed-treated corn (orange line).
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Figure 5. A decrease seen in (a) plant senescence reflectance index (PSRI), (b) photochemical re-
flectance index (PRI), and (c) leaf water index (LWI) due to weed treatment. (d) An increase in the
modified mARI index for anthocyanin. Black dashed lines represent the irrigation performed 43 days
after sowing (DAS). Asterisks represent significant differences between treatments (Student’s t-test).
Blue and orange letters represent all pairwise comparison results between days of measurements
within each treatment (Tukey’s HSD). Different letters of the same color are assigned to days that
are significantly different (blue ‘a’ is significantly different from blue ‘b’ while blue “ab” does not
differ from both blue ‘a’ nor blue ‘b’. this is applied to all letters respectively) Weed-free: blue, weedy:
orange. Error bars represent standard error of the mean.

Table 4. Statistical analysis of spectral indices—two-way ANOVA with DAS and treatment as
explanatory variables (α = 0.05).

Treatment Effect DAS Effect Interaction Effect

F p-Value F p-Value F p-Value

SIPI 0.306 0.581 6.596 0.000 0.983 0.440
PSRI 10.371 0.002 5.276 0.000 2.259 0.042
mARI 4.031 0.047 27.072 0.000 1.813 0.102
CRI1 1.978 0.162 15.468 0.000 0.840 0.542
CRI2 0.518 0.473 8.971 0.000 2.919 0.011
PRI 12.271 0.001 21.893 0.000 2.319 0.037
LWI 5.925 0.016 6.272 0.000 2.383 0.033
MSI 0.622 0.432 5.085 0.000 1.402 0.219

NDWI 0.024 0.878 6.607 0.000 1.434 0.207
WBI 0.828 0.365 4.315 0.001 1.110 0.360



Remote Sens. 2021, 13, 513 11 of 14
Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 17 

 

 

 

Figure 6. Correlation between physiological variables and spectral indices. Pearson correlation 

coefficients (R) between different spectral indices and the gas exchange measurements. 

4. Discussion  

4.1. Physiological Properties 

Water deficit, soil salinity, and other plant stress inducers stimulate stomatal closure 

through changes in the turgor pressure of guard cells and endogenous signals [13]. The 

regulation of stomata is an important mechanism, preventing water loss and allowing CO2 

supply for photosynthesis. Stomata closure under stress leads to a reduction in mesophyll 

conductance, limiting photosynthesis [14]. When CO2 fixation is reduced due to stressful 

conditions, Ci increases [34]. This is consistent with our results (Figure 1). Additionally, 

the stomatal guard cells are sensitive to changes in Ci. An increase in the Ci concentration 

leads to stomatal closure, which may lead to a decrease in nutrient uptake by the 

transpiration flow [35]. The chlorophyll measurement on the last day of the experiment 

provided evidence that the chlorophyll-b content decreased and carotenoid content 

increased due to the weeds (Figure 2). A larger reduction in chlorophyll-b compared to 

chlorophyll-a was reported previously in response to water stress [13].  

4.2. Spectral Characteristics  

The results demonstrated that bands in the VIS region and SWIR were the most 

sensitive to stress caused by the weeds (Figure 3). The reflectance in the VIS region is 

mostly affected by changes in pigment content. The regions that were significant in the 

experiment were mainly between 350 and 500 nm (Figure 3) where the major absorption 

bands of chlorophyll-a, chlorophyll-b, and β-carotene are located [35]. The 

abovementioned physiological processes may have contributed to the reduction in 

chlorophyll molecules that induced changes in the VIS region. The bands that were 

affected in the NIR region in this study were compatible with previously reported NIR 

water absorption minima [36]. Significant differences in the NIR occurred later than the 

Figure 6. Correlation between physiological variables and spectral indices. Pearson correlation
coefficients (R) between different spectral indices and the gas exchange measurements.

4. Discussion
4.1. Physiological Properties

Water deficit, soil salinity, and other plant stress inducers stimulate stomatal closure
through changes in the turgor pressure of guard cells and endogenous signals [13]. The
regulation of stomata is an important mechanism, preventing water loss and allowing CO2
supply for photosynthesis. Stomata closure under stress leads to a reduction in mesophyll
conductance, limiting photosynthesis [14]. When CO2 fixation is reduced due to stressful
conditions, Ci increases [34]. This is consistent with our results (Figure 1). Additionally, the
stomatal guard cells are sensitive to changes in Ci. An increase in the Ci concentration leads
to stomatal closure, which may lead to a decrease in nutrient uptake by the transpiration
flow [35]. The chlorophyll measurement on the last day of the experiment provided
evidence that the chlorophyll-b content decreased and carotenoid content increased due to
the weeds (Figure 2). A larger reduction in chlorophyll-b compared to chlorophyll-a was
reported previously in response to water stress [13].

4.2. Spectral Characteristics

The results demonstrated that bands in the VIS region and SWIR were the most sensitive
to stress caused by the weeds (Figure 3). The reflectance in the VIS region is mostly affected
by changes in pigment content. The regions that were significant in the experiment were
mainly between 350 and 500 nm (Figure 3) where the major absorption bands of chlorophyll-a,
chlorophyll-b, and β-carotene are located [35]. The abovementioned physiological processes
may have contributed to the reduction in chlorophyll molecules that induced changes in the
VIS region. The bands that were affected in the NIR region in this study were compatible
with previously reported NIR water absorption minima [36]. Significant differences in the
NIR occurred later than the differences in the VIS region and SWIR (only noticeable 54 DAS),
suggesting that the development of water competition is expressed in the NIR, in which the
absorption of water is weaker [1], at advanced stages of stress.

In the SWIR, bands between 2300 and 2500 nm were significantly affected (Figure 3)
and presented differences at an early stage of stress development that lasted throughout
the experiment. Wavelengths in this region were affected by plant stress [36]. As the stress
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developed, differences were also found between 1312–1567 nm and 1762–1897 nm. The
absorption in the SWIR is affected by the stretching and bending of the O-H bond found in
water molecules and other chemicals such as lignin, cellulose, proteins, and starch [37–40].
The pattern found in the SWIR in this experiment may be mainly attributed to changes
in leaf water status that result from resource competition. This was supported by the gas
exchange results and RWC measurements (Figures 1 and 2a).

These results highlight the potential of observing diurnal changes related to the
dynamics of crop–weed competition through spectral changes.

4.3. Spectral Indices

LWI, mARI, PSRI, and PRI were affected by the treatment. The PSRI detected symp-
toms that occurred at the beginning of the first irrigation session (Figure 5a) and the PRI
index detected symptoms from the end of the first session until the end of the experiment
(Figure 5b) and presented the highest correlation to the physiological variables measured
(Figure 6). These two indices are affected by changes in carotenoid content [16]. As men-
tioned previously, the decrease in chlorophyll may be attributed to a reduction in nutrient
uptake due to stomatal closure [35]. The increased Ci and closure of stomata under stress
are accompanied by an increase in reactive oxygen species formation in the apoplast of
guard cells and the chloroplast [35]. Xanthophyll cycle pigments and carotenoids are
regulators of non-photochemical quenching, which is one of the mechanisms preventing
damage by oxidative stress [41]. The observed changes in the mARI, PSRI, and PRI, in
addition to the antioxidative role of xanthophyll and anthocyanin, raise the possibility that
the spectral response in the VIS region during the early stages of stress and reduction in the
photosynthetic rate were mainly driven by a reaction to oxidative stress that was enhanced
by water competition. Even though the main driver of competition in the experiment was
assumed to be water, indices related to changes in pigment content rather than the plant
water status were found to be superior in detecting stress at earlier stages.

4.4. Limitations and Future Work

The results demonstrated the potential of hyperspectral measurements to detect stress
caused by competition; however, a significant effect on the spectra was detected at the
same time, in which visual symptoms and notable physiological changes started occurring.
This suggests that earlier detection of symptoms may require a different approach, such as
hyperspectral imaging, that will allow for focusing on the whole plant rather than just the
leaf, and performing measurements from an earlier growth stage.

The combination of physiological observations during the experiment, together with
the reduction in water availability in all pots, agrees with the assumption that the main
driver of the observed results is water competition. In future research, to rule out the
effect of competition for other resources (nutrients or light) and to determine that water
is the main driver of the observed differences between the treatments, we recommend
conducting an experiment that includes a fully irrigated control for both the weed and
the weed-free treatment. Additionally, examination of the response to competition under
field conditions will be beneficial for broad agricultural application as it will deliver a more
realistic representation of the resulting spectral changes.

With the development of remote sensing for weed mapping using different classifica-
tion methods, understanding the spectral variation of the crop that results from competition
is necessary because it is likely to affect the results of the classification used. Additionally,
the interaction of crops and weeds over resources may interrupt and add complexity to
different models used for field management. Therefore, further study in this context may
be beneficial to achieve better precision in future applications.

5. Conclusions

Hyperspectral and physiological measurements were combined in this study in an
attempt to characterize the spectral response of corn leaves to water competition in the
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presence of weeds. The results supported the hypothesis that competition will lead to
changes in the SWIR. As the competition developed, its effect was detected in several
bands of the SWIR absorption minima (~1450, ~1800, ~2400 nm), presenting deeper light
absorption for weed-free corn compared to that in corn grown with weeds.

The competition also affected bands in the VIS region (~400 nm). The spectral changes
were attributed to physiological changes related to water stress, such as reduction in
pigment concentration, reduction in relative water content, and decreased photosynthetic
efficiency, supported by physiological measurements. Spectral indices that are used as
pigment content estimators were superior to water indices in detecting stress. The PRI
presented the highest correlations with photosynthetic activity. The results highlight
the potential of hyperspectral measurements in observing diurnal changes related to the
dynamics of water competition and detecting water competition-related physiological
changes. Although the results obtained from this study need repetition, we present for the
first time the measured spectral changes that result from crop–weed competition in the
SWIR, showing a tight bond to water competition. These results concur with the findings of
previous studies that highlight the potential of using spectral measurements as an indicator
of plant competition [17,18].

It may be beneficial to use hyperspectral imaging in further studies to retrieve both
spectral and spatial information. While having limitations, hyperspectral imaging taken
from drones has a clear advantage of allowing quick data acquisition. Therefore, it will
enable performing experiments with a larger number of samples. Additionally, to better
understand the effect of the environment on the competition mechanism and spectral
variability, questions regarding this topic should also be examined in field conditions, in
various environmental conditions, in different types of soils, and for various plant species.
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