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Abstract: The COVID-19 pandemic has led to ongoing reductions in economic activity and anthro-
pogenic emissions. Beijing was particular badly affected by lockdown measures during the early
months of the COVID-19 pandemic. It has significantly reduced the CO2 emission and toxic air
pollution (CO and NO2). We use column-averaged dry-air mole fractions of CO2 and CO (XCO2

and XCO) observed by a ground-based EM27/SUN Fourier transform spectrometer (FTS), the tro-
pospheric NO2 column observed by MAX-DOAS and satellite remote sensing data (GOSAT and
TROPOMI) to investigate the variations in anthropogenic CO2 emission related to COVID-19 lock-
down in Beijing. The anomalies describe the spatio-temporal enhancement of gas concentration,
which relates to the emission. Anomalies in XCO2 and XCO, and XNO2 (∆XCO2, ∆XCO, and ∆XNO2)
for ground-based measurements were calculated from the diurnal variability. Highly correlated daily
XCO and XCO2 anomalies derived from FTS time series data provide the ∆XCO to ∆XCO2 ratio
(the correlation slope). The ∆XCO to ∆XCO2 ratio in Beijing was lower in 2020 (8.2 ppb/ppm) than
in 2019 (9.6 ppb/ppm). The ∆XCO to ∆XCO2 ratio originating from a polluted area was significantly
lower in 2020. The reduction in anthropogenic CO2 emission was estimated to be 14.2% using FTS
data. A comparable value reflecting the slowdown in growth of atmospheric CO2 over the same
time period was estimated to be 15% in Beijing from the XCO2 anomaly from GOSAT, which was
derived from the difference between the target area and the background area. The XCO anomaly
from TROPOMI is reduced by 8.7% in 2020 compared with 2019, which is much smaller than the
reduction in surface air pollution data (17%). Ground-based NO2 observation provides a 21.6% de-
cline in NO2. The NO2 to CO2 correlation indicates a 38.2% decline in the CO2 traffic emission sector.
Overall, the reduction in anthropogenic CO2 emission relating to COVID-19 lockdown in Beijing can
be detected by the Bruker EM27/SUN Fourier transform spectrometer (FTS) and MAX-DOAS in
urban Beijing.

Keywords: COVID-19; lockdown; total column measurements; XCO2; XCO; XNO2; fossil fuel
emission tracer

1. Introduction

An outbreak of a novel infectious coronavirus virus (COVID-19) was first identified in
Wuhan, China, in December 2019 and it posed serious health hazards to the local population.
To slow down the spread of the virus, the Chinese government imposed a mandatory
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lockdown to reduce the mobility of the population, including closing down industrial
activity and transport networks. The dramatic reduction in economic activity affected
the emissions of greenhouse gases, air quality, and the Earth’s climate [1]. The reduction
in the consumption of fossil fuels was accompanied by a decrease in the atmospheric
concentrations of short-lived air pollutants, such as particulate matter (PM2.5, PM10),
carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) [2–4] and an
increase in the concentration of ozone (O3) and the formation of secondary aerosols [5,6].
Beijing, the capital of China, is recognized as one of the most polluted regions in the country
and it can therefore be used to determine the local atmospheric response to the COVID-19
lockdown. Measurements from the Tropospheric Monitoring Instrument (TROPOMI) on
board the Copernicus Sentinel-5 Precursor satellite have shown that the NO2 column in
Beijing decreased by about 25% during the COVID-19 lockdown [2].

COVID-19 outbreak provides a unique opportunity to investigate the response of CO2
emissions to the decreasing anthropogenic activities. As a result of the decrease in fossil
fuel consumption and vehicular traffic, global daily emissions of carbon dioxide (CO2)
decreased by about 17% in the first four months of 2020 compared with the same period in
2019 and the total emissions of CO2 in 2020 are estimated to have decreased by about 8%
using 2019 as the baseline year [7]. The estimated emission of CO2 in China decreased by
10.3–11.5% in the first quarter of 2020 relative to 2019 [7–9].

These assessments of CO2 reductions are based primarily on bottom-up methods
using statistical data from fossil fuel, industry, and traffic emissions. CO2 accumulates in
the atmosphere due to its long residence time, so the decrease in CO2 emissions during the
lockdown period was difficult to observe directly. However, the 2020 lockdown is a unique
case to test whether the concentration changes relating to human activities can be separated
from the atmospheric measurements. The column-averaged dry-air mole fractions of a
gas (Xgas) are less sensitive to vertical transport, and the horizontal gradient of Xgas
has a more direct relationship with the regional-scale flux than in situ measurements of
gas concentrations near the Earth’s surface [10]. Sussmann and Rettinger [11] compared
the long-term growth rates of XCO2 before 2019 at several background Total Carbon
Column Observing Network (TCCON) sites with the reference forecast rate based on an 8%
reduction in annual emissions for 2020 and found the forecast value (with the COVID-19
effect) was significantly lower than the observed value (without the COVID-19 effect),
indicating a slowing down of the growth in CO2, related to COVID-19.

In this study, we focus on an analysis of anthropogenic CO2 emission over a large
urban region (a megacity like Beijing) using Xgas measurements. We analysed the variation
in CO2 and CO concentrations during the first four months of 2020 in the Beijing urban
area using ground-based XCO2, XCO, and XNO2 measurements by collaborative analysis
with satellite data. These measurements are acquired by a Fourier Transform spectrom-
eter EM27/SUN and MAXDOAS. CO and NO2 are often used as tracers of CO2 from
inefficient combustion. Then the observed CO–CO2 and NO2–CO2 correlations provide
useful constraints for identifying source types. CO and NO2 last from hours to weeks in
the atmosphere and can be transported regionally with a low background concentration,
which makes them unique tracers for the transportation and redistribution of anthro-
pogenic CO2. XCO2, XNO2, and XCO data from satellites (XCO2 from GOSAT, CO from
TROPOMI) are also used to investigate the impact of the 2020 lockdown around Beijing.

This paper is structured as follows. Section 2 describes the methods and the datasets
obtained from satellite and ground-based observations. Section 3.1 analyses the variation
in the XCO2 anomaly measured by satellites over Beijing in the last three years. Section 3.2
presents the XCO anomaly observed by TROPOMI. The XCO2, XCO, and tropospheric NO2
column concentration time series in the first four months of 2019 and 2020 are presented
in Section 3.3. Finally, the correlations of ∆XCO2 with ∆XCO and ∆XNO2 under different
weather conditions are discussed in Section 3.4. Section 4 concludes the paper.
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2. Materials and Methods
2.1. Ground-Based Observations

A Bruker EM27/SUN Fourier Transform spectrometer has been deployed at the In-
stitute of Atmospheric Physics, Chinese Academy of Sciences, an urban site between the
north 3rd and 4th ring roads in Beijing, since 1 January 2019. A WS500 weather station,
which operates in conjunction with the EM27 spectrometer, records surface temperatures
and pressures with accuracies of 0.2 ◦C and 0.5 h Pa, respectively. The EM27 spectrometer
receives direct sunlight passively through a solar tracker and records the near-infrared
spectra in the range 3800–14,000 cm−1 using an indium gallium arsenide detector. Af-
ter analysis using a non-linear least-squares fitting retrieval algorithm (PROFFAST) [8],
the recorded spectra yield column-averaged dry-air mole fractions of CO2 and CO (XCO2,
XCO) (Formula (1)). Use of EM27 is limited under cloudy, rainy, and night-time conditions
and it is therefore equipped with an automated clamshell cover, so that it is possible to
obtain autonomous remote sensing of greenhouse gases and to maximize the amount of
valid observational data.

Xgas =
gas column

dry air column
(1)

The IFS 125 HR data used in the TCCON have been widely accepted as a standard to
calibrate portable Fourier transform spectrometer data [9,10]. We calibrate the results from
the EM27 spectrometer using the IFS 125 HR Fourier transform spectrometer in Xianghe,
Hebei [11].

A ground-based multi axis differential optical absorption spectroscopy (MAX-DOAS)
instrument was installed on the roof of the Chinese Academy of Meteorological Sciences
building (CAMS, 39.9475◦N, 116.3273◦E) for continuous measurements of NO2. A full
measurement sequence takes about 11 min. In this study, we use the tropospheric NO2
column (unit: molec/cm2) and convert it to column-averaged dry-air mole fractions of NO2
(XNO2, unit: ppb). We used the X-STILT (X-Stochastic Time-Inverted Lagrangian Transport
model) to analyze the influences of the synoptic condition. X-STILT is a Lagrangian particle
dispersion model and is an effective tool with which to track the backward footprint of
column measurements, such as Orbiting Carbon Observatory-2 [12,13]. We adopted the
X-STILT model driven by the ERA5 reanalysis datasets (0.25◦ spatial resolution and 1-h
temporal resolution) to analyze the EM27 column observations from the perspective of the
weather conditions. The X-STILT model was set to release particles every 100 m within
3 km and every 500 m from 3 to 6 km relative to the observation level, which tends to be
denser near the surface. The column footprint (unit: ppm (µmol (m2 s)−1)−1), as the output
of the X-SILT model, represents the residence time of air in a given area.

2.2. Satellite Observations

The Greenhouse Gases Observing Satellite (GOSAT) has a target mode over Beijing
and is suitable for studying regional variations in XCO2. The Thermal and Near Infrared
Sensor for Carbon Observation (TANSO) Fourier transform spectrometer on board the
satellite GOSAT records both shortwave infrared (SWIR) and thermal infrared (TIR) spectra
with a 10.5-km diameter footprint at the nadir. The National Institute for Environmental
Studies (NIES) algorithm was developed to retrieve GOSAT data. To reduce the errors
from undersampling, we selected only those days with at least five GOSAT XCO2 pixels
located in the Beijing area. GOSAT data before 2016 were not used because of the very
limited number of daily samples. We used the GOSAT XCO2 products from NIES v02.81
(https://data2.gosat.nies.go.jp) obtained within the study area during the past four years
(2017–2020).

The XCO over Beijing can readily be observed using data from TROPOMI on board
the Sentinel-5 Precursor satellite, which was successfully launched by the European Space
Agency (ESA) in October 2018. The spatial resolution of TROPOMI was 7 × 7 km2 before
August 2019 and 7.2 × 5.6 km2 afterwards The vertical column concentration of CO
(unit: mol/m2), which is sensitive to the tropospheric boundary layer, is a primary product
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of TROPOMI and can be retrieved from the 2.3-µm spectral range of the SWIR part of
the solar spectrum using the Shortwave Infrared CO Retrieval (SICOR) algorithm [14,15].
To ensure the quality of the data, we selected the CO product pixels associated with a
quality value (qa_value) > 0.5. To obtain the XCO values (units: ppb), the CO column
values from the TROPOMI were divided by the dry air column values calculated from the
European Centre for Medium-Range Weather Forecast analysis data.

3. Results
3.1. XCO2 Anomaly from GOSAT

The most recent research [16], which has estimated the daily emission inventories,
shows a significant decrease in global CO2 emissions (8.8%) in the first half of 2020. The de-
cline in emissions from China in the first half of 2020 compared with baseline year of
2019 over the same period is 3.7%, with a maximum in February (18.4%) but they re-
covered after March. The atmospheric CO2 column-averaged CO2 concentration (XCO2)
observed by space-based and ground-based instruments is a weak signal superimposed
on the background abundance, so we focus on the anomaly in XCO2 rather than on XCO2
itself in Beijing during the abnormal event due to COVID-19 lockdown. In winter and
early spring, the photosynthetic uptake of CO2 and biomass burning are minimal in the
north China region, while domestic heating and traffic contribute significantly to fossil
fuel consumption.

This study focuses on a megacity, Beijing, with a population of more than 20 million.
The prevailing winds around Beijing were from the northwestern and southwestern di-
rections. GOSAT provides targeted observations at Beijing, making it possible to collect
enough data to study changes in XCO2 in a small region. Because there are very limited
data from GOSAT, no filter of wind direction for a single day was applied. We assume that
the observed XCO2 variations result from a superposition of anthropogenic emissions and
background variabilities. As a consequence, the XCO2 anomaly or enhancement for the
target region (38.5–41.5◦N;115 to 118◦E, the green area in Figure 1a) could be calculated
by subtracting the averaged value for the background region (45–55◦N from 105 to 115◦E,
the brown area in Figure 1a) from January 2017 to April 2020 from the GOSAT measure-
ments. The center of Mongolia where population densities are lower and less affected
by the COVID-2019 lockdown, was selected as the background region to minimize the
biogenic CO2 emission contribution to the CO2 enhancement in Beijing. Figure 2 shows
the daily averaged XCO of the background region. The negligible daily variations in the
averaged XCO indicate there is little effect from human activities.

Figure 1b shows the variation in XCO2 from 2017 to the end of April 2020 and the
first four months in each year are marked by grey shading. XCO2 around Beijing was
often higher than that of the background region, indicating the high anthropogenic CO2
emissions from Beijing and surrounding areas. Figure 1c shows that ∆XCO2 in the first
four months of each year increased from 2017 to 2019 and was predicted by extrapolation
to be 4.65 ± 1.64 ppm in 2020. The uncertainty is calculated from the square root mean of
2017 to 2019. The observed enhancement from GOSAT in 2020 was 3.96 ± 3.68 ppm, and it
is plausible to assume that the reduction of 0.7 ± 2.01 ppm (15%) is a result of the drop in
anthropogenic CO2 in the atmosphere due to the economic disruption during the COVID-
19 outbreak. This reduction in XCO2 growth, as estimated from the target–background
difference, reveals that the related atmospheric concentration changes can be detected by
column measurement from the satellite; however, the method is too simplified to quantify
the reduction in anthropogenic emission. The reduction is a bit higher than the average
reduction in China (11.5%) inferred by sector-specific ratio maps of CO2 to NOx emissions,
where the latter was estimated from TROPOMI NO2 reduction [17]. These estimations
are higher than the bottom-up estimation (6.6%) from the traffic data in Beijing [18] or
the average reduction in China estimated from all inventories (~10%). It should be noted
that the chosen background area as well as selection of days will alter the estimated
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reduction in XCO2 growth. There could also be biases due to the limited numbers of
satellite observations.

Figure 1. (a) Map of TROPOMI XCO averaged from January to April 2019. The region (38.5–41.5◦N,
115–118◦E) was selected as the target area (green shading) and the region (45–55◦N, 105–115◦E) was
selected as the background region (brown shading). Beijing is outlined by the bold black line and the
EM27/SUN Fourier transform spectrometer observation site in urban Beijing is marked by the black
star. (b) Daily error bars and mean values of XCO2 measured by GOSAT from 2017 to 2020 over
the target (green) and background (brown) regions. The Error bar presents the standard deviation
for each day. The first quarter of each year is indicated by gray shading. (c) Error bars and mean
values of XCO2 for the first quarter of each year. The estimated trend from 2017 to 2019 is plotted as
the black line. The estimated increase in XCO2 (∆XCO2) in 2020 is shown with black circle and the
observed ∆XCO2 with black triangle. The Error bar presents the standard deviation for each year.

Figure 2. Daily error bars and mean values of XCO over the background and target regions for (a)
2019 and (b) 2020. Error bar shows the standard deviation of XCO enhancement (∆XCO) for each
day in background and target region. (c) Daily and monthly increases in XCO (∆XCO) in 2019 (blue)
and 2020 (red). Error bar presents the monthly standard deviation of ∆XCO in 2019 and 2020.
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3.2. XCO Anomaly from TROPOMI

Based on the TROPOMI observations, Figure 2a,b show the XCO of the background and
the target regions in the first four months of 2019 and 2020, respectively. The background
and target regions are shown in Figure 1. The averaged XCO of the background region is
stable with values of around 100 ppb, and the target XCO shows much higher values and
apparent daily variations as a result of the local emission and synoptic-scale advections.

Figure 2c compares the monthly ∆XCO (target minus background) during the first
four months of 2019 and 2020. Compared with the baseline year of 2019, monthly averaged
∆XCO in 2020 was 8.1% higher in January, but 6.3%, and 18.0% lower in February and
March, respectively. The 2020 lockdown in China started on 23rd January 2020, resulting in
a sharp decrease from the high XCO value in January during the following three months
(Figure 2b). There are TROPOMI CO products for only a few days in April, so the ∆XCO for
April 2020 is not calculated. The XCO anomaly (∆XCO) decreased by 6.7% on average in
the first quarter of 2020, which is comparable to the CO anomalies (6.5%) over north-central
China from January to April 2020 by subtracting its long-term trends as observed by the
Atmospheric Infrared Sounder on board NASA’s Aqua satellite [19].

3.3. The Correlations of ∆XCO, ∆XNO2, and ∆XCO2

Based on the satellite measurements, notable reductions in XCO2 and XCO in Beijing
could be identified; however, it is hard to comprehensively evaluate the contribution of
human activity, even though XCO could be used as tracer for the anthropogenic contribu-
tion. It is too difficult to collect enough coincident GOSAT and TROPOMI data for both
the target and background areas to build up a meaningful relationship between XCO and
XCO2 anomalies. Another option is to use ground-based FTS measurements which collect
XCO and XCO2 data simultaneously. Ground-based portable FTS provides XCO2 and XCO
data with higher temporal resolution (1 min) than the satellite from the morning to the
afternoon for a specific observation site in urban Beijing. Figure 3 shows the time series of
XCO2 and XCO observed by EM27 and NO2 by MAX-DOAS from January to April in 2019
and 2020. Data for February 2019 were missing due to instrument maintenance. XCO2 in
the January to April period in 2020 is higher than in the baseline year of 2019 (2.9 ppm
on average). The 2020–2019 difference in XCO is approximately 5.7 ppb, which shows
similar overall characteristic to the TROPOMI observations, as described in Section 3.2.
On average, NO2 dropped by 31.2% compared to 2019 in the first four months, and it
dropped by more than the average decrease in NO2 value of 20.2 % of China from the first
five months of 2020 [16].

CO is a precursor of CO2 and is co-emitted with CO2 in combustion activities,
thus causing a significant positive correlation between them. The correlation in diur-
nal variations in XCO2 and XCO is due to the diurnal changes in the polluted urban
environment though the morning to the afternoon. To better distinguish the variation in
anthropogenic CO2 from its background signal, we take CO as the tracer gas and calculate
the correlations between XCO2 and XCO, assuming that the observed diurnal changes are
confined to the boundary layer. The correlation slopes derived by linear regression on daily
anomalies (noted as ∆CO and ∆CO2) are independent of transport and other atmospheric
effects that are common to both gases [20]. The Xgas anomaly from EM27 (noted as ∆Xgas)
was calculated by subtracting the morning Xgas at a particular solar zenith angle from
its counterpart in the afternoon, in order to eliminate solar zenith angle dependent errors
from the forward model [20,21]. To account for the sensitivity of the retrieved column
measurement to actual variations at the surface, the anomalies are divided by the averaging
kernel value at the surface. Data in February 2020 are excluded because there is no data in
February 2019, it should be noted that including these data does not change the overall
correlation in 2020. The original EM27 spectra was sampled in a timestep of one minute,
to reduce the random noise, the retrieved XCO2 and XCO data was averaged for 10 min.
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Figure 3. Time series of XCO2 (a), XCO (b), and NO2 (c) columns from January to April 2019 (blue)
and 2020 (red). The asterisk present the daily mean of XCO2, XCO, and NO2 columns and error bars
show the standard deviation.

∆XCO and ∆XCO2 for all cloud-free days (27 days for 2019 and 34 days for 2020)
show very high positive correlations (the correlation coefficient of 0.89 and 0.84, respec-
tively) in winter and early spring when the biospheric influence is weak and less variable
in northern China (Figure 4a). The strong correlation allows us to separate the anthro-
pogenic signature in CO2 robustly and indicates the strong influence of combustion emis-
sions on CO2. The regression slope of ∆XCO against ∆XCO2 (∆XCO:∆XCO2) in 2020
(α2020 = 8.2 ± 0.4 ppb/ppm) is lower than for 2019 (α2019 = 9.6 ± 0.5 ppb/ppm), indicating
that less combustion-related CO2 was emitted into the atmosphere during the 2020 lock-
down. The proportion of anthropogenic CO2 in the atmosphere declined by 14.2% from
the differences in the regression slopes. This value is close to the estimation from GOSAT
data in Section 3.1. Both the satellite and ground-based XCO2 measurements present a
larger reduction than the bottom-up estimates [16,18].

Anthropogenic CO2 and NO2 emissions usually come from the same combustion
processes, especially in the traffic combustion sector. We use the same enhancement
calculation method as for CO:CO2. Compared to CO, NO2 correlates more with vehicle
emissions and has a shorter lifetime, which makes it fall rather more noticeably. As can
be seen from Figure 4b, ∆XNO2:∆XCO2 (0.34 ± 0.05 ppb/ppm) in 2019 is noticeably
higher than in 2020 (0.21 ± 0.03 ppb/ppm) and the correlation coefficient for 2020 (0.52)
is significantly lower than for 2019 (0.69). ∆XNO2:∆XCO2 drops by approximately 38.2%,
assisted by the decrease in transportation in China (37.2%) reported by Liu et al. [16].
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the regression fitted slopes for 2019 and 2020, R is the correlation coefficient.

The CO:CO2 slopes for January, March, and April in year 2019 and 2020 are shown
in Figure 5. The correlation coefficients for January and March are larger than 0.9 for
both years, while the reduced correlation coefficients in April indicated the increasing
biogenic influence. In January and April, the slope in 2020 is slightly less than that in 2020
(8.73% and 5.9%). The slope for March reduces by 26.0% in 2020 than in 2019.
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3.4. The Correlations of ∆XCO, and ∆XCO2 of Different Sources

The variations in XCO and XCO2 are strongly affected by regional transportation
driven by different wind directions and wind speeds. The CO–CO2 correlation slope
provides characterizations of the combustion efficiency signature of the source regions.
To show the regional effect, we present a more specific interpretation of the observed
∆XCO:∆XCO2 slope using a simple dispersion model (STILT). STILT was driven by ERA-5
reanalysis data. Column footprints, which represent the sensitivity of the column mea-
surements to the upstream and downstream surface–atmosphere fluxes, are calculated
for 2019 and 2020. Please refer to Wu et al. [12] for more details about the footprint calcu-
lation. According to the footprints of 2019 and 2020 (Figure 6), the observation site was
most influenced by the northwest source (NW source), the north China plain source (NCP
source), and the locally confined source (LC source). The NW footprint originated in the
relatively clean region which is mostly influenced by the Siberian high. The NCP footprint
originated from northern China (mainly Hebei and Shanxi provinces). Most of the LC
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footprint is located in the Beijing area. The NW, NCP, and LC groups account for 54%, 23%,
and 23%, respectively, of all days in 2019, and for 48%, 32%, and 19%, respectively, in 2020.
FTS measurements are subjected to strong-wind days and weak-wind days: the former
is selected when 80% of 24-h backward footprints lie outside the Beijing area (NW and
NCP sources) and the latter are selected when 80% of footprints fall within the Beijing area
(LC source).

Figure 6. Maps of the average 24 h backward footprint (ppm (µmol (m2 s)−1)−1), log10 (x)) at the
Institute of Physics, Beijing, starting at 12:00 local time in different upwind sources from January to
April 2019 (blue) and 2020 (red). (a,b): The area to the northwest of the observation site is defined
as the northwest source (NW source), (c,d): the areas to the south and northwest are defined as the
north China plain source (NCP source). (e,f): stable weather conditions are classified as the locally
confined source (LC source).

The large correlation coefficients of ∆XCO and ∆XCO2 in Figure 7 indicates that
the airmass originates from different sources are dominated by anthropogenic emis-
sion. The CO2/CO correlation slope provides a characteristic signature of the source
region’s overall combustion efficiency. ∆XCO:∆XCO2 originating from different upwind
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sources in January to April 2019 and 2020 are distinguished. As seen from Figure 7,
∆XCO:∆XCO2 from the NW source in 2020 (Nday = 15 d, slope = 8.7 ppb/ppm) is
flatter than ∆XCO:∆XCO2 in 2019 (Nday = 14 d, slope = 10.5 ppb/ppm). Meanwhile,
∆XCO:∆XCO2 from the NCP source in 2020 (Nday = 10 d, slope = 8.8 ppb/ppm) is much
smaller than in 2019 (Nday = 6 d, slope = 11.1 ppb/ppm). The slope from the LC source
presents lower than the value in other sources (NW, NCP) in 2019 and shows flatten in
2020, which indicates higher combustion efficiency in the Beijing area than in the sur-
roundings during 2019. The ratio of CO emission to CO2 emission derived from emission
inventories, Emission Database for Global Atmospheric Research (EDGAR) and Peking
University(PKU), also indicate that the value for the Beijing area is lower than for the sur-
roundings. This brings agreement that air transported from a clean background (the NW
source) was little affected during the 2020 lockdown; on the contrary, the reduction in the
correlation slope of the air originating from the NCP suggests a significant reduction in
anthropogenic CO2 emission in the polluted area.
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4. Conclusions

Economic activity in China was reduced during the COVID-19 lockdown and Beijing
experienced a reduction in carbon emissions and toxic air pollution (CO and NO2) during
this time period. The COVID-related decreases in CO2 emissions have been estimated from
bottom-up emission inventories in China and globally. The tropospheric nitrogen dioxide
(NO2) column concentration data observed by satellite and the surface air quality data in
China have also shown considerable declines during the lockdown period [16]. We have
investigated the responses of anthropogenic CO2 and CO emissions in Beijing during the
2020 lockdown using the dry-air-column measurements observed by ground-based FTS
(EM27/Sun) in urban Beijing supplemented by satellite data (GOSAT and TROPOMI).
The dry-air-column measurements have the advantage that they are less impacted by
boundary layer transport on the data. We set up a simple method to identify the reduction
in XCO2 and XCO from an anomaly analysis of these data, through both observed XCO2
and XCO being increased in the Beijing area. We set up a simple method to derive the
XCO2 anomaly from GOSAT and the XCO anomaly from TROPOMI over Beijing from the
differences between the target area and the background area. XCO and XCO2 anomalies of
FTS data are derived from morning–afternoon differences.

Based on FTS data, the highly correlated daily XCO and XCO2 anomalies allow the
proportion of XCO2 concentration in the atmosphere related to anthropogenic emission
to be estimated from the correlation slope. The correlation slope in the first four months
of 2020 is reduced by 14.2% compared with 2019, giving an opportunity to estimate the
reduction in anthropogenic emissions. Based on GOSAT data, the averaged XCO2 anomaly
in January to April 2020 in contrast to the predicted value from an extrapolation of the years
2017–2019 over the same period declines by 15%. A similar reduction in CO2 emission of
15.6% in China was inferred by sector-specific ratio maps of CO2 to NOx emissions using
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TROPOMI NO2 data [17]. As for using NO2 as a tracer, the correlation slope of NO2 to
CO2 shows a 38.2% decline in the first quarter of 2020 compared to 2019, corresponding to
reduction in the traffic-related CO2 emission reported by a previous study. The consistent
results from both ground-based data and satellite data confirm the significant decline in
anthropogenic CO2 emissions. Overall, these atmospheric-data-driven estimations are
higher than the bottom-up estimations. In addition, all days of FTS data are classified
into three categories (air transported from a cleaner background, from a polluted area,
and local) according to the backward footprint analysis. The reduced correlation slopes
of the three sources show significant differences and a maximum reduction is obtained
from NCP and a flatter slope from a cleaner background. Based on TROPOMI, the XCO
anomaly shows a 7.8% decrease in the first four months of 2020 compared to 2019, which is
consistent with that estimated from Atmospheric InfraRed Sounder (AIRS) data.

Our results show that atmospheric CO2 concentration changes as well as the anthro-
pogenic emission changes related to COVID-19 can be detected by the ground-based FTS
measurements by collaborative analysis with XCO. However, our results are also subject to
some uncertainties and limitations: there is a need to undertake an in-depth analysis of the
uncertainties inherent in the observations and transportation. Currently, there is crucial
limitation for verifying bottom-up estimates. Resolving these limitations (e.g., exploiting
flux from the information contained in these measurements) and investigating the local
source contribution require further study using state-of-the-art inverse modelling.
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