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Abstract: High-resolution and continuous hydrological products have tremendous importance for
the prediction of water-related trends and enhancing the capability for sustainable water resources
management under climate change and human impacts. In this study, we used the random forest
(RF) and extreme gradient boosting (XGBoost) methods to downscale groundwater storage (GWS)
from 1◦ (~110 km) to 1 km by downscaling Gravity Recovery and Climate Experiment (GRACE)
and Global Land Data Assimilation System (GLDAS) data from 1◦ (~110 km) and 0.25◦ (~25 km)
respectively, to 1 km for China. Three evaluation metrics were employed for the testing dataset for
2004−2016: The R2 ranged from 0.77−0.89 for XGBoost (0.74−0.86 for RF), the correlation coefficient
(CC) ranged from 0.88−0.94 for XGBoost (0.88−0.93 for RF) and the root-mean-square error (RMSE)
ranged from 0.37−2.3 for XGBoost (0.4−2.53 for RF). The R2 of the XGBoost models for GLDAS was
0.64−0.82 (0.63−0.82 for RF), the CC was 0.80−0.91 (0.80−0.90 for RF) and the RMSE was 0.63−1.75
(0.63−1.77 for RF). The downscaled GWS derived from GRACE and GLDAS were validated using in
situ measurements by comparing the time series variations and the downscaled products maintained
the accuracy of the original data. The interannual changes within 9 river basins between pre- and post-
downscaling were consistent, emphasizing the reliability of the downscaled products. Ultimately,
annual downscaled TWS, GLDAS and GWS products were provided from 2004 to 2016, providing a
solid data foundation for studying local GWS changes, conducting finer-scale hydrological studies
and adapting water resources management and policy formulation to local condition.

Keywords: groundwater storage; terrestrial water storage; downscaling; random forest; XGBoost;
GRACE; GLDAS

1. Introduction

Water is increasingly becoming a priority policy issue at the international level [1] and
groundwater is the world’s largest accessible source of fresh water and plays a vital role in
satisfying needs for drinking, agriculture and industrial activities [2,3]. Understanding the
dynamic changes of groundwater in local areas of China will be helpful to adapting water
resources management and policy formulation to the local condition. Gravity Recovery
and Climate Experiment (GRACE) products provide unprecedented data support for
large-scale research on groundwater variations [4,5] and have been extensively used to
evaluate groundwater storage (GWS) changes around the world [6–8]. However; the
coarse resolution of GRACE products limits their application to local areas; making it
challenging to link GRACE estimates to local-scale ground observations [9,10]. Although
some researchers have utilized GRACE for hydrological investigations [11,12], the majority
of the world’s aquifers and watersheds are relatively small; and thus; the sub-basin-level
partitioning of groundwater needs to be thoroughly understood [13]. Moreover; the
excessive exploitation and consumption of groundwater have widely caused local land
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subsidence and the fine-resolution GWS estimates derived from GRACE and hydrological
models could help to more accurately explore the relationship between GWS depletion
and settlement [14–21].

Many researchers have used a dynamic downscaling method to simulate GRACE in
land surface models for producing GWS change data and other hydrological parameters
at a fine resolution [22–25]. However, such downscaling techniques require extensive
computation times and resources that are not available to many researchers [26]. Moreover,
many such procedures depend on the selected hydrological model, some of which lack
surface or groundwater components. The current downscaling methods for GRACE data
are mainly statistical techniques, especially machine learning methods.

Machine learning methods have achieved unprecedented development in water sci-
ence and related fields. Majumdar et al. [27] used random forest method and combined
multitemporal satellite and modeled data to predict groundwater withdrawals per unit
area over High Plains aquifer in the central United States. The model accuracy (coeffi-
cient of determination, i.e., R2) reached 0.99 and 0.93 for training and testing data sets.
Sun et al. [28] used automated machine learning to reconstruct data gap between GRACE
and GRACE follow-on over the conterminous U.S. The Nash-Sutcliffe efficiency, the mean
correlation coefficient and the mean normalized root-mean square error were 0.85, 0.95 and
0.09, respectively. Yan et al. [29] built random forest, gradient boosting, stacking and linear
models to explore the relationship between runoff coefficient and its impact factors. The
result showed that the machine learning method outperformed traditional linear model
and the normalized root-mean-squared error was 0.12 at country level. Michael et al. [30]
proposed a hierarchical machine learning approach and its predicted head error was
0.5 smaller than The United States Geological Survey Modular Three-Dimensional Finite-
Difference Ground-Water Flow Model (MODFLOW) numerical flow model. This method
could be useful to improve the performance of the numerical models. Cho et al. [31]
used the random forest classification method and the google earth engine cloud com-
puting platform to analyze the spatial distribution of the underground drainage system
in the Red River area of the northern United States. The result showed that the overall
accuracies were 76.9–87% and correlation coefficients were 0.77–0.96 corresponding with
subwatershed-level statistics.

In terms of GRACE-related downscaling, the downscaling objective can be roughly
divided into three categories: GWL downscaling, terrestrial water storage (TWS) down-
scaling and GWS downscaling according to the target data (the groundwater level (GWL)
changes are included). Seyoum et al. [32] used a machine learning (ML)-based downscaling
algorithm to produce high spatial resolution groundwater level anomaly (GWLA) data
from the GRACE with acceptable correlation coefficient (CC) and Nash-Sutcliffe efficiency
(NSE) values of ~0.76 and ~0.45, respectively. Milewski et al. [33] trained a boosted regres-
sion tree model to statistically downscale GRACE TWS anomalies into monthly 5-km GWL
anomalies using multiple hydrologic datasets; the CC reached 0.79, and the NSE was 0.61.
Li et al. [34] combined six hydrological variables to downscale the resolution of TWS and
GWS data from 1◦ (110 km) to 0.25◦ (approximately 25 km) using the random forest (RF)
algorithm; the highest NSE was 0.68, and the CC was 0.83. Ning et al. [35] applied empirical
regression methods based on the relationship between GRACE and hydrological fluxes
to downscale a 1◦ gridded GRACE product to 0.25◦; however, their approach was based
on the assumption that the GRACE-derived TWS is closely related to the TWS change
derived from water balance equation. Yin et al. [36] used evapotranspiration (ET) data to
downscale GWS anomalies from 110 km to 2 km in the North China Plain, but this method
was applied only in areas exhibiting a strong relationship between GRACE-derived GWS
and ET data. Rahaman et al. [37] used the RF algorithm to downscale GRACE-derived
GWS anomalies from 1◦ to 0.25◦ in the Northern High Plains (NCP) aquifer, and the
NSE reached 0.58~0.84. Miro et al. [38] used an artificial neural network (ANN) to gen-
erate a series of high-resolution maps of GWS changes from 2002 to 2010 using GRACE
estimates of TWS variations and a series of hydrologic variables; the NSE ranged from
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0.0391~0.7511. Wan et al. [39] developed a model-based approach to downscale GRACE
data by aggregating the 1◦ GRACE data to 4◦ and then downscaling the 4◦ data to 0.125◦

using specified equations.
In conclusion, the downscaled TWS or GWS derived from GRACE data stated above

were performed on local scales in the specified region. The highest resolution of downscaled
GRACE products reached 2 km in local areas [36], where an empirical relationship between
the GWS and ET was leveraged to downscale the data, and limitations remain in its
applications in other areas. To date, however, there are no downscaled products existed for
China, although these products are very important for local water resources management.

Considering the lack of high-precision and high-resolution GWS products, our re-
search concentrated mainly on using the existing 1-km dataset in China to construct
higher-accuracy models and, for the first time, produces a continuous annual time series
dataset of GWS (including TWS) for China using machine learning methods. Section 2
presents the variables used herein. Section 3 describes the methodology in detail, including
how to construct the models, what machine learning models are used, how to derive the
GWS, and what metrics are used to evaluate the models. Section 4 presents the model
accuracies, verifies the downscaled products using monitoring wells, and further compares
the annual variations across China and in different river basins. Section 5 concludes the
key results and provides an outlook of future research.

2. Data

We employed 12 kinds of data variables as predictors, including 4 categorical variables
and 8 numerical variables, as shown in Table 1. These selected variables either directly
or indirectly influence the TWS or data from the Global Land Data Assimilation System
(GLDAS). For example, precipitation is one of the most important factors that impacts TWS
changes and the soil moisture or vegetation canopy water content [6,7,40]. Silt and clay
frequently influence the acquirers closely related to groundwater [41]. The population,
gross domestic product (GDP) and land use status can represent the social and human
impacts on, for example, TWS changes and soil moisture [42,43]. The population explosion,
economic development, and urbanization have increased the pressure on groundwater con-
sumption [44,45], while land use affects the change and distribution of TWS by changing
the recharge rates [43]. The elevation and slope degree has a direct influence on runoff, ero-
sion, and the transport of sediments [46–48]. Finally, Landsat Tree Cover Continuous Fields
(LTCCF) data reflect the distribution (especially evapotranspiration) of water resources at
the surface [49]. All these variables’ detailed descriptions are provided in Table 1.

Table 1. Variables and their acronyms.

Acronym Variable Description Resolution

DEM Digital elevation model 1 km
LST Annual mean land surface temperature 1 km
Pre High-spatial-resolution monthly precipitation dataset 1 km

Slope Slope 1 km
NDVI Annual maximum normalized difference vegetation index 1 km
GDP Gross domestic product 1 km

LTCCF Landsat Tree Cover Continuous Fields 1 km
LUSD Land use status database 1 km
Pop Population 1 km
Clay Clay content 1 km
Silt Silt content 1 km
Soil Soil content 1 km

2.1. Soil Texture and Soil Type

Data regarding the spatial distributions of China’s soil texture and soil type come from
the Data Center for Resources and Environmental Sciences, (RESDC), Chinese Academy
of Sciences (http://www.resdc.cn). These data are compiled based on a 1:1 million soil

http://www.resdc.cn
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type map and soil profile data obtained from the second soil census. The soil texture is
divided according to the contents of sand, silt and clay, each of which reflects the contents
of the corresponding particle type with different textures by percentage. The clay and silt
percentage data with a spatial resolution of 1 km were used as input datasets.

2.2. Gross Domestic Product

The gridded dataset of China’s spatial GDP distribution is acquired from RESDC
(http://www.resdc.cn). These data offer as a 1-km-resolution products are based on
national and county-level GDP statistics that comprehensively consider multiple factors,
such as land use type, nighttime light brightness, and residential density, all of which are
closely related to human economic activities. [50,51]. The data is a raster data type and
each grid represents the total GDP output value within grid range (1 km2). The unit is
ten thousand yuan per square kilometer. As the time interval of these data is 5 years, the
products corresponding to 2005, 2010 and 2015 are used in our study.

2.3. Population

The gridded spatial dataset of China’s population originates from RESDC (http://
www.resdc.cn). The dataset is generated based on national and county-level demographic
data that comprehensively consider the land use type, nighttime light brightness, residential
area density and other factors closely related to the population. The data is a raster data
type and each grid represents the total populations output value within grid range (1 km2).
The unit is person per square kilometer. Similar to GDP, the time interval of the data is
5 years, and the data from 2005, 2010 and 2015 are used in this study.

2.4. Land Use Status Database

China’s multitemporal 1-km land use status database is provided by RESDC (http:
//www.resdc.cn). The Land use type include 6 primary types (cultivated land, forest land,
grassland, water area, residential land and unused land) and 25 secondary types. Specific cat-
egory introduction can refer to the website http://www.resdc.cn/data.aspx?DATAID=98.
This product is currently the most accurate land use remote sensing monitoring data product
available for China and it has played an important role in national land resource surveys,
hydrology and ecological research.

2.5. Elevation and Slope

Digital Elevation Model (DEM) is a digital cartographic dataset in three (XYZ) coordi-
nates and has been derived from contour lines or photogrammetric methods [52]. The DEM
of China is derived from the Shuttle Radar Topography Mission (SRTM) data acquired
during the US Space Shuttle Endeavour. The dataset is generated based on the latest SRTM
V4.1 data and includes one map with three precisions of 1 km, 500 m and 250 m; the data
can be obtained from RESDC (http://www.resdc.cn). We used the 1-km resolution product
in our study, and the slope was calculated as the maximum rate of change from a cell to its
neighboring cells using the slope tool in ArcGIS 10.3 (http://desktop.arcgis.com/en/).

2.6. Annual Maximum Normalized Difference Vegetation Index

The annual maximum NDVI obtained from the MOD13A2 V6 product provides two
vegetation Indices: the NDVI and the Enhanced Vegetation Index (https://developers.
google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A2). This product chooses
the best available pixel value from all the acquisitions within a 16-day period. The criteria
used are low clouds, low view angles, and the highest NDVI value [53]. We obtained all
the data in the study period (2004–2016) and computed the annual maximum NDVI for
each year.

http://www.resdc.cn
http://www.resdc.cn
http://www.resdc.cn
http://www.resdc.cn
http://www.resdc.cn
http://www.resdc.cn/data.aspx?DATAID=98
http://www.resdc.cn
http://desktop.arcgis.com/en/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A2


Remote Sens. 2021, 13, 523 5 of 19

2.7. Annual Mean Land Surface Temperature

The annual mean LST data are obtained from the MOD11A2 V6 product, which
provides an 8-day average of the LST (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_006_MOD11A2). In other words, each pixel value in MOD11A2
is a simple average of all the corresponding MOD11A1 LST pixels collected within an
8-day period. We chose an 8-day compositing period because twice that period is the exact
ground track repeat period of the Terra and Aqua platforms [54]. The annual mean LST is
calculated after all the data are obtained in each year.

2.8. Landsat Tree Cover Continuous Fields

The LTCCF tree cover layers come from Google Earth Engine data catalog (https:
//developers.google.com/earth-engine/datasets/catalog/GLCF_GLS_TCC?hl=nl). These
data contain estimates of the percentage of horizontal ground in each 30-m pixel covered by
woody vegetation greater than 5 m in height. The data represent three nominal epochs, 2000,
2005 and 2010, compiled from the National Aeronautics and Space Administration/United
States Geological Survey (NASA/USGS) Global Land Survey (GLS) collection of Landsat
data [55]. We selected the data for 2005 and 2010 from the Google Earth Engine and
resampled them to 1 km using the nearest-neighbor method.

2.9. Precipitation

The 1-km-spatial-resolution monthly precipitation data over China are obtained from
Peng et al. [56] at https://essd.copernicus.org/articles/11/1931/2019/. This dataset is
spatially downscaled from the 30’ Climatic Research Unit time series dataset with World-
Clim using the delta spatial downscaling method [56]. The time series from 2004–2016 are
selected as our predictor.

2.10. GRACE Terrestrial Water Storage

We used two GRACE dataset, namely, Center for Space Research (CSR) Tellus GRACE
Level-3 Monthly Land Water-Equivalent-Thickness Surface-Mass Anomaly Release 6.0
data from https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC_L3_CSR_RL06_LND_
v03, and the CSR GRACE/GRACE-FO RL06 Mascon Solutions version 02 dataset from
http://www2.csr.utexas.edu/grace/RL06_mascons.html. The former is based on the
RL06 spherical harmonics from CSR (CSR-SH) [57] and the latter is based on the mascon
estimation solutions from CSR (CSR-MS) [58]. The resolutions of the two datasets are 1◦

and 0.25◦, respectively. The time series from 2004–2016 are selected as our predictand.

2.11. GLDAS Noah V2.1

GLDAS is a system that uses land surface models to estimate the global distributions
of land surface states, such as the soil moisture, snow water equivalent (SWE), and runoff,
etc. [11]. The resolution of GLDAS data used herein is 0.25◦ × 0.25◦. In this study, the
annual time series for soil water storage (SWS), SWE, and vegetation canopy water stor-
age (CWS) are obtained from GLDAS Noah V2.1 at (http://disc.sci.gsfc.nasa.gov/uui/
datasets?keywords=GLDAS).The sum of the SWS, SWE and CWS is the anomaly relative to
2004–2009, and the average of 12 monthly time series is used to represent the annual result.

2.12. In Situ Measurements

We obtained GWL observations from the “China Geological Environment Monitoring
Groundwater Level Yearbook” [59] for groundwater wells provided by the Ministry of
Water Resources of China for the period of 2005−2013. The GWL is expressed in terms of
depth (meters) based on the 1956 Yellow Sea elevation system. A total of 251 wells have
continuous time series data for analysis.

The GWL changes acquired from the in situ measurements are obtained by using the
elevations of the monitoring wells and subtracting the mean monthly burial depth. The
GWLs obtained from the wells for a given year are subtracted from the average GWLs

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2
https://developers.google.com/earth-engine/datasets/catalog/GLCF_GLS_TCC?hl=nl
https://developers.google.com/earth-engine/datasets/catalog/GLCF_GLS_TCC?hl=nl
https://essd.copernicus.org/articles/11/1931/2019/
https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC_L3_CSR_RL06_LND_v03
https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC_L3_CSR_RL06_LND_v03
http://www2.csr.utexas.edu/grace/RL06_mascons.html
http://www2.csr.utexas.edu/grace/RL06_mascons.html
http://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=GLDAS
http://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=GLDAS
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from 2005 to 2009 when comparing the results from the observation wells with the GWS
derived from GRACE and GLDAS data.

3. Methods
3.1. Technical Route

The approach for downscaling is shown in Figure 1. We used a low-resolution dataset
to build the model every year from 2004 to 2016 and used high-resolution data to make the
predictions. The detailed processes were as follows:
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Figure 1. Methodology of the research.

(1) Data Preparation: We prepared two targets—TWS change and GLDAS change
data, validation data (in situ measurements) and 1-km high-resolution variables that either
directly or indirectly influenced the targets. The fine predictors were aggregated into coarse
predictors to be identical to the target variables according to the pixel size of the TWS
resolution (i.e., for each predictor, the average value and mode in each pixel were used for
the numerical and categorical predictors, respectively) after transferring the GRACE data
from the geographic coordinate system to the projection coordinate system.

(2) Model Construction: We constructed the RF and XGBoost models separately
according to the data of each year by selecting the proper variables above for TWS and
GLDAS. We used the 2010 data, however, when the corresponding variables for given
years were missing, including the silt, clay, DEM and slope, the other predictors changed
according to the corresponding year. Once we determined the model, we obtained the
trained model output at a low resolution and compared it with the original dataset to
calculate the residual.

(3) Downscaling: The residuals were interpreted as the natural random variations
that cannot be explained by the existing models [60]. The coarse residuals were down-
scaled using a cubic spline function, which is commonly used to deal with the coarse
residual when performing machine-learning-based downscaling [34,60,61]. After the pre-
diction, the residual was employed to correct the final 1-km predictand by adding it to the
predicted results.
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(4) Validation: Finally, the in situ measurements were used to verify the downscaled
products by comparing the CCs of the time series.

3.2. Random Forest

The RF is a supervised learning algorithm and a combination of tree predictors such
that each decision tree was built using a bootstrap data set and only considers a random
subset of variables at each step, which would result in a variety of trees we called RF after
do this hundreds of times [62,63]. Each decision tree in RF are run in parallel and there
is no interaction between the trees. The algorithm works well for both regression and
classification. RF is not sensitive to collinearity. RF “spreads” the variable importance
across all the variables [64]. These correlated variables can be evaluated to have similar
variable importance [65]. This is very valuable in modeling, especially for a complex,
nonlinear system because it is commonly difficult to decide which variable to remove when
two (or more) variables correlate with each other [66]. In this study, we use RF to build
a regression model for the quantitative prediction of TWS and GLDAS. As mentioned in
technical route above, there are 966 grids data in China according to the TWS resolution and
15,363 grids data according to GLDAS resolution. For each grid, our targets are GLDAS and
TWS, and these 12 variables are important for model building of GLDAS while 9 of them
are sufficient to predict the characteristics of TWS based on model accuracy and importance
ranking of variables. Every grid with the predictors and target is one sample and we have
966 samples for TWS and 15,363 samples for GLDAS throughout China. We randomly
selected training set and testing set according to the ratio of 7:3. When the selected variables
were put into the model, all the trees in RF were run independently and the result of model
prediction was the average value of all trees generated. The hyper-parameters of the RF in
this study were set to the defaults using the “randomForest” package of R language [67].
The R2 and root-mean-square error (RMSE) metrics were used to evaluate the performance
of the model. After selecting the optimal model, we brought the 1-km resolution predictors
into it to predict the downscaling result. After adding the residuals to predict the result,
we got the final downscaled TWS and GLDAS.

3.3. Extreme Gradient Boosting (XGBoost)

XGBoost is also an ensemble learning technique but it is based on gradient boosting
decision tree algorithm. Gradient boosting is an approach in which new models are created
that predict the residuals or errors of prior models and are then added together to make
the final prediction [68]. XGBoost also needs to construct many decision trees but all the
trees are dependent, and each new tree is based on the newest residuals or errors of the
prior tree. The predicted value of each sample is the sum of the values of leaves in each
tree. Similar to RF, XGBoost can deal with complex nonlinearity relationships and handle
the multi-collinearity effect with high accuracy and multi-collinearity didn’t matter in
XGBoost [69–71]. In our study, the predictors we used were the same as those employed
in the RF. We also built the model based on 966 samples for TWS and 15,363 samples for
GLDAS across China and randomly selected training set and testing set according to the
ratio of 7:3. We optimized the models according to the RMSE and R2 derived from training
set and the testing set by adjusting the parameter “nrounds” etc. to control the overfitting.
Moreover, we used one-hot encoding [72] to transform the categorical data into dummy
variables; the purpose was to transform each categorical feature value into a binary feature
value (0 or 1) because the values of categorical variables cannot be recognized in XGBoost
when we performed regression analysis. We used the XGBoost package in R [68] and
most paremeters were set to the default except that parameter “max_depth” was tuned
from 6 to 10 and parameter “nrounds” was tuned from 20 to 50 following the changes of
“max_depth” to avoid overfitting according to the root-mean-square error (RMSE) of the
training and testing dataset. Finally, we used the selected optimal XGBoost model of each
year to predict 1-km-resolution TWS and GLDAS. All the package or tools we used were
from “xgboost” package in R language [73].
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3.4. Derived GWS

The downscaled GRACE data were combined with the downscaled GLDAS data to
derive the GWS. We used a vertical water model [9,74] to derive the GWS and compared it
with the in situ measurements. The GWS can be calculated according to Equation (1):

GWS = TWS ∗ k − (SWS + SWE + CWS) (1)

where SWS, SWE and CWS were obtained from GLDAS Noah V2.1 and the anomalies
were calculated relative to the same baseline time period with GRACE (2004–2009). k is the
scaling factor [75] and was downscaled to 1 km using cubic convolution before equation (1)
was used. Because accurate lake, river, and reservoir data for all of China are not available,
we ignored the contributions of these data in our study [6].

3.5. Mean Shift Clustering Analysis

As the CSR-MS products are estimated in irregular (not rectangular) grids of 1 arc
degree and spatially interpolated into 0.25 × 0.25 degrees, the values of the spatially
interpolated pixels (in 0.25 × 0.25 degrees) do not represent the actual TWS values of
those points on earth since there are significant contributions from the geophysical signals
of the adjacent pixels. Therefore, we need to restore the native resolution by perform-
ing cluster analysis according to the time series [13]. In this study, we used the mean
shift clustering approach to identify the optimum number and distribution of clusters of
contiguous pixels of similar geophysical signals (GRACE TWS time series). Mean shift
clustering is a non-parametric and centroid based clustering method and does not depend
on any explicit assumptions about the point distribution, the number of clusters or random
initialization when comparing it with the K-means clustering algorithm. The basic idea of
this algorithm is to detect the mean points in the densest area and group points based on
those mean centers [76].

3.6. Model Evaluation Metrics

The RF model and XGBoost model were evaluated using R2, CC, and RMS. R2

is a statistical measure that represents the proportion of the variance for a dependent
variable explained by the independent variables in the regression model. The CC was
used to measure the correlation between two variables, and the RMSE was used to
measure the error between two datasets. The three metrics are computed as shown in
Equations (2)–(4), respectively:

R2 = 1 −

n
∑

i=1
(yi − oi)

2

n
∑

i=1
(oi − o)2

(2)

CC =

n
∑

i=1
(yi − y)(oi − o)√

n
∑

i=1
(yi − y)2 n

∑
i=1

(oi − o)2
(3)

RMSE =

√√√√√ n
∑

i=1
(oi − yi)

2

n
(4)

where o represents the observations; y represents the predicted values; n denotes the
number of testing data; and y and o are the mean values of y and o, respectively.
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4. Results
4.1. The Correlation Coefficient between Individual Variables and Targets

Figure 2 showed the scatter plots and CC between the numerical variables and the
target variables. Each box represents the CC between predictors and the target variable and
the values are also marked. Positive correlations are shown in red and negative correlations
are shown in blue. The results show that CC ranged from −0.367–0.559 for TWS and
−0.425–0.423 for GLDAS. The highest CC compared with TWS was the precipitation in
2008, with a CC of 0.559. The highest CC compared with GLDAS was DEM in 2016, with a
correlation coefficient of −0.425.
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Figure 2. The correlation coefficient between individual variables and targets (the left for TWS and the right for GLDAS)
from 2004–2016 except categorical variables.

4.2. Model Accuracies

We obtained 906 clusters based on CSR-MS data using mean shift clustering analysis
(Figure S3) and then we constructed XGBoost and RF models based on CSR-MS 906 cluster
and CSR-SH data. Figure 3 shows the scatterplots and regression fits of the testing dataset of
TWS between the predicted values (X-axis) and original values (Y-axis) using the XGBoost
and RF methods for the 2005, 2010 and 2015 (the results of other years are given in the
supplementary file, Figures S4–S6 and S8), and the results of the evaluation metrics of
each year are shown in Figure 4. The R2 accuracy of the XGBoost model ranged from
0.55 to 0.75, the CC ranged from 0.74 to 0.87 and the RMSE ranged from 0.8 to 4.27, while
the R2, CC and RMSE had ranges of 0.52–0.74, 0.73–0.87 and 0.66–4.33 respectively, for
the RF model when using 906 clusters to construct the regression models in Figure 4a.
While the R2, CC and RMSE based on XGBoost ranged from 0.77–0.89 (0.74–0.86 for RF),
0.88–0.94 (0.88–0.93 for RF) and 0.37–2.3 (0.4–2.53 for RF), respectively, based on CSR-SH
data in Figure 4b. Obviously, the model accuracies based on CSR-SH data are higher than
that based on CSR-MS clusters from the comparison above. The CSR-SH data and related
regression models were therefore chosen for downscaling process.

We further analyze the importance of the variables given by the regression models of
CSR-SH products, thereby evaluating the predictive ability of the variables. In Figure 5, we
show the ranking of importance of variables given by XGBoost-based and RF-based models
for 2005, 2010 and 2015 (the results for the other years can be found in the supplementary
file, Figures S7 and S9). Comparing the importance of variables given by XGBoost-based and
RF-based model, although the rankings calculated by the two methods are slightly different,
we can find three variables in common that predominantly influence the TWS, which are
precipitation, DEM and clay. They all ranked in the top six except precipitation ranked
eighth in 2005 based on RF and clay ranked eighth in 2011 based on XGBoost. Undoubtedly,
precipitation plays an important role in replenishing the GWS [6] and TWS [77]. As one of
the important influencing factors, DEM determines the recharge and discharge areas of GWS,
and is an important input component of groundwater model [78–80]. Water-holding capacity
is controlled primarily by soil texture and organic matter. Soil with a high percentage of silt
and clay particles which describes fine soil has a higher water-holding capacity. Soil textural
differences may strongly modify the impact of climate on regional water balance [81].
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Figure 6 shows the scatterplots and regression fits of the downscaled GLDAS (i.e., the
sum of SWE, SMS and CWS) data using the XGBoost and RF models and the original dataset
for 2005, 2010 and 2015 (the results of other years are also given in the supplementary file,
Figures S10 and S12). These plots demonstrate good agreement between the predicted and
original datasets. Figure 7 shows the evaluation metrics of the XGBoost- and RF-based
models for the GLDAS from 2004 to 2016. The R2 accuracy of the XGBoost model ranged
from 0.64 to 0.82, the CC ranged from 0.80 to 0.91 and the RMSE ranged from 0.63 to 1.75,
while the R2, CC and RMSE had ranges of 0.63–0.82, 0.80–0.90, 0.63–1.77 respectively, for
the RF model. The highest R2 and CC were reached for 2008, with values of 0.82 (R2) and
0.91 (CC) for the XGBoost model and 0.82 (R2) and 0.90 (CC) for the RF model. The overall
correlation was strong, but the overall dispersion degree was higher than that of the TWS.
Moreover, both R2 and RMSE accuracies of XGBoost models were better than that of RF
models in all years.
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Figure 8 shows plots of the variable importance measure for the XGBoost- and RF-
modeled GLDAS for 2005, 2010 and 2015 (the results of other years are also given in the
supplementary file, Figures S11 and S13). Comparing the importance of variable given
by XGBoost-based and RF-based model, the DEM and precipitation always ranked in the
top six except that precipitation ranked seventh in 2012 based on RF. There were 10 years
during which the importance of LST ranked in the top six. Other categorical variables,
such as clay, also exerted significant influences (within the top six) among 8 years.

Considering the higher accuracy of the XGBoost models, further analysis was per-
formed based on the XGBoost results. However, we provided both downscaled products
as supplementary data.
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4.3. The Downscaled GWS Analysis

Based on the GRACE CSR-SH and GLDAS data using XGBoost models, we substituted
1 km predictors to obtain the TWS and GLDAS with 1 km resolution and further derived
GWS with a resolution of 1 km. Figure 9 shows the interannual variation of GWS derived
from the original GWS and downscaled GWS for 2004–2016 based on Thiel-Sen’s slope
method [82,83]. Spatially, the overall trends of the original and downscaled GWS are
similar: the GWS declined in the North China Plain (NCP) and the northwest but increased
in the northeast, southeast and on the Qinghai-Tibet Plateau. The downscaling products
were able to reflect area texture information better than the original data, and details were
more prominent.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 20 
 

 

   

 
Figure 9. Thiel-Sen’s slope before and after downscaling the GRACE GWS for 2004–2016. (a) Slope of the original GWS; 
(b) Slope of the XGBoost-downscaled GWS. 

We also evaluated the annual change between the original GWS and XGBoost-
downscaled GWS in China in 9 river basins: Songhua and Liaohe River Basin (LRB), Con-
tinental Basin (CB), Haihe River Basin (HRB), Huaihe River Basin (HHRB), Southwest Ba-
sin (SWB), Southeast Basin (SEB), Yangtze River Basin (YZRB), Pearl River Basin (PRB), 
and Yellow River Basin (YRB) [84]. Figure 10 shows the distribution of main river basins 
throughout China and depicts the interannual changes using line charts. The GWS was 
consistent among all the basins between pre- and post-downscaling. The CC in different 
basins was 0.929~0.999, and the highest CC was in the HRB while the lowest CC was in 
the SWB. Among them, five basins (CB, HRB, HHRB, YRB, SWB) showed an overall 
downward trend while three (YZRB, SEB, PRB) basins showed an overall upward trend 
in GWS and the three rising regions were located in southeast China. The groundwater in 
the SLRB basin experienced a sharp decline from 2009 to 2011, and it began to rise gradu-
ally after 2011. The CCs between the pre- and post-downscaling products were particu-
larly high, indicating that the downscaled data almost completely maintained the inter-
annual fluctuation characteristics of the original data, verifying that the downscaled prod-
ucts could contain interannual signal characteristics. 

 

cm/yr
-5 -2 -1 -0.5 0 0.1 0.5 31

Figure 9. Thiel-Sen’s slope before and after downscaling the GRACE GWS for 2004–2016. (a) Slope of the original GWS;
(b) Slope of the XGBoost-downscaled GWS.

We also evaluated the annual change between the original GWS and XGBoost-downscaled
GWS in China in 9 river basins: Songhua and Liaohe River Basin (LRB), Continental Basin
(CB), Haihe River Basin (HRB), Huaihe River Basin (HHRB), Southwest Basin (SWB),
Southeast Basin (SEB), Yangtze River Basin (YZRB), Pearl River Basin (PRB), and Yellow
River Basin (YRB) [84]. Figure 10 shows the distribution of main river basins throughout
China and depicts the interannual changes using line charts. The GWS was consistent
among all the basins between pre- and post-downscaling. The CC in different basins was
0.929~0.999, and the highest CC was in the HRB while the lowest CC was in the SWB.
Among them, five basins (CB, HRB, HHRB, YRB, SWB) showed an overall downward
trend while three (YZRB, SEB, PRB) basins showed an overall upward trend in GWS
and the three rising regions were located in southeast China. The groundwater in the
SLRB basin experienced a sharp decline from 2009 to 2011, and it began to rise gradually
after 2011. The CCs between the pre- and post-downscaling products were particularly
high, indicating that the downscaled data almost completely maintained the interannual
fluctuation characteristics of the original data, verifying that the downscaled products
could contain interannual signal characteristics.

We also calculated the correlations between the in situ measurements and GWS both
before and after downscaling, and the results are shown in Figure 11. A similar spatial CC
pattern is observed before and after downscaling. There are 69 stations whose CCs were
greater than 0.5 before downscaling and 69 stations after downscaling. The downscaled
products maintained the accuracy of the original data.
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Figure 10. Annual GWS variations in 9 river basins for 2004–2016.

Figure 11. Correlation maps between the GWS and in situ measurements across China. (a) correlation map between the
original GWS and in situ measurements; (b) correlation map between the XGBoost-downscaled GWS and in situ measurements.

5. Conclusions and Discussion

To compensate for the lack of fine resolution GWS products, this study successfully
used machine learning methods to downscale GRACE and GLDAS data in China from
1◦ and 0.25◦, respectively, to a final resolution of 1 km. We ultimately provided time
series of downscaled TWS, GLDAS and GWS, which facilitated the evaluation of local
GWS changes.

The CCs between the downscaled results given by both models and original data
were generally larger than 0.8. The comparison between in situ measurement data from
monitoring stations confirmed that the downscaled products maintained the accuracy
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of the original data. Regarding the spatial distribution, post-downscaled GWS owned
higher resolution than pre-downscaled GWS and contained the spatial patterns of the
pre-downscaled GWS throughout China. This finding means that these products could be
used for the analysis of interannual trends at the local scale. Moreover, a comparison of
innerannual changes based on 9 river basins between the pre- and post-downscaling GWS
also emphasized the reliability of the downscaled products.

Accurate products bring higher-resolution data support for various GRACE-related
researches in the later period. For example, the detailed TWS and GWS data provide
support for the input data of the regional hydrological models with a resolution of 1 km. At
the same time, it provides a dataset for verification and revision of the model parameters
combined with the groundwater output from the regional hydrological models. In addition,
this dataset makes the use of GRACE data and InSAR-based technic analysis to evaluate
the relationship between groundwater consumption and ground subsidence more scientific
and effective. Finally, accurate GWS and TWS contribute to land use, city planning and
water resources management. The 1 km resolution products can effectively provide the
dynamics of regional water resources change and provide data support for managers’
policy formulation like balancing the relationship between regional irrigation water use
and groundwater consumption.

There are still some limitations in this analysis. First, the downscaling predictors were
not free from error, so we could not evaluate the total error in this study. Second, the number
of in situ measurements used for verification was only 251, and their spatial distribution
was uneven. Including additional data from monitoring stations would make the results
more meaningful. Third, the coarse residuals of TWS and GLDAS were resampled using
cubic spline interpolation and the inter-pixel changes should be further considered. Finally,
due to the lack of accurate data on lakes, rivers, and reservoirs for all of China, we
ignored the contributions from these sources when performing the comparison with in
situ measurements. Nevertheless, our produced high-resolution data can provide certain
guidelines for detailed investigations of the regional GWS and can help improve future
hydrological research on small scales and local areas, thereby enhancing the capability for
sustainable water resources management.

The 1 km resolution data of TWS, GWS and GLDAS in this paper can be found at
Supplementary Materials.
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80. Mirosław-Świątek, D.; Kiczko, A.; Szporak-Wasilewska, S.; Grygoruk, M. Too wet and too dry? Uncertainty of DEM as a potential

source of significant errors in a model-based water level assessment in riparian and mire ecosystems. Wetl. Ecol. Manag. 2017, 25,
547–562. [CrossRef]

81. Wang, T.; Istanbulluoglu, E.; Lenters, J.; Scott, D. On the role of groundwater and soil texture in the regional water balance: An
investigation of the Nebraska Sand Hills, USA. Water Resour. Res. 2009, 45, 45. [CrossRef]

82. Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and
Econometrics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 345–381.

83. Hoaglin, D.C.; Mosteller, F.; Tukey, J.W. Understanding Robust and Exploratory Data Analysis; Wiley: New York, NY, USA, 1983;
Volume 3.

84. College of Urban and Environmental Science, P.U. Geographic Data Sharing Infrastructure; Panjab University: Chandigarh, India, 2019.

http://doi.org/10.5194/essd-11-1931-2019
http://doi.org/10.1029/2011WR011453
http://doi.org/10.1002/2016JB013007
http://doi.org/10.1016/j.advwatres.2013.08.011
http://doi.org/10.1016/j.ecss.2018.05.031
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1890/07-0539.1
http://doi.org/10.1016/j.jfoodeng.2014.01.007
https://www.R-project.org/
http://doi.org/10.1016/j.tra.2019.08.009
http://doi.org/10.1016/j.ecoenv.2020.111059
http://www.ncbi.nlm.nih.gov/pubmed/32791357
https://cran.r-project.org/web/packages/xgboost/index.html
https://cran.r-project.org/web/packages/xgboost/index.html
http://doi.org/10.1002/wrcr.20078
http://doi.org/10.1002/2016WR019344
http://doi.org/10.1109/34.400568
http://doi.org/10.1175/JHM-D-18-0253.1
http://doi.org/10.1016/j.compenvurbsys.2009.11.002
http://doi.org/10.1007/s11273-017-9535-1
http://doi.org/10.1029/2009WR007733

	Introduction 
	Data 
	Soil Texture and Soil Type 
	Gross Domestic Product 
	Population 
	Land Use Status Database 
	Elevation and Slope 
	Annual Maximum Normalized Difference Vegetation Index 
	Annual Mean Land Surface Temperature 
	Landsat Tree Cover Continuous Fields 
	Precipitation 
	GRACE Terrestrial Water Storage 
	GLDAS Noah V2.1 
	In Situ Measurements 

	Methods 
	Technical Route 
	Random Forest 
	Extreme Gradient Boosting (XGBoost) 
	Derived GWS 
	Mean Shift Clustering Analysis 
	Model Evaluation Metrics 

	Results 
	The Correlation Coefficient between Individual Variables and Targets 
	Model Accuracies 
	The Downscaled GWS Analysis 

	Conclusions and Discussion 
	References

