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Abstract: By 2050, half of the net increase in the world’s population is expected to reside in sub-
Saharan Africa (SSA), driving high urbanization rates and drastic land cover changes. However, the
data-scarce environment of SSA limits our understanding of the urban dynamics in the region.
In this context, Earth Observation (EO) is an opportunity to gather accurate and up-to-date spatial
information on urban extents. During the last decade, the adoption of open-access policies by major
EO programs (CBERS, Landsat, Sentinel) has allowed the production of several global high resolution
(10–30 m) maps of human settlements. However, mapping accuracies in SSA are usually lower,
limited by the lack of reference datasets to support the training and the validation of the classification
models. Here we propose a mapping approach based on multi-sensor satellite imagery (Landsat,
Sentinel-1, Envisat, ERS) and volunteered geographic information (OpenStreetMap) to solve the
challenges of urban remote sensing in SSA. The proposed mapping approach is assessed in 17 case
studies for an average F1-score of 0.93, and applied in 45 urban areas of SSA to produce a dataset of
urban expansion from 1995 to 2015. Across the case studies, built-up areas averaged a compound
annual growth rate of 5.5% between 1995 and 2015. The comparison with local population dynamics
reveals the heterogeneity of urban dynamics in SSA. Overall, population densities in built-up areas
are decreasing. However, the impact of population growth on urban expansion differs depending on
the size of the urban area and its income class.

Keywords: urbanization; sub-Saharan africa; urban remote sensing; landsat; sentinel

1. Introduction

According to the latest predictions of the United Nations, the world population will
increase from 7.7 billion in 2019 to 9.7 billion in 2050. More than half of this global increase
is expected to take place in sub-Saharan Africa (SSA) [1], driving high urbanization rates.
Over the same period, the urban population of sub-Saharan Africa is expected to increase
by 196% [2]. Such a rapid urbanization has already been experienced in the past by other
countries during the first half of the 20th century [3]. However, the scale of change in
SSA is unprecedented: by 2050, the urban areas will have to absorb nearly 900 millions of
new dwellers [2], transforming the surface of the continent. A major difference from the
experience of Europe or the United States is that the urbanization of SSA is occurring at
low levels of per capita income, and in countries which are vulnerable to the global econ-
omy [3]. Since the beginning of the 1980s, trade liberalization, and structural adjustment
programs led to the deterioration of the living conditions in the urban areas of SSA, a lack
of public infrastructures and services and the rise of the informal sector [4–6]. Although
urban environments have been associated with a lower disease burden at the global or
regional scales [7–9], rapid and unplanned urban growth in a context of urban poverty is
the source of many health hazards: indoor and outdoor air pollution, unsafe water, lack of
sanitation structures, vector-borne diseases or physical hazards (traffic, accidental fires,
floods) [6,10–12]. Additionally, urbanization is still one of the primary driver of habitat
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and biodiversity loss [13]. Environment degradation can occur far beyond the local scale
through sewage contamination, rivers pollution, unregulated burning emissions, or indus-
trial pollution [6]. Up-to-date and accurate geographic information on the urbanization
dynamics is essential to understand the phenomenon, model its causes and anticipate its
future consequences.

Traditionally, urbanization studies have been based on census data published by each
country [1]. Beyond data availability issues, the definition of what constitutes an urban
area is not consistent over both spaces and time. In Angola, a locality with 2000 inhabitants
is classified as urban, whereas the threshold would be 10,000 in Benin [3]. When, in the
1980s, China lowered the threshold to qualify a locality as urban, a massive increase in the
urbanization has been observed—although only caused by administrative changes [3,14].
In this context, satellite remote sensing enables the study of the urbanization process in
its physical dimension through the detection of built-up areas at different periods [15].
The increasing availability of open satellite imagery datasets [16]—together with the re-
duction of the computing costs, allowed the production of several global built-up maps:
GlobCover [17] or MOD-500 [18] in the 2000s, and, more recently, the Global Human
Settlement Layer [19], the Global Land Cover [20], or the Human Built-up and Settlements
Extent [21]. Those datasets have supported studies in a wide range of fields such as popu-
lation mapping, urban planning, disease burden estimation, resource allocation, disaster
management or environmental impact assessment [9,22–24]. In parallel, numerous studies
made use of satellite imagery to analyze urbanization dynamics at the local scale [25–28].
For instance, Angel et al. [29] mapped and analyzed the evolution of the urban extent of
200 cities between 1990 and 2014, and Schneider and Mertes [30] identified multi-temporal
urban land extents in 142 Chinese cities between 1978 and 2010.

Still, despite decades of scientific progress, the detection of built-up areas remains
a challenge because of the intraurban and interurban heterogeneity that characterizes
the urban environment [31,32]. Classifications based on optical sensors are characterized
by lower accuracies in urban areas located in arid or semi-arid climates because of the
spectral confusion occurring between bare soil and built-up elements [33–35]. Low-income
countries also suffer from a lack of reference datasets in both quantity and quality, inducing
higher rates of misclassifications [36] or omissions of rural and suburban settlements.
Today, the growing availability of geographic data brings new opportunities to tackle
the aforementioned issues. Combining optical imagery with Synthetic Aperture Radar
(SAR) backscattering can lead to a better separation between bare soil and built-up [37–41].
Likewise, the lack of reference datasets from government or commercial agencies can be
compensated by the use of crowd-sourced geographic databases [42], such as its most
prominent project OpenStreetMap (OSM) [43,44], in order to support the training of the
classification models [45–47]. Started in 2004, the OSM project follows the collaborative
model of Wikipedia to create a map of the world whose data is free to use or edit. Because
of its model based on user contributions and the reliance on multiple data sources (satellite
images, partial datasets from government and commercial agencies, etc.), OSM can be
characterized by specific data availability and quality issues [48]. The reliability of the
database can be low depending on the region of interest: as a matter of fact, Europe and
North America were the main focus of the project until recently. Before 2014, data located
in Africa accounted for only 2% of the database (440 MB) (according to the Geofabrik
download repository.). However, the uneven spatial distribution of OSM data was partially
mitigated: between 2014 and 2018, 11% of the contributed data was located in Africa.
As a result, the share of Europe and North America in the database was lowered from
81% to 73% between 2014 and 2018, and the size of the OSM database for Africa has been
multiplied by 10 since 2014 (4.5 GB in January 2021). This increasing amount of geographic
data available for free is an opportunity for scientists working on data-scarce developing
regions such as SSA.

The purpose of this study is twofold. The first objective is to produce a reliable
multi-temporal dataset of built-up maps for a sample of 45 urban areas in Sub-Saharan
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Africa at 5 different dates: circa 1995, 2000, 2005, 2010 and 2015. By leveraging both
multi-sensor data fusion to improve built-up detection and the integration of OSM data to
support the training of the classification models, we propose an automated and low-cost
approach which may be appropriate at larger scales. In this paper, we present and assess the
proposed methodology and discuss its limitations. The final aim is to provide a preliminary
interpretation of the results obtained, through the analysis of built-up expansion and its
relationship with population growth.

2. Material and Methods
2.1. Case Studies

The most consistent spectral characteristic of all urban areas in the world is their
heterogeneity [32]. Because of environmental, historical, or cultural variations, a method
developed for a given urban area is not guaranteed to be effective in another. As a
matter of fact, a built-up area in the periphery of Kampala (Uganda, tropical rainforest)
is a completely different spectral object than a settlement in the city center of Gao (Mali,
hot desert). Likewise, urbanization rates and history differ according to the demographic,
economic, and political dynamics of a given urban area.

The objective of the selection step was to ensure that various types of urban areas
were represented for both the validation of the built-up classification method and the multi-
temporal analysis of the urbanization dynamics. The sample of 45 case studies, shown in
Table 1, has been selected to maximize the diversity in terms of climate, population size,
topography, and economy.

Table 1. Climate, topography and population estimates of each case study. Values are aggregated
for the area of interest of each case study, i.e., the 20 km rectangular buffer around the city centers.
Climate data are derived from the Koppen–Geiger classification [49]. Mean slope and elevation are
computed from the Shuttle Radar Topographic Mission (SRTM) 30 m [50]. Population is estimated
using the AfriPop/WorldPop dataset [51,52].

City (Country) Population Climate Elevation Slope

Antananarivo (MDG) 2,454,009 Subtropical highland 1319.6 m 14.8%
Bouake (CIV) 836,441 Tropical savanna 290.7 m 6.1%
Brazzaville (COG) 7,858,583 Tropical savanna 327.3 m 9.8%
Bukavu (COD) 1,068,012 Tropical savanna 1756.1 m 22.8%
Chimoio (MOZ) 457,422 Humid subtropical 612.6 m 8.3%
Dakar (SEN) 3,308,199 Hot semi-arid 12.5 m 2.3%
Dodoma (TZA) 481,263 Hot semi-arid 1139.9 m 6.6%
Freetown (SLE) 1,196,714 Tropical monsoon 121.0 m 5.4%
Gao (MLI) 161,019 Hot desert 272.1 m 4.5%
Ikirun (NGA) 1,323,133 Tropical savanna 394.7 m 8.1%
Iringa (TZA) 252,164 Humid subtropical 1576.9 m 10.3%
Johannesburg (ZAF) 4,816,594 Subtropical highland 1611.0 m 7.5%
Kabwe (ZMB) 255,667 Humid subtropical 1168.7 m 3.7%
Kampala (UGA) 3,477,053 Tropical rainforest 1171.0 m 7.5%
Kaolack (SEN) 447,639 Hot semi-arid 14.2 m 3.9%
Katsina (NGA) 1,019,434 Hot semi-arid 495.5 m 4.2%
Kayamandi (ZAF) 1,291,104 Warm-summer med. 281.2 m 16.8%
Kinshasa (COD) 8,265,198 Tropical savanna 319.6 m 9.1%
Kisumu (KEN) 1,183,345 Tropical rainforest 1292.6 m 6.9%
Libreville (GAB) 744,131 Tropical monsoon 18.2 m 4.8%
Lusaka (ZMB) 2,557,066 Humid subtropical 1216.4 m 4.4%
Mbeya (TZA) 665,390 Subtropical highland 1791.6 m 20.0%
Mekele (ETH) 452,457 Hot semi-arid 2143.1 m 15.5%
Monrovia (LBR) 1,381,459 Tropical monsoon 16.8 m 2.9%
Nairobi (KEN) 5,175,740 Temperate oceanic 1738.6 m 7.9%
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Table 1. Cont.

City (Country) Population Climate Elevation Slope

Ndola (ZMB) 637,717 Humid subtropical 1289.0 m 5.1%
Nelspruit (ZAF) 164,982 Humid subtropical 853.9 m 16.4%
Nzerekore (GIN) 339,140 Tropical savanna 468.3 m 11.2%
Obuasi (GHA) 375,931 Tropical savanna 196.4 m 12.0%
Okene (NGA) 983,744 Tropical savanna 298.9 m 9.5%
Onitsha (NGA) 2,593,562 Tropical savanna 74.6 m 5.9%
Ouagadougou (BFA) 2,239,604 Hot semi-arid 306.5 m 3.8%
Owo (NGA) 427,986 Tropical savanna 271.7 m 7.7%
Pietermaritzburg (ZAF) 617,133 Temperate oceanic 867.6 m 15.2%
Pietersburg (ZAF) 205,025 Hot semi-arid 1303.5 m 5.1%
Saint-Louis (SEN) 297,477 Hot desert 5.9 m 2.0%
San Pedro (CIV) 113,641 Tropical savanna 31.1 m 7.3%
Shaki (NGA) 395,163 Tropical savanna 393.3 m 5.6%
Tamale (GHA) 498,597 Tropical savanna 148.4 m 5.3%
Toamasina (MDG) 333,439 Tropical rainforest 45.4 m 7.6%
Tulear (MDG) 305,710 Hot desert 82.7 m 9.1%
Umuahia (NGA) 1,450,588 Tropical monsoon 104.2 m 7.9%
Windhoek (NAM) 383,456 Hot desert 1819.4 m 16.5%
Yamoussoukro (CIV) 358,063 Tropical savanna 196.7 m 6.1%
Ziguinchor (SEN) 293,083 Tropical savanna 14.9 m 3.9%

2.2. Data Acquisition and Preprocessing

In order to cover the entire 1995–2015 period with both optical and SAR images,
data were acquired from seven different sensors: Landsat 5 TM (125 products), Landsat
7 ETM+ (66), Landsat 8 (60), ERS-1&2 (127), Envisat (54) and Sentinel-1 (49), that is,
481 scenes in total. Characteristics of each sensor are detailed in Table 2. As shown in
Figure 1, the coverage was far from being complete. Both optical and SAR were only
available in 71% of cases. Overall, the coverage is lower as we go back in time. Thanks to
the systematic global acquisition approach of today’s satellites such as Landsat 8 or Sentinel-
1, coverage was complete in 2015. In the past, global acquisitions were not systematic. For
instance, only 6% of the scenes in the Landsat 5 TM catalog are over Africa, against 12% for
Landsat 7 ETM+ [53]. This left many African locations without any Landsat acquisition
before 1998, and a similar issue is observed with the catalogues of ERS-1&2 or Envisat.
Cloud cover above tropical areas was also a major issue. As a matter of fact, the average
cloud cover of the Landsat acquisitions over Kinshasa was 76%. Across the entire catalog,
only 5 scenes with a cloud cover less than 10% were available over Kinshasa, and none
before 2000. The issue was partially mitigated by the use of SAR acquisitions, which are
not sensitive to cloud cover or weather variations.
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Figure 1. Availability of optical and Synthetic Aperture Radar (SAR) imagery for each case study.
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The partial availability of historical satellite imagery over Africa requires a thorough
imagery selection process. Three main criteria were taken into account: (1) the image
quality, especially in terms of cloud cover, (2) the temporal distance between the optical
and the SAR acquisitions, and (3) the seasonal distance between the acquisitions of a given
case study for multi-temporal comparability. The automation of the imagery selection
and acquisition were allowed by open-source software such as sentinelsat to access the
Copernicus Open Access Hub [54], pylandsat to access the Google Cloud Landsat Public
Dataset [55], and asarapi to access the ESA Online Catalog [56].

Table 2. Characteristics of the sensors used in the study.

Sensor Type Period Resolution

ERS-1 SAR 1991–2000 25 m
ERS-2 SAR 1995– 25 m
Sentinel-1 SAR 2014– 10 m
Landsat 5 TM Multi-spectral 1984–2012 30 m
Landsat 7 ETM+ Multi-spectral 1999– 30 m
Landsat 8 OLI Multi-spectral 2013– 30 m

Landsat scenes were acquired as Level-1 data products, thus radiometrically calibrated
and orthorectified. SAR products were acquired as Ground Range Detected (GRD) Level-1
products, therefore multi-looked and projected to ground range using an Earth ellipsoid
model. SAR imagery preprocessing was performed using the Sentinel Application Platform
(SNAP) [57], including the following steps: (1) orbit files updating, (2) calibration to σ
nought, (3) Range-Doppler terrain correction [58], (4) spatial subset over the area of interest,
and (5) 2% histogram cutting. Finally, scenes were co-registered and resammpled to the
minimum spatial resolution (i.e., the spatial resolution of the SAR image) in order to allow
for a pixel-based classification.

Geographic extracts of the OSM database were acquired from the Geofabrik website
(http://download.geofabrik.de) in May 2019 and imported into a local PostGIS database.
Four categories of OSM objects were then extracted for each case study: (1) highway poly-
lines (the road network), (2) landuse, leisure, and natural polygons (potential non-built-up
training samples), (3) building polygons (built-up training samples), and (4) natural=water
polygons to allow the creation of a land mask. Once again, as shown in Figure 2, some
urban areas in SSA suffer from low data availability. No buildings footprints were available
in Okene, Shaki, or Owo. Likewise, only a few building footprints were available for
several urban areas with more than 1 million inhabitants such as Umuahia, Katsina, Ikirun
or Onitsha. On the contrary, road segments were available for all the case studies. For
instance, at least 70 km of roads were extracted for small urban areas such as Toamasina,
Tulear, San Pedro or Gao.

2.3. Definitions

Potere and Schneider [59] stated the need for an uniform definition of what constitutes
a built-up area. However, since then, no consensus has been reached in the field of
urban mapping. This leads to high variations in the global measure of built-up areas.
For instance, the global extent of built-up areas is estimated to be 3,524,109 km2 according
to the Global Rural Urban Mapping Project (GRUMP), 308,007 km2 in the Global Landcover
2000 (GLC00), and 774,000 km2 in the Global Human Settlement Layer (GHSL) [59,60].

Schneider et al. [61], Mertes et al. [62] defined a built-up area as a location dominated
by constructed surfaces—in other words, surfaces that are covered by at least 50% of
constructions, including asphalted roads. However, such a definition may lead to the
omission of a large amount of built-up areas. Figure 3 shows the percentage of buildings in
a grid of 30 × 30 m2 cells, which is the spatial resolution of a Landsat image. According
to the aforementioned definition, only 4 pixels out of 100 would be classified as built-up,

http://download.geofabrik.de
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that is 4% of the area of interest. Such a high threshold can only imply the omission of most
of the suburban and rural settlements. To overcome the issue, the GHSL defined built-up
as a continuous measure corresponding to the proportion of building footprint area within
the total size of a cell [60]. That would correspond to a built-up value equal to 18% over the
area of interest. However, because of the complexity of the urban environment, quantifying
the proportion of buildings in a given pixel is not a solved problem in urban remote sensing.
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Figure 2. Availability of OpenStreetMap (OSM) building footprints (total surface in hectares) and roads (total length in
kilometers) for each case study.

Figure 3. Percentage of Built-Up Areas per 30 m pixel in a suburban area of Lusaka, Zambia.

In the end, in the context of a supervised classification based on satellite imagery,
the definition of a built-up area is limited by (1) the abilities of the sensor, and (2) the training
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and validation samples that can be collected. In this study, the use of binary training
samples from OSM (built-up or non-built-up) required a binary definition. However,
to allow the detection of suburban and rural settlements, the threshold was set to 25%
instead of 50%. Furthermore, because of the combined use of optical and SAR data, built-
up elements only included elevated constructions—thereby excluding roads and other
paved surfaces.

2.4. Classification of Built-Up and Non-Built-Up Areas

The classification of built-up areas for each case study and each data consists of: (1) the
collection of both built-up and non-built-up training samples from OSM, (2) the filtering of
the samples extracted from OSM for historical periods, (3) the extraction of features from
both optical and SAR imagery, and (4) a pixel-based supervised classification based on
the Random Forest (RF) algorithm. The implementation of the processing chain (source
code available on Github: https://github.com/yannforget/maupp) was based on Python
and various scientific libraries such as NumPy [63], SciPy [64], Rasterio [65], Shapely [66],
Scikit-Learn [67], and Pandas [68].

Both built-up and non-built-up training samples were extracted from the OSM database,
as proposed and detailed in a previous publication [45]. Built-up training samples consisted
of building footprints and urban blocks derived from the road network. Non-built-up
training samples comprised a variety of natural, landuse or leisure features satisfying one
of the following value: sand, farmland, wetland, wood, park, forest, nature reserve, golf
course, greenfield, quarry, pitch, scree, meadow, orchard, grass, grassland, garden, heath,
bare rock or beach. Since the availability of these features were not consistent across the
case studies, additional non-built-up samples were randomly selected in areas without
any building footprint or road segment in a 250 m buffer. Overall, the wide availability
of roads in the OSM database allowed the collection of both built-up and non-built-up
training samples in the entire set of case studies. Figure 4 shows a sample of the training
dataset used for the classification of Nairobi, Kenya.

Figure 4. Training samples collected from OSM in Nairobi, Kenya. (a) Aerial view of the area of interest, courtesy of Goole
Earth; (b) built-up (red) and non-built-up (green) training samples over the same area of interest.

Grey-Level Co-Occurence Matrix (GLCM) textures were computed with a 7 × 7 win-
dow size, an interpixel distance of 1 and 32 levels of quantization using the Orfeo Tool-
box [69], according to the recommendations of previous studies [37,40,70]. GLCMs were
constructed in four direction angles (0◦, 45◦, 90◦, and 135◦) and averaged. In the case

https://github.com/yannforget/maupp
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of Sentinel-1 imagery, for which two polarizations were available (VV and VH), textures
were computed independently for each polarization. For each polarization, 18 textures
were extracted: energy, entropy, correlation, inertia, cluster shade, cluster prominence,
Harralick correlation, mean, variance, dissimilarity, sum average, sum variance, sum en-
tropy, difference of entropies, difference of variances, information measures of correlation
1&2. That is, 36 features in the case of Sentinel-1, or 18 features in the case of ERS-1&2
or Envisat for which only one polarization was available. In order to reduce the high
dimensionality of the SAR feature space, a Principal Component Analysis (PCA) was
performed for each polarization. Since only the first six PCA components were retained,
this reduced the feature space from 36 to 12 dimensions in the case of Sentinel-1, or from 18
to 6 dimensions in the case of ERS1&2 and Envisat.

The feature space of the classification depended on the year and the availability of
satellite imagery. In 2015, the availability of Sentinel-1 allows the use of GLCM textures
computed for two different polarizations, which led to a feature space of 20 dimensions
(12 PCA components and 8 Landsat bands). For earlier periods, the number of dimensions
was lower: 14 (6 PCA components, 8 Landsat bands), 6 in cases where only SAR imagery
was available, or 8 if only Landsat was available. A subset of those features is shown in
Figure 5 for Ouagadougou, Burkina Faso.

Figure 5. Subset of three features over the same area of interest in Ouagadougou, Burkina Faso: (a) aerial view of the area of
interest, courtesy of Google Earth, (b) Near Infrared Landsat band, (c) Sentinel-1 VH 7 × 7 Grey-Level Co-Occurence Matrix
(GLCM) Mean, (d) Sentinel-1 VV 7 × 7 GLCM Dissimilarity.

The classification task was performed using the RF classifier which has been shown
to be effective in the classification of multisource and multimodal data [71–73]. The RF
ensemble was constructed with 100 trees and a maximum number of features per tree equal
to the square root of the total number of features—as suggested in previous studies [72].
Additionally, imbalances in the training dataset were mitigated by performing a random
over-sampling of the minority class [74].

In earlier periods (circa 2010, 2005, 2000, and 1995), built-up training samples extracted
from the OSM database require further analysis. The OSM database does not include any
information on the construction date of a building or a road segment. In a context of
high urban growth, a significant amount of the extracted built-up samples are not guar-
anteed to be valid for earlier periods. Therefore, a filtering step was applied, by making
use of a classification model fitted on the satellite imagery of 2015. This intermediary
model was fitted with a simplified feature space composed of features available in both
cases. In order to reduce the influence of atmospheric and illuminations variations [75],
four spectral indices were used in place of the raw Landsat bands: the Normalized Differ-
ence Vegetation Index (NDVI), the Normalized Difference Bareness Index (NDBal) [76],
the Normalized Difference Built-Up Index (NDBI) [77], and the Modified Normalized
Difference Water Index (MNDWI) [78]. Additionally, a set of four GLCM textures with
high significance but low correlation were selected: energy, mean, dissimilarity, and cluster
shade. OSM training samples and the 8 aforementioned features from 2015 were used to fit
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the classification model. In earlier periods, built-up training samples were filtered based
on this intermediate prediction.

2.5. Post-Processing

Two successive post-processing routines were applied on the probabilistic output of
the RF classifier: (1) a spatial filter based on a mean filter, and (2) a temporal filter.

At medium and higher spatial resolutions, pixel-based image classifications tend
to produce noise—also known as the “salt and pepper” effect. This can be overcome
by integrating spatial features such as GLCM textures at the classification step, or by a
refinement of the classified image. Filtering-based approaches are the most widely used
classification post-processing methods [79]. They are based on a moving window where
the value of the central pixel is determined by considering the values of all pixels within
it. For this study, RF class probabilities were post-processed using a simple mean filter
with a 3 × 3 window size. This allowed a partial removal of noise, illumination artifacts,
and roads.

Moreover, single-date classifications may be characterized by high uncertainties due
to sensor-specific issues, acquisition conditions, or spectral confusions. This can lead to
unreasonable land cover changes that can be easily identified using a temporal consistency
check [25]. Therefore, under the assumption that the transition from built-up to non-
built-up is not likely in a context of urban expansion [25,30], a temporal filtering was
also applied on the RF class probabilities. In our case, we focused on two unreasonable
trajectories: (1) pixels classified as built-up in a given year and as non-built-up in the
future, and (2) pixels classified as non-built-up and as built-up in the past. For the pixels
concerned by one of the aforementioned state, the original value was replaced by the
average probability between (1) the year of interest and the last year, or (2) the first year and
the year of interest. Equations (1) and (2) summarize the procedure applied in both cases:

Probt =
tmax

∑
i=t

Probi
1

(tmax − t)
(1)

Probt =
t

∑
i=tmin

Probi
1

(t − tmin)
(2)

where Probt is the modified probability, t the time step of interest, tmin the earliest time
step, and tmax the latest. In practice, this allowed for a conservative filtering of the most
obvious inconsistencies without over-estimating the built-up expansion dynamics.

2.6. Validation

The performance of the classification models was assessed using two different ap-
proaches: (1) an assessment based on independent validation samples collected from
Google Earth, and (2) a K-fold cross-validation (CV) based on the training dataset ex-
tracted from OSM. Manual digitizing of samples from very high resolution imagery is
work-consuming, therefore the first approach was carried out for a representative subset
of 17 case studies: Antananarivo, Bukavu, Chimoio, Dakar, Dodoma, Gao, Johannes-
burg, Kampala, Katsina, Kinshasa, Nairobi, Okene, Onitsha, Ouagadougou, Saint-Louis,
Umuahia and Windhoek. Furthermore, samples were only collected for the periods avail-
able in the Google Earth’s historical imagery catalog. To assess the accuracy of the binary
built-up maps produced by the method, three metrics were computed: F1-score, precision
and recall.

In parallel, K-fold CV was used to estimate the performance of all the classification
models. The training dataset extracted from OSM was divided into k = 10 folds of ap-
proximately equal size, with each fold being used as a validation set against the remaining
k − 1 folds. In a spatial context, spatial autocorrelation must be accounted for in order to
not over-estimate the performance of the model [80]. Therefore, folds were not randomly
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produced but originated from the spatial clustering of the training samples using the
K-Means algorithm. Two metrics were computed in each case: the average F1-score over
the ten iterations of the CV, and its standard deviation.

2.7. Measuring and Characterizing Urban Expansion

To measure the growth of built-up areas, compound annual growth rates (CAGR)
were calculated according to the following equation:

CAGR(t0, t1) = (
Builtupt1

Builtupt0

)
1

t1−t0 − 1 (3)

with t0 and t1 being the initial and final years, and Builtupy the total surface covered by
built-up areas in a given year y.

The expansion of built-up areas is a complex phenomenon that cannot be understood
without analyzing it in its spatial dimension. In other words, depending on where the
expansion occurs, the environmental, social, or economic consequences differ. Based on
the approach proposed in the Atlas of Urban Expansion [29], newly built-up areas for
each period were divided into three categories: (1) infill, i.e., areas already included in
an existing urban cluster, (2) extension, i.e., areas extending an existing urban cluster in
a contiguous way, and (3) leapfrog, i.e., areas unattached to any existing urban cluster—an
urban cluster being defined as the contiguous space that contains built-up areas less than
200 m apart. Figure 6 provides a schematic example of the procedure. As shown in
Equation (4), compound annual sprawl rates (CASR) were calculated by ignoring infill
change. This allowed to only take into account changes which increased the extent of the
urban area, as opposed to the densification process of the infill change.

CASR(t0, t1) = (
Leap f rog(t0,t1)

+ Extension(t0,t1)

Builtupt0

)
1

t1−t0 − 1 (4)

Another fundamental aspect of built-up expansion is its relationship with population
growth. Per-pixel population estimates for circa 2015, c. 2010, c. 2005 and c. 2000 were
acquired from the Worldpop project [52]. The built-up areas density for a given area
of interest was defined as the ratio between the total surface of the built-up areas and
the population estimates over the same area of interest. Additionally, sprawl per new
dweller (SD, Equation (5)) was computed to measure the urban extent’s extension for each
new dweller.

SD(t0, t1) =
Leap f rog(t0,t1)

+ Extension(t0,t1)

Popt1 − Popt0

(5)

Figure 6. Schematic example of characterizing newly built-up areas in 200 m grid cells: (left) built-up areas (in black) and
initial urban clusters boundaries (in purple) at tinitial , (middle) built-up areas at t f inal , and (right) characterized newly
built-up areas (existing in black, infill in blue, extension in green, leapfrog in red).
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3. Results
3.1. Assessment of the Classification Models

Table 3 presents the F1-scores obtained in the 17 case studies for which an independent
validation dataset was collected (additionally, results can be explored and downloaded
through the project website: https://maupp.ulb.ac.be/page/wp1results/). Across the
32 classifications, the average F1-score reaches 0.93 and ranges from 0.81 (Kinshasa) to
0.98 (Saint-Louis). From the entire set, Bukavu and Kinshasa reached the lowest scores.
In Bukavu, the classification model appears to have been affected by the landscape—highly
mountainous and densely vegetated. Most of the misclassifications occurred in high
slope areas that SAR sensors confused with built-up areas. Overall, the average F1-score
decreases as we go back in time: 0.94 in 2015, 0.93 in 2010, 0.92 in 2005, and 0.92 in 2010.
This suggests that the classification method is less efficient for past periods, due to missing
satellite imagery, lower quality sensors, or less training samples. This observation is also
attested by the results of the CV, with a mean score of 0.95 in 2015, 0.92 in 2005, and 0.90 in
1995. Likewise, CV standard deviation was, on average, higher in 1995 (4.8 points) than in
2015 (3.3 points).

The comparison of the classification results with the GHSL (year 2015) reveals that
both datasets reach a similar estimate of the total surface occupied by built-up areas across
all the case studies: 6295 km2 against 6662 km2 according to the GHSL. The two datasets
reach a mean agreement of 0.95. However, large differences are observed among some case
studies. Figure 7 shows the built-up areas maps from both datasets in Chimoio and Obuasi,
where the highest variations occur. In Chimoio, the GHSL predicts 13.3 km2 of built-up
areas against 101.5 km2. Most of the disagreement occurs in the periurban area, where the
GHSL classifies low density residential areas as non-built-up. On the contrary, the GHSL
estimates the built-up areas of Obuasi to reach 113.6 km2, compared to 62.9 km2 in our
results. Here, most of the disagreement occurs in bare lands, where the optical sensor used
by the GHSL confuses with built-up areas. Thanks to the combined use of both optical and
SAR sensors, the proposed methodology appears as less sensitive to the issue.

Figure 7. Comparison with the Global Human Settlement Layer (GHSL) in Chimoio, Mozambique and Obuasi, Ghana:
(a) Aerial view of Chimoio, courtesy of Google Earth; (b) GHSL built-up areas (in red); (c) computed built-up areas (in red);
(d) Aerial view of Obuasi, courtesy of Google Earth; (e) GHSL built-up areas (in red); (f) computed built-up areas (in red).

https://maupp.ulb.ac.be/page/wp1results/
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Table 3. F1-scores obtained by a sample of case studies based on an independent validation dataset.

Case Study 2000 2005 2010 2015

Antananarivo . 0.88 . 0.93
Bukavu . 0.87 0.87 0.87
Chimoio . 0.91 . 0.95
Dakar . 0.91 . 0.96
Dodoma . . . 0.95
Gao 0.90 . . 0.93
Johannesburg . 0.95 . 0.95
Kampala . 0.92 . 0.94
Katsina 0.92 . . 0.97
Kinshasa . 0.90 . 0.81
Nairobi . . 0.97 0.95
Okene . . . 0.97
Onitsha . . . 0.96
Ouagadougou 0.94 . 0.94 0.95
Saint-Louis . 0.97 . 0.98
Umuahia . . . 0.94
Windhoek . 0.95 . 0.91

3.2. Growth Rates of Built-Up Areas

Over all the case studies, the CAGR of built-up areas between 1995 and 2015 was 5.5%.
This is a significant increase compared to the estimate of 2.3% reported by the GHSL over
the same areas of interest. As previously stated, most of the disagreement between the
two datasets occurs in periurban and rural areas, leading to high variations in terms of
growth rates. However, the result is consistent with the one obtained in the Atlas of Urban
Expansion which estimated an average CAGR of 5.1% for urban areas in SSA. Considering
the population growth rates of SSA, the number appears lower than expected. For instance,
according to the Atlas of Urban Expansion, the urban areas of the United States averaged a
similar CAGR (5%) between 1990 and 2000.

As shown in Figure 8, there is a relationship between the size of an urban area and its
growth rates. In terms of built-up areas, the ten largest case studies were: Johannesburg,
Kinshasa, Nairobi, Ouagadougou, Kampala, Dakar, Monrovia, Kayamandi, Libreville,
and Pietermaritzburg—all of them have a CAGR lower than 4%. On the contrary, smaller
urban areas appear to grow faster. The categorization of the case studies based on the size of
their population leads to a similar conclusion: the average CAGR of built-up areas is 3.2% in
large urban areas (more than 1,000,000 inh. in 2000), 4.6% in medium urban areas (between
500,000 and 1,000,000 inh.) and 5.4% in the small ones (less than 500,000 inh.). In large
urban areas, the CAGRs are affected by the lack of available space, displacing the growth
towards nearby peri-urban or rural areas uncovered by our areas of interest. Likewise,
lower CAGRs are observed in urban areas constrained by the natural environment (Dakar,
Libreville, Monrovia, Freetown).

Analyzing the newly built-up areas with respect to their spatial context delivers
another dimension of urban expansion. Figure 9 shows, for each case study, the share
of each expansion type: infill, extension or leapfrog. Overall, infill expansion reaches an
average share of 41%. However, large variations are observed across the case studies.
In some large urban areas such as Dakar, Monrovia, Johannesburg or Nairobi, more than
60% of the growth actually occurs inside the existing urban extent. On the contrary, in small
urban areas such as Saint-Louis, Owo, or Kaolack, infill expansion makes up for less than
20% of the total growth. Data aggregation based on the size of the urban area confirms the
trend: on average, the share of infill expansion reaches 54% in large urban areas, 44% in
medium-sized urban areas, and 35% in the small ones. In other words, the sprawl’s share
(infill and extension) is higher in smaller urban areas. Defining sprawl as the combination
of extension and leapfrog—or, in other words, as the newly built-up areas that increase the
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urban extent—allows the calculation of annual sprawl rates. In small and medium-sized
urban areas, the average annual sprawl rate reaches respectively 4.1% and 3.4%, whereas it
is only 2.1% in large urban areas.
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Figure 8. Total surface of built-up areas in 2000 and annual built-up areas growth rates between 2000 and 2015 for each case
study. Johannesburg (725 km2 of built-up areas, annual growth rate of 1.1%) and Onitsha (missing data) are excluded from
the graph.
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3.3. Population Densities of Built-Up Areas

Over the case studies, the population density reaches an average of 11,031 people
per km2 of built-up area in 2015. This is consistent with the results from the Atlas of Urban
Expansion, which estimated the average density of Sub-Saharan African urban areas to be
12,000 people per km2. As expected, the population density of built-up areas is decreasing:
from 16,113 people per km2 in 2000 to 11,030 in 2015, for a CAGR of −2.5%. However,
as shown in Figure 10, the dynamics of population density differ depending on the size
of the urban area. The density of small and medium-sized urban areas is decreasing
at a higher rate than in large urban areas, where density is more stable. Furthermore,
the observed densities are still considerably higher than in Europe (5000 people per km2)
or in North America (2200 people per km2).
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Figure 10. Evolution of population densities in built-up areas (people per km2) between 2000 and
2015 for small (less than 500,000 people in 2000), medium (between 500,000 and 1,000,000 people),
and large cities (more than 1,000,000 people).

On the global scale, the population densities in built-up areas of a given country
depend on its income class [29]. Figure 11 shows that a similar relationship is observed
across our case studies. The density of urban areas located in higher income countries—
such as Johannesburg, Pietersburg, Nelspruit, Libreville, or Windhoek, do not exceed
6000 people per km2. On the contrary, higher densities are observed in lower income
countries, especially in urban areas constrained by their natural environment (Dakar,
Antananarivo, Bukavu, Kinshasa). On average, the density in low and lower-middle
income urban areas is 12,295 people per km2, whereas it is only 4348 people per km2 in
upper-middle income countries. Likewise, population size seems to affect the observed
densities: large and medium-sized urban areas are, on average, 64% more dense than small
urban areas.

Table 4 summarizes the previous observations by aggregating the sprawl per new
dweller—that is, how much the urban extent is increased for each new inhabitant, with re-
spect to population size and income class. Those numbers reveal the high heterogeneity
that characterizes the dynamics of urban expansion in Sub-Saharan Africa. According to
our results, the amount of sprawl for one new dweller in small urban areas of upper-middle
income countries (Nelspruit, Pietersburg) is 14 times higher than in low-income large urban
areas (Kinshasa, Ouagadougou, Kampala, Dakar, Antananarivo).
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Figure 11. Relationship between population densities in built-up areas (people per km2) and GDP per capita ($ per people)
of the country in 2015.

Table 4. Sprawl per new dweller (m2 per people) between 2000 and 2015 depending on the size
of the urban area and the country’s income class (in brackets the number of case studies). Income
classes are from the WorldBank’s classification. Population size classes: small (less than 500,000 inh.),
medium (between 500,000 and 1,000,000 inh.) and large (more than 1,000,000 inh).

Income Class
City Size Small Medium Large Mean

Low 141.62 (12) 33.62 (3) 37.04 (5) 99.28 (20)
Lower-Middle 157.70 (8) 92.80 (6) 89.04 (2) 124.78 (16)
Upper-Middle 522.90 (3) 153.03 (2) 107.19 (2) 298.45 (7)

Mean 196.95 (23) 87.61 (11) 64.19 (9)

4. Discussion

Studying urbanization dynamics in their spatial dimension requires reliable, accurate
and consistent multi-temporal maps of built-up areas. To provide insights for large-scale
mapping of urban expansion, we leveraged the increasing availability of (1) open-access
satellite imagery datasets from both optical and SAR sensors, and (2) crowd-sourced
geographic information databases. Those decisions imply their own set of strengths
and weaknesses.

Multi-sensor data fusion allowed better classification performances in arid and semi-
arid regions, where moderate resolution optical sensors suffer from the spectral confusion
between bare soil and built-up areas. In case studies located in an arid climate (Gao,
Saint-Louis, Windhoek, and Tulear), the total surface of the detected built-up areas was
50% higher than in the GHSL. Additionally, SAR imagery allowed better data availabil-
ity in tropical areas where a very low amount of optical products is available due to
cloud cover. However, the use of data produced by seven different sensors (Landsat OLI,
Landsat ETM+, Landsat TM, ERS-1&2, Envisat and Sentinel-1) also means varying spa-
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tial resolutions, spectral ranges, polarizations and incidence angles. Those variations are
translated into inconsistencies regarding the physical objects that are detected as built-up
areas. For instance, roads were not included in our definition of a built-up area. However,
the largest asphalted roads were occasionally classified as such when SAR data was not
available to discriminate them based on ground texture. Moreover, previous studies have
shown that the delineation of built-up areas with SAR largely depends on its spatial resolu-
tion, polarizations and incidence angles [81]. To tackle the issue, the proposed methodology
relies on single-date supervised classifications—in other words, one classification model for
each combination of date and location. Post-processing of the resulting classifications also
participates in harmonizing the multi-temporal stack of maps. Still, those inconsistencies
propagates to the final results. For instance, higher annual growth rates have been observed
between 2010 and 2015 than between 2000 and 2010, which suggests that built-up areas
could have been either over-estimated or better detected because of the use of Sentinel-1.

Relying on OSM to collect both built-up and non-built training samples enabled the
complete automation of the methodology. Thanks to the efforts of many contributors
across the world, more and more building footprints are available. This allowed higher
rates of detection in peri-urban areas. However, for historical periods, training samples
extracted from OSM must be filtered in order to drop areas that were not constructed at
the time. In the process, learning information is lost compared to circa 2015. Furthermore,
ambiguous samples corresponding to rural or peri-urban settlements may be erroneously
dropped in the process. Consequently, classification performances are lower as we go
back in time, and low density built-up areas may suffer from higher rates of omission.
Apart from the aforementioned issues, data available in OSM is not exhaustive, thereby
training samples are not guaranteed to be representative of the complex urban mosaic
in a given city. For instance, most of the built-up area samples in Katsina, Lusaka and
Johannesburg were located in the city center and in the densest neighborhoods. This led
to an under-representation of low density and vegetated suburban areas, and therefore
higher rates of omissions in these areas. In the end, those issues may have induced an
over-estimation of urban growth.

Despite the reported uncertainties, the results of the present study are consistent with
the findings of the Atlas of Urban Expansion [29]. Urbanization is not uniform across
Sub-Saharan Africa, and urbanization rates reported at the regional or national scale can
have little meaning at the local scale. Across the case studies, built-up areas averaged
a CAGR of 4.8% between 2000 and 2015, with high variations depending on the size of
the urban area: from an average of 3.2% in large urban areas to 5.4% in the smaller ones.
Despite the common assumption that built-up areas grow at higher rates than the urban
population [29], the average CAGRs of built-up areas were not that far from the urban
population annual growth rate of 4.1% reported by the UN for the region [1]. This suggests
that the common assumption that cities are expanding their territories faster than their
populations [29] is not ubiquitous in Sub-Saharan Africa. In fact, in the context of this
study, population densities in built-up areas did not decrease between 2000 and 2015 in
urban areas such as Dakar, Freetown, Monrovia, Johannesburg, Libreville, Ouagadougou,
Kinshasa, Nairobi or Kampala. Nevertheless, this is without taking into account that the
ecological footprint of an urban area can be hundreds of times larger that the extent of its
built-up areas [82]. Likewise, the 1600 km2 areas of interest used in this study did not cover
the whole urban areas of large cities such as Dakar, Johannesburg or Nairobi. Since most
of the growth may occur in peri-urban and surrounding localities due to a lack of space,
the actual growth of built-up areas may have been under-estimated in that case.

The measure of the amount of sprawl for each new dweller depending on population
size and income classes revealed interesting trends. On average, the surface of sprawl per
new dweller was three times higher in small urban areas (197 m2 per new dweller) than
in large ones (64 m2). Similarly, it was three times higher in urban areas located in upper-
middle income countries (299 m2) than in low income countries (99 m2). Nevertheless,
drawing any general conclusion at the regional scale would require a larger sample size.
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