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Abstract: Semantic segmentation of multi-modal remote sensing images is an important branch of
remote sensing image interpretation. Multi-modal data has been proven to provide rich comple-
mentary information to deal with complex scenes. In recent years, semantic segmentation based on
deep learning methods has made remarkable achievements. It is common to simply concatenate
multi-modal data or use parallel branches to extract multi-modal features separately. However, most
existing works ignore the effects of noise and redundant features from different modalities, which
may not lead to satisfactory results. On the one hand, existing networks do not learn the comple-
mentary information of different modalities and suppress the mutual interference between different
modalities, which may lead to a decrease in segmentation accuracy. On the other hand, the introduc-
tion of multi-modal data greatly increases the running time of the pixel-level dense prediction. In
this work, we propose an efficient C3Net that strikes a balance between speed and accuracy. More
specifically, C3Net contains several backbones for extracting features of different modalities. Then,
a plug-and-play module is designed to effectively recalibrate and aggregate multi-modal features.
In order to reduce the number of model parameters while remaining the model performance, we
redesign the semantic contextual extraction module based on the lightweight convolutional groups.
Besides, a multi-level knowledge distillation strategy is proposed to improve the performance of the
compact model. Experiments on ISPRS Vaihingen dataset demonstrate the superior performance of
C3Net with 15× fewer FLOPs than the state-of-the-art baseline network while providing comparable
overall accuracy.

Keywords: semantic segmentation; multi-modal learning; deep neural network design

1. Introduction

Remote sensing images are widely used in a variety of applications, such as military
reconnaissance [1,2], urban planning [3–9], disaster monitoring [10,11], and meteoro-
logical monitoring [12,13]. As one of the significant methods for automatic analysis and
interpretation of remote sensing images, semantic segmentation, namely pixel-wise classi-
fication, aims to assign each pixel with a semantic label. In the past few years, semantic
segmentation has benefited a lot from deep learning methods in the computer vision fields
of natural RGB images. Indeed, methods based on deep learning, especially Convolutional
Neural Networks (CNNs), have greatly improved the accuracy of semantic segmentation
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in remote sensing images. However, large-scope remote sensing scene usually contains
complex backgrounds and multi-scale objects, which brings great challenges to semantic
segmentation. The third column in Figure 1 shows the segmentation results of the remote
sensing images with the model trained on the natural RGB images. As shown in Figure 1,
misclassification results appear in objects with similar color and texture.

IRRG Ground Truth Predictions Predictions of Multi-
modal Data

Figure 1. Predictions of objects with similar color and texture.

In addition to common RGB data, additional remote sensing data is also widely
used for semantic segmentation, such as Synthetic Aperture Radar (SAR) images [14–17].
and Digital Surface Models (DSM) [4,18–20]. These multi-modal data usually refer to
a collection of multi-channel data collected by different sensors and can reflect different
characteristics of the objects. In order to improve the performance of semantic segmentation
based on single modal data, we utilize the rich complementary features of multi-modal
remote sensing images including IRRG (Near Infrared-Red-Green) and DSM. Semantic
segmentation based on multi-modal images aims to use the complementary characteristics
of different modalities to improve classification accuracy while reducing the influence
of inherent noise in single-modal data and improving the generalization performance in
complex application scenes.

There are two main challenges in the utilization of multi-modal images. One is
how to effectively extract multi-modal features. Typical methods directly concatenate
multiple channels as the input or integrate the prediction results of different models
corresponding to multi-modal images. However, indiscriminately fuse the features at
data-level or prediction-level does not fully extract the complementary characteristics of
multi-modality, and even introduces redundant features and aggravates the impact of
image noise. In this work, we extract multi-modal information by feature-level fusion
method. Furthermore, we introduce a cross-modal feature recalibration module (CFR)
to improve the quality of multi-modal representation by transforming the features of
corresponding modalities first and then recalibrate and aggregate the informative features
as the fusion feature.

The other challenge of semantic segmentation of multi modal images is the efficiency of
the algorithm. The semantic segmentation task is originally a pixel-level dense classification
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task. In addition, the segmentation model designed for multi-modal data introduces more
modalities and corresponding feature extraction networks. The huge model scale and
extensive computational burden limit the application in edge devices and scenarios with
real-time requirements. Considering this, in quest of an efficient model that strikes a balance
between speed and accuracy, we redesign a lightweight cross-scale semantic aggregation
module proposed in our previous work. Besides, we introduce a multi-level knowledge
distillation (KD) strategy to obtain an accurate and compact network for dense prediction.

Our contributions are the following:

• We propose a multi-modal semantic segmentation network, C3Net, which takes into
account both efficiency and accuracy. Compared with previous works, our network
can be up to 15× fewer FLOPs with comparable accuracy.

• In order to extract complementary features of different modalities, a cross-modal
feature recalibration module (CFR) is designed to aggregate information of multi-
modality and form discriminative representations for classification.

• A lightweight cross-scale semantic aggregation module (CSA) is introduced for
adaptive multi-scale semantic context information propagation. Compared with
the previous version, it can greatly reduce parameters and running time without loss
of accuracy.

• A multi-level knowledge distillation strategy is utilized on a variety of compact
backbones, which further reduces the model size and improves the segmentation
performance of lightweight architectures.

The remainder of this paper is organized as follows—Section 2 introduces the back-
ground of the semantic segmentation methods based on RGB images and multi-modal
images, lightweight network design, and knowledge distillation. Section 3 describes the
proposed C3Net in details. Section 4 illustrates the experimental settings and analyses the
experimental results, followed the conclusions in Section 5.

2. Related Work

In this section, we first briefly review the development of deep learning methods
in the field of semantic segmentation, including both the segmentation tasks of common
RGB images and remote sensing multi-modal images. We then review several mainstream
handcrafted networks and corresponding lightweight convolutional modules. Finally,
we review the related work in the field of knowledge distillation, which is also an active
direction in the field of model compression and acceleration.

2.1. Semantic Segmentation

Research on semantic segmentation has received a tremendous performance boost
since the design of the fully convolutional network [21]. The two major factors restricting
the improvement of semantic segmentation accuracy are the extraction of spatial infor-
mation and semantic information. In order to recover the spatial detail information, the
low-level features are usually introduced in the form of skip-connection in the network
based on the encoder-decoder architecture [22–25]. The methods based on skip-connection
can directly introduce spatial information without many additional parameters. However,
simply merging low-level features runs the risk of introducing redundant features. Espe-
cially the spatial information of multi-modal features needs to be extracted selectively to
prevent the introduction of redundant features and noise. Previous work [4] utilize artificial
prior knowledge to concatenate low-level features, which still ignore the complementary
features of multi-modal data. In order to make full use of the complementary features
of multi-modal data, we proposed a cross-modal feature recalibration module to extract
informative spatial information.

The key to learning semantic information is to extract appropriate receptive fields.
The method based on pooling operation [26,27] can learn the scene-level global context,
but result in the loss of spatial information. The method based on attention mechanism use
“attention” descriptors to focus feature learning on global semantic information [28–30]. It
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can extract the global receptive field but increase the computational burden. Dilated con-
volution [31] is another method that can enlarge the receptive fields without significantly
increasing the calculations [27,32]. However, the cascade of dilated convolution may lead
to grid effect, which result in the reduction of the effective features. Our previous work [33]
densely connect dilated convolutions to eliminate the grid effect and obtain multi-scale
context information. However, it introduces a large number of parameters resulting in low
computational efficiency. In order to solve the problems above-mentioned in the process
of semantic information extraction, we design a lightweight cross-scale semantic aggrega-
tion module. The proposed module has a better performance for multi-scale objects with
fewer parameters.

With the development of remote sensing imaging technology and deep learning,
recent work on the semantic segmentation of multi-modal remote sensing images has
made considerable progress. Rifcn [34] simply combine near-infrared, red, green (IRRG)
spectrum and DSM as the fusion input to the network. However, it does not fully exploit
the relationship between heterogeneous features and may introduce redundant features in
training. Some works [18,35] based on parallel branch architecture use multi-backbones
to process the multi-modal data separately. Such parallel branch fusion architecture can
effectively extract informative features; however, the huge model scale brings a large
number of parameters and reduce model inference speed. In [19], backend processing
is utilized to fuse the DSM feature to extract complementary information and refine the
segmentation details. However, a multi-stage training method is difficult to guarantee
the global optimal solution. In this work, we aim to design a lightweight and end-to-end
architecture which can effectively extract cross-modal complementary information and
achieve more accurate segmentation results.

2.2. Lightweight Networks

In recent years, designing handcrafted convolutional neural network architecture
for the optimal trade-off between accuracy and efficiency has been developed into an
active research field. SqueezeNet [36] utilizes 1× 1 convolutions in squeeze and expand
module to reduce the number of parameters. Group convolution is proposed in [37] for
parallelization to accelerate the training process. Many state-of-the-art networks [38–40]
integrate group convolution into model architecture to reduce model scale and parameters.
Shufflenet introduces channel shuffle operation to enhance the flow of information between
channels and improve the performance of group convolution. Furthermore, depthwise
separable convolution [41] is introduced as an efficient replacement for the traditional
convolution layers and widely used in [42–44]. An inverted residual bottlenecks module is
proposed [45] as an extension of depthwise separable convolution and used in state-of-the-
art efficient architectures [46–48]. In this work, we choose a variety of lightweight networks
as the backbone network to explore the optimal knowledge distillation strategy and the
optimal architecture of the student network. More quantitatively, comparisons can be found
in Section 4.3.3. Besides, we also design a plug-and-play module, namely lightweight
convolution group (LCG). As the basic architecture of the cross-scale semantic aggregation
module, LCG can drastically reduce model parameters while retaining multi-scale semantic
information.

2.3. Knowledge Distillation

Knowledge Distillation aims to compress the model and improve the accuracy by
transferring knowledge from a teacher network (cumbersome model) to a student network
(compact model). It has been widely used in image classification and has been proven to
achieve good performance improvements [49–51]. The research of [49] is the pioneering
work that exploits intra-class similarity and inner-class diversity from teacher network as
the useful knowledge to guide the learning processing of the student network. Follow-
ing [49], many other methods are proposed for knowledge distillation. Fitnet [50] considers
the intermediate features as the informative knowledge for the first time, which directly
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aligns feature maps to learn intermediate representation. Subsequently, the attention map
aggregated from the response maps is also regarded as a kind of knowledge. Attention
transfer [51], which mimics the attention map between teacher network and student net-
work, is related to our approach. However, the previous methods usually focus on the
tasks of image classification and are only applied for single-modal data. In this work, we
also explore knowledge distillation approaches in multi-modal semantic segmentation
network. A multi-level knowledge distillation strategy based on class knowledge transfer
and attention knowledge transfer is proposed to design an efficient semantic segmentation
framework for multi-modal image processing.

3. Method

Following the previous work [4], proposed network architecture adopts an encoder-
decoder structure, as shown in the Figure 2. In this work, ResNet101 and ResNet50 [52] are
selected as the feature extraction networks of multispectral data and DSM data, respectively.
In the encoder, the parallel multi-modal feature extraction network can be replaced with
any CNN network. The CSA is an abbreviation for a lightweight cross-scale semantic
aggregation module, which can efficiently obtain multi-scale contextual information. The
CFR represents a cross-modal feature recalibration module, which is designed for multi-
modal feature fusion. In order to simplify the model structure, the architecture of decoder
follows the design in [25]. In this section, we will introduce CFR module, CSA module,
and a multi-modal knowledge distillation strategy respectively.

...

...

Feature Extractor 1

Feature Extractor 2

CFR Prediction

IRRG

DSM

Low-level features

Low-level features
Encoder

C

Decoder

CSA

3x3
Conv

3x3
Conv

C CSA:Cross-scale Semantic Aggregation CFR:Cross-modal Feature RecalibrationConcat Upsampling

Figure 2. Framework overview of the proposed method.

3.1. Cross-Modal Feature Recalibration Module (CFR)

The CFR module is designed to jointly learn the multi-modal features while reducing
the influence of inherent noise of different modalities. The simple concatenation of multi-
modal feature [34] cannot learn cross-modal complementary characteristics, and even the
inherent noise and redundant feature will reduce the ability of feature expression [4]. In
order to extract informative features of different modalities, the CFR module is designed
with feature aggregation, feature recalibration, and feature reconstruction operation. The
architecture of CFR is shown as Figure 3. We denote X1 ∈ RC×H×W and X2 ∈ RC×H×W as
the input feature maps of two branches respectively.
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Figure 3. The architecture of cross-modal feature recalibration module.

First, fusion feature map Xc is calculated as

Xc = [X1, X2], (1)

where [•] denotes concatenate operation along the channel dimension. To ensure the validity
of the features, we utilize the attention mechanism [28,53] to transform the feature maps
into the embedding space and regard it as an attention vector. Attention vector represents
the high confident activations in an original feature map, which can effectively focus the
feature learning process on most informative features and suppress the importance of noisy
features. We take one branch as an example, the attention vector is calculated as

W1 = σ(FM(FG(Xc))), (2)

where FM denotes a common MLP network which includes two 1× 1 convolutional layers
and σ denotes sigmoid function. FG denotes long-range context modeling operation. By
doing this, the global semantic information is obtained for feature aggregation.

FG(Xc) =
H×W

∑
i=1

exp
(

WCX i
C

)
∑H×W

j=1 exp
(

WCX j
C

) ·WCX i
C, (3)

where X i
C denotes the feature vector in position i and WC denotes linear transformation

matrix. After calculating the attention vector, the aggregate feature can be formulated as

X ′1 = X1 �W1, (4)

where � denotes element-wise multiplication. The aggregate features can be regarded
as the initial calibration of the features from the same modality. Compared with original
feature maps, aggregate feature maps contain more informative features and less noisy
features. The feature recalibration is designed to exchange and recalibrate the features of
different modalities.

X ′′2 = X ′1 + X2. (5)

The process of recalibration completes the cross-modal information interaction. More
related discussions can be found in Section 4.3.1.

The previous works usually directly introduce low-level features from different modal-
ities to the decoder for rich spatial information. However, the spatial information of differ-
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ent modalities is usually not aligned well, which seriously affects the feature reconstruction.
Inspired by [54], a spatial-wise gate mechanism is designed to obtain the multi-modal
fusion feature. A 1× 1 convolutional layer is utilized for embedding space mapping and a
SoftMax function is applied to obtain gate weights:

G1 =
C

∑
i=1

exp(WSX ′′1i)

∑C
j=1 exp

(
WSX ′′1j

) ·WSX ′′1i, (6)

where X ′′1i denotes the feature vector in channel i from modality 1 and WS denotes linear
transformation matrix. The final fusion feature is the summation of the weighted features.

Xo =
m

∑
i=1

X i �Gi, (7)

where m denotes the total number of modalities, in our case, m = 2. Xo is regarded as the
low-level feature in the decoder for up-sampling and spatial information recoverying.

3.2. Cross-Scale Semantic Aggregation Module (CSA)

Semantic contextual information is critical to the pixel-level classification. In recent
years, parallel spatial pyramid pooling structures [25,27] are widely used to obtain multi-
scale receptive fields. However, it is still difficult to obtain a large and dense receptive
field in remote sensing scenes. To remedy this problem, the CSA module is designed to
capture dense contextual information in a cross-scale form through multiple sets of dilated
convolutions. Besides, the CSA module is composed of a lightweight convolution group
(LGC), which can reduce the computational burden of multi-modal high-resolution images.
The architecture of CSA is shown as Figure 4. CSA contains six contextual information
extraction branches. We utilize five LCGs with different dilated rates to capture multiple
receptive fields and a multi-shape pooling (MSP) to obtain global semantic information.
We denote Xs and Y s as the input feature map and output feature map of CSA module
respectively. Above operations can be formulated as

Y s = [Y0, Y1, . . . , Y l ], (8)

where [•] denotes concatenate operation along the channel dimension. Y i denotes different
branches of CSA module.

Y i =


Xs, i = 0
FM([Y0, Y1, . . . , Y l−1]), i = l
Fk,d

L ([Y0, Y1, . . . , Y i−1]), others,
(9)

where FM denotes the multi-shape pooling operation and Fk,d
L denotes the lightweight

convolution group. The architecture of the lightweight convolution group is shown as
Figure 4. LCG consists of two 1× 1 convolution layers for channel reduction and expansion
respectively.Besides, a 3× 3 convolution layer with different dilated rate r is utilized for
semantic information encoding and an another 3× 3 convolution layer is added to encode
more spatial contextual information. The architecture of multi-shape pooling is shown as
Figure 4. MSP utilizes 1× 1, 3× 1, and 1× 3 convolutional layers to model global semantic.
In particular, it encodes the globally horizontal and vertical information to capture complex
objects with multiple shapes in remote sensing scenes. Assuming that the input of the
module is X in, the above operations can be formulated as

FM(X in) = σ(W1×1(
3

∑
i=1

Wi(Pi(X in))))� X in, (10)
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where σ denotes sigmoid function, W1×1 denotes convolution layer with 1× 1 kernel, Wi,
Pi denote the convolution and pooling operations corresponding to the three branches.

C

C

C

C

C

C

C

C

C

C

CLCG, Rate=1

LCG, Rate=3

LCG, Rate=6

LCG, Rate=12

MSP

LCG, Rate=18

PS Pooling Element-wise AddSigmoid Element-wise Multiplication

1x1
Conv

S

1x1
Conv

1x1
Conv

1x1
Conv

P

P

P

MSP

1x1
Conv

3x3
Conv
Rate=r

1x1
Conv

LCG

3x3
Conv

C Concat

Figure 4. The architecture of cross-scale semantic aggregation module.

3.3. Multi-Level Knowledge Distillation Strategy

In order to obtain a compact model, knowledge distillation has been widely used in
CNN designed for natural RGB images, however, there are few related research on the
knowledge distillation strategy of multi-modal images. In this section, we explore knowl-
edge distillation strategies for networks that process multi-modal images and introduce a
multi-level knowledge distillation strategy. As shown in Figure 5, the proposed knowledge
distillation strategy includes class knowledge transfer and attention knowledge transfer.
Note that only a single branch of the multi-modal network is shown as an example.

Attention
Knowledge Transfer

Class
Knowledge Transfer

Segmetation
Loss

Teacher network

Student network

Figure 5. Illustration of our knowledge distillation strategy.

3.3.1. Class Knowledge Transfer

Semantic segmentation can be regarded as a pixel-wise classification task. Therefore,
class probabilities produced from the teacher network can be utilized to transfer the
informative knowledge to the student network. We follow [49] and regard the class
probabilities as a soft target which provides much more information than hard targets. We
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denote S and T as the compact student network and pre-trained teacher network. The loss
function of the class knowledge transferring process is as follows

`c =
1

H ×W ∑
i∈R

KL(pS ,i, pT ,i),R ∈ {1, 2, . . . , H ×W}, (11)

where H ×W denotes the spatial size of softmax layer output. KL(•, •) is the Kullback-
Leibler divergence. pS ,i and pT ,i denote the soft target of the i-th pixel produced from
student and teacher network, which can be formulate as

pj =
exp(zj/T)

∑C
m=1 exp(zm/T)

, (12)

where j denotes the j-th class of C classes, z denotes the output of the softmax layer.
T denotes the temperature factor that is utilized to control the probability distribution
over classes.

3.3.2. Attention Knowledge Transfer

Class knowledge transferring performs knowledge distillation for each pixel sepa-
rately, which may lead to sub-optimal result for the dense prediction task. The knowledge
extracted from deep features only focuses on the high-level information and neglect the
detailed spatial knowledge from low-level features. Besides, the activation of different
modal features varies greatly. It is necessary to transfer the knowledge for multi-modal
features. Due to the above fact, we explore a multi-level knowledge distillation strategy
based on attention knowledge, as shown in Figure 5.

`A =
M

∑
m=1

∑
lεI
||

∑C
k=1 |Al

S ,k|
2

||∑C
k=1 |Al

S ,k|
2||

2

−
∑C

k=1 |Al
T ,k|

2

||∑C
k=1 |Al

T ,k|
2||

2

||
2

, (13)

where m denotes the m-th modality in the M modalities, l denotes the j-th pair of teacher at-
tention maps Al

T ,k and student attention maps Al
S ,k, k denotes the k-th class in the C classes.

|| • ||2 denotes l2-normalization which is utilized during the knowledge transferring.
The training process of our method is presented in Algorithm 1. Given the pre-trained

teacher network, the parameters of the teacher network are kept frozen during the training
process. The student network is supervised by three losses: common cross entropy loss
`s with ground truth, class knowledge transferring loss `c in Equation (11) and attention
transferring loss `A in Equation (13). Scaling factor α (10) and β (1000) are utilized to make
these loss value range comparable.

Algorithm 1 Training Process of Proposed Method.

Stage 1: Training teacher network T
Input: Images D,Ground truths G

WT = argminWT
`s(D,G)

Stage 2: Training student network S
Input: Images D,Ground truths G, Class-Knowledge pT , Attetion-knowledge AT

WS = argminWS
`s(D,G) + α`c(pT ) + β`A(AT ).

4. Experiments
4.1. Dataset
4.1.1. ISPRS Vaihingen

The Vaihingen Dataset contains 33 very high-resolution true orthophoto (TOP) tiles.
Each tile contains approximately 2100× 2100 pixels with a resolution of 9cm/pixel. Tiles
consist of Infrared-Red-Green (IRRG) images. Besides, corresponding Digital Surface
Models (DSM) and normalized Digital Surface models (nDSM) are also provided. The
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Vaihingen Dataset provides 16 labeled tiles for training. Following other works, the training
set consists of 11 tiles (region numbers 1, 3, 5, 7, 13, 17, 21, 23, 26, 32, 37) and the validation
set consists of five tiles (region numbers 11,15, 28, 30, 34). Limited by computing resources,
we crop the large tiles into patches of 513× 513 pixels using an overlapped (50%) sliding
window. Finally, we get 696 patches for training and 297 patches for validation. Note that
in the testing phase, we use all patches for training.

4.1.2. ISPRS Potsdam

The Potsdam Dataset contains 38 very high true orthophoto (TOP) tiles. Each tile
contains 6000 × 6000 pixels with a resolution of 5cm/pixel. Tiles consist of Infrared-Red-
Green-Blue (IRRGB) data, DSM data and nDSM data. The Potsdam Dataset consists of
24 labeled tiles for training. In the following experiments, 6 tiles (region numbers 2_12,
3_12, 4_12, 5_12, 6_12, 7_12) are removed from the training set as the validation set. During
the training process, the large tiles are cropped into 9522 patches for training and 3174
patches for validation according to the method mentioned above. Note that in the testing
phase, we use all patches for training.

4.1.3. Dataset Augmentation

Standard data augmentation is applied during the training process, including random
flipping, random scaling (from 0.5 to 2), and random rotating (between−10 and 10 degrees).

4.1.4. Evaluation

According to the benchmark rules, overall accuracy (OA) and F1 score are used to
quantitatively evaluate the model performance. OA is the normalization of the trace of
pixel-based confusion matrices. F1 score is calculated as follows:

F1 = 2 ∗ PR
P + R

(14)

where P, R denotes precision and recall respectively.

P =
TP

TP + FP
(15)

R =
TP

TP + FN
, (16)

where TP denotes the number of true positive, FP denotes the number of false positive
and FN denotes the number of false negative. All these metrics can be calculated by a
pixel-based accumulated confusion matrix. The number of float-point operations (FLOPs)
is also applied to investigate the computation complexity.

4.2. Implementation DETAILS

During the training stage, proposed network utilizes stochastic gradient descent (SGD)
with the momentum (0.9) and the weight decay (0.0005) as the optimization strategy and
be trained for 100 epochs. The basic learning rate is set to 0.01 with the “poly” learning
rate policy and the power is set to 0.9. Our experiments are implemented on a Tesla P100
GPU while the batch-size is set to 4. For a fair comparison, we make the ablation study
with 513× 513 patches.

4.3. Results and Discussion

In this section, we report the effects of cross-modal feature recalibration module,
cross-scale semantic aggregation module and multi-level knowledge distillation strategy
and analyze these proposed methods from both qualitative and quantitative perspective.
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4.3.1. Effects of CFR

In order to further reveal the role of CFR, we visualize the response of DSM features
in Figure 6. We average the channel dimension and convert it to one dimension for vi-
sualization. As shown in the second column of Figure 6, due to the imaging quality and
the inherent characteristics of the data, DSM images lack spatial detail information. Com-
paring the fifth and sixth columns in Figure 6, the DSM feature contains more significant
detailed information after CFR feature calibration. In particular, there is a higher activation
response at the edges between different classes and the outline of the object is more precise.
In addition, the third row of Figure 6 shows that the CFR module makes the feature map
shows a good response to the car.

IRRG Ground Truth DSM Before Feature Calibration After Feature Calibration

Figure 6. Visualization of Digital Surface Model (DSM) features before and after Feature Calibration operation.

Table 1 shows the results on ISPRS Vaihingen testing dataset with different multi-
modal fusion methods based on the baseline architecture. The results of IRRG based
methods are also listed for reference in the first row. As shown in the second row of Table 1,
due to the noisy and redundant features of DSM modality, directly concatenate the multi-
modal images as the input leads to worse performance in car. This simple multi-modal
fusion mechanism cannot explore the complementarity of different modalities to boost
performance. As shown in the third row of Table 1, the design of the baseline is inspired
by previous work [4] which has achieved good segmentation performance. Based on the
above observation, the baseline only introduces the IRRG features to the decoder. In order
to utilize the strength of multi-modal information, CFR is designed to filter the useless
information and fusion the cross-modal features in an effective way. Thus, CFR still gains
0.47% OA improvement compared with baseline. In particular, CFR can obtain a higher
F1 value of car class. CFR uses the rich semantic information of DSM modality in the
decoder to reconstruct the low-level features and achieve better segmentation results on
small targets that are likely to lose spatial detail information while encoding.
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Table 1. Comparison of F1 score and overall accuracy on ISPRS Vaihingen dataset.

Methods Impervious Surface Building Low Vegetation Tree Car OA

Baseline (IRRG) 91.84 95.27 82.47 88.99 76.39 89.83
Baseline (Directly Concatenate) 91.15 95.02 84.12 89.60 70.13 89.85

Baseline 92.36 95.83 84.06 89.69 82.59 90.61
Baseline + CFR 92.79 96.01 84.99 90.06 83.29 91.08

In summary, the cross-modal feature recalibration module could aggregate infor-
mation of multiple modalities and form discriminative representations for segmentation.
Furthermore, the CFR module boosts the segmentation performances while only adds a
small parameter and computation overhead. It can also be regarded as a plug-and-play
module to effectively fuse multi-modal images.

4.3.2. Effects of CSA

Contextual semantic information plays an important role in classification, especially
for dense prediction tasks. Existing methods usually only contain limited scales of receptive
field. It is difficult to deal with remote sensing application scenarios that include multiple
complex objects and large scope. The CSA module uses multiple dilated convolutions to
obtain multi-scale receptive fields in the form of dense connections. In the experiment,
we empirically choose 1, 3, 6, 12, 18 as the dilation rates. As shown in Figure 7, SPP [27]
contains four scales of receptive fields, ASPP [25] contains five scales of receptive fields,
while the proposed CAS and MCA contains 25 types of receptive fields. The CAS module
can not only extract multi-scale contextual information but also obtain global semantic
with multi-shape pooling.

Figure 7. Comparison of the receptive fields corresponding to SPP, ASPP, MCA and proposed cross-scale semantic
aggregation module (CSA) with different combinations of dilated convolutions. Note that only the receptive fields with
different combinations of dilated convolutions are listed in the bar graph.

We examine the role of the cross-scale semantic aggregation module on ISPRS Vaihin-
gen testing dataset. In order to verify the effectiveness of CSA, we re-implement several
mainstream semantic context extraction modules based on the baseline network. Table 2
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shows the results of the baseline containing different semantic context extraction modules.
The performance of the network without the semantic aggregation module is also shown
in the first row of Table 2 for comparation. Compared with ASPP, SPP, and MCA, the pro-
posed CSA gain 91.15% OA improvement based on the same baseline network. CSA and
MCA have the same receptive field scale, but CSA utilizes a lightweight convolution group
instead of traditional convolution, which greatly reduces the number of parameters of the
semantic extraction module. As shown in Table 2, compared to MCA, CSA can reduce the
amount of parameters by 55.72% while slightly improving performance by 0.12%.

Table 2. Comparison of several semantic extraction modules’ efficiency on ISPRS Vaihingen dataset.

Module Parameters GFLOPs Overall Accuracy

- 0 0 90.36
ASPP 30,737,920 8.582 90.61
SPP 68,157,696 1.201 90.63

MCA 49,613,312 28.08 91.03
CSA 21,969,888 2.327 91.15

4.3.3. Effects of Multi-Level Knowledge Distillation Strategy

The multi-level knowledge distillation strategy contains two types of distillation
methods: class knowledge transfer and attention knowledge transfer. We conduct ablation
experiments on these two distillation methods respectively. In the following experiments,
we choose ResNet101 as the IRRG feature extraction network and ResNet50 as the DSM
feature extraction network for the teacher network. As for the student network, in order to
compress the model parameters as much as possible and obtain the relevant knowledge of
the corresponding feature pairs, we choose ResNet18 as the feature extraction network for
two modalities.

In order to verify the effect of feature maps at different levels in attention knowledge
transfer strategy, we distillation the attention knowledge at multiple levels of feature map
pairs. As shown in Table 3, the feature map pair from level 5 is distilled as the high-level
attention knowledge. Then the feature pair attention knowledge distilled from level 4, level
3, level 2, and layer 1 are introduced in sequence. Here, feature map pairs from different
levels represent the output feature map pairs from corresponding different stages in Resnet.
As expected, the effect of distillation gradually increased with the introduction of low-level
attention maps. This also indirectly proves that the detailed knowledge contained in the
low-level attention maps could help to improve the performance of dense prediction tasks.

Table 3. Ablations for the different level feature maps on ISPRS Vaihingen dataset.

Level 5 Level 4 Level 3 Level 2 Level 1 Overall Accuracy

89.01
X 89.42
X X 89.51
X X X 89.56
X X X X 89.57
X X X X X 89.66

During the knowledge distillation training process, the model scale and data set scale
have a great influence on information transferring. In order to demonstrate the effectiveness
of the proposed multi-level knowledge distillation strategy, we ablate a variety of backbone
models [45,47,52] on Vaihingen and Potsdam data sets. As shown in Figure 8, we compare
the accuracy and efficiency of different models and quantify them with OA and GFLOPs in
the bubble chart. Note that the area of the bubble represents the number of parameters.
Experimental results on various backbones and data sets show that the proposed distillation
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strategy can effectively improve the segmentation accuracy of compact models. The results
also show that the proposed distillation strategy can obtain greater performance gains on
large-scale data sets, which implies that the proposed method has better generalization
performance in big-data application scenarios.

(a) ISPRS Vaihingen (b) ISPRS Potsdam

Figure 8. Ablation study on the backbone.

4.3.4. Comparing with State-of-the-Arts

We report the results on the Vaihingen dataset in Figure 9 and Table 4. In order to
demonstrate the effectiveness of the cross-scale semantic aggregation module (CSA), we
also train C1Net (baseline with CSA) with IRRG data (CH3) to compare with other state-of-
art methods. As shown in Table 4, C1Net shows superior segmentation results than the
other methods. In multi-modal data experiments (CH4), the proposed C2Net (Baseline
with CSA and CFR) ranks 1st both in mean F1 score and overall accuracy compared with
all the other published works. Note that neither the test time augmentation nor the CRF
for post-processing is used in the proposed methods. This is based on the consideration of
fast inferencing and designing compact models. As shown in Figures 8 and 9, it is worth
noting that the C3Net (backbone with MobileNet V3S) obtained by knowledge distillation
can still achieve competitive segmentation accuracy when the amount of parameters is
reduced by 93.6% and the inference speed is increased by 1.6 times. It turns out that C3Net
could achieve a good balance between accuracy and efficiency.

Table 4. State-of-the-art comparison experiments on ISPRS Vaihingen test set.

Methods Impervious Surface Building Low Vegetation Tree Car OA

CH3

FCN [55] 89.4 93.8 76.5 86.6 71.3 86.8
SegNet [22] 90.2 94.1 77.4 87.4 77.3 87.6
DANet [56] 94.1 90.8 81.4 87.4 75.9 88.6

DeepLab V3p [25] 94.3 91.4 81.3 87.8 78.1 88.9
PSPNet [27] 94.4 91.4 81.5 87.9 78.0 89.0

Baseline(ResNet101) 91.8 95.3 82.5 89.0 76.4 89.8
HRNet+ASP+SR [57] 94.7 92.9 83.2 88.9 84.3 90.1

Baseline+CSA 92.3 95.6 83.6 89.3 80.7 90.4

CH4

FPL [58] 90.4 94.6 78.1 86.8 66.8 87.7
HSN+OI+WBP [59] 91.3 94.9 79.8 88.3 83.6 88.8

FCN [60] 90.5 93.7 83.4 89.2 72.6 89.1
SegNet-RC [18] 91.0 94.5 84.4 89.9 77.8 89.8

FCN+fusion+boundaries [20] 92.3 95.2 84.1 90.0 79.3 90.3
FCN_MFS_DSMBackend [19] 92.3 95.8 83.8 89.6 86.4 90.6

Baseline 92.4 95.8 84.1 89.7 82.6 90.6
C2Net 93.0 96.1 85.4 90.3 85.4 91.3
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(a) IRRG (b) DSM (c) Ground Truth (d) Baseline (e) C2Net (f) C3Net

Figure 9. Semantic segmentation results on the ISPRS Vaihingen dataset.

5. Conclusions

In this paper, a novel semantic segmentation framework is presented for multi-modal
remote sensing images. The major contribution of this work is to address two key challenges
in the application of multi-modal images, i.e., the effective joint representation of different
modalities and the compact model for efficiently inferencing. A cross-modal feature
recalibration module (CFR) is designed to recalibrate the noisy modalities and extract cross-
modal complementary features. Besides, lightweight cross-scale semantic aggregation
module (CSA) and multi-level knowledge distillation strategy are utilized to obtain a
compact model while still remaining segmentation accuracy. The experimental results
indicate that the proposed C2Net achieves state-of-the-art segmentation performance and
the compact C3Net achieves 8.66 GFLOPs while keeping the performance levels almost
intact. Note that the proposed networks are only applicable to IRRG and DSM data. In
future work, we will introduce more informative data such as SAR and Light Detection
and Ranging (LiDAR) data in semantic segmentation task to improve the generalization
performance in complex remote sensing scenarios. In addition, the proposed lightweight
model C3Net still takes up a lot of memory usage on an GPU platform during training
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process. The future works include lightweight feature extractor designing and knowledge
distillation based on structured information of multi-scale objects, which aim to further
compress the model for less running time while remaining segmentation accuracy.
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