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Abstract: Pseudo quad polarimetric (quad-pol) image reconstruction from the hybrid dual-pol (or
compact polarimetric (CP)) synthetic aperture radar (SAR) imagery is a category of important tech-
niques for radar polarimetric applications. There are three key aspects concerned in the literature
for the reconstruction methods, i.e., the scattering symmetric assumption, the reconstruction model,
and the solving approach of the unknowns. Since CP measurements depend on the CP mode con-
figurations, different reconstruction procedures were designed when the transmit wave varies,
which means the reconstruction procedures were not unified. In this study, we propose a unified
reconstruction framework for the general CP mode, which is applicable to the mode with an arbi-
trary transmitted ellipse wave. The unified reconstruction procedure is based on the formalized CP
descriptors. The general CP symmetric scattering model-based three-component decomposition
method is also employed to fit the reconstruction model parameter. Finally, a least squares (LS)
estimation method, which was proposed for the linear /4 CP data, is extended for the arbitrary CP
mode to estimate the solution of the system of non-linear equations. Validation is carried out based
on polarimetric data sets from both RADARSAT-2 (C-band) and ALOS-2/PALSAR (L-band), to com-
pare the performances of reconstruction models, methods, and CP modes.

Keywords: synthetic aperture radar (SAR), general compact polarimetric SAR; scattering vector for-
malism; target decomposition; multi-polarization reconstruction

1. Introduction

Synthetic Aperture Radar (SAR) uses electromagnetic waves to characterize target
geometrical structures and dielectric properties. When the incident wave interacts with
the object, the polarization state of the reradiated wave is changed. Target information is
recorded in the scattered wave, and the scattering process is a function of the incident and
scattered fields. Radar measurement is polarization dependent [1]. For the single-polari-
zation transmit and single-polarization receive case, which corresponds to a single-pol
system, target backscatter is characterized by a single scattering coefficient. For the single-
polarization transmit and orthogonal-polarization simultaneous receive case, which cor-
responds to the dual-pol system, backscatter is characterized by a complex scattering vec-
tor. If we alternatively transmit orthogonal polarizations and use orthogonal polarizations
to simultaneously receive backscatter, we get the scattering matrix, and this corresponds
to the full-pol (FP) system. Compared to the full-pol system, the dual-pol system has ad-
vantages on imaging swath, power consumption, system complexity, and data volume
[2,3], but meanwhile it cannot complete characterize the backscattering natures of scatter-
ers. In recent years, the dual-pol system is discussed in two cases, i.e., the conventional
dual-pol imaging mode (HH/HV or VH/VV) and the hybrid dual-pol imaging mode (i.e.,
the transmitted wave is not H or V polarized, generally known as compact polarimetry).
Some studies have shown that the compact polarimetric (CP) mode performs better than
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the conventional dual-pol modes, in applications such as land use and land cover classi-
fication [4], ship and oil-spill detection [5,6], etc. Currently, the Indian RISAT-1 (2012),
Japan JAXA ALOS-2/PALSAR (2014), SAOCOM-1A (2018), and the RADARSAT Constel-
lation Mission (RCM-3/4/5, 2019) have the capability of providing CP images.

Compact polarimetry allows choices of the transmitted wave polarization state. The
monochromatic electromagnetic wave is represented by a complex vector. In this vector
space, there are actually numerous possibilities of transmitted polarizations. The com-
monly considered CP modes are the linear 7t/4 mode, which transmits a linear polarization
oriented at 45% and the circular mode, which transmits a left or right circular polarization.
It should be noted that although the scattering vector is associated with a particular re-
ceiving coordinate, the backscattered information of the scattered wave has no relation
with the orthogonal receivers, because the receiving polarization bases possess the unitary
transformation [1]. Thus, in this study we only discuss the H/V polarization receiving con-
figuration. In order to extract more information from the CP data and utilize the many
well-developed quad-pol algorithms, Souyris et al. (2005) [7] were the first to propose an
algorithm to reconstruct the pseudo quad-pol imagery from the /4 mode.

Several studies can be found in the current publications concentrating on reconstruct-
ing (or estimating) the 3 x 3 quad-pol covariance matrix from the 2 x 2 linear /4 or circular
CP covariance matrix. These algorithms are discussed on three aspects: (1) the symmetric
scattering assumption [7], (2) the reconstruction model [7-13], and (3) the solving ap-
proach [14]. Reflection symmetry [15-17] is a generally used approach for scatterers to
give a prior assumption about zero correlations of co-polarized and cross-polarized terms.
By assuming reflection symmetry, three simplified equations are formed via the CP ob-
servables. Then, there is only one more equation needed to implement the estimation,
which is the reconstruction model. Reconstruction models had a general form (see Equa-
tion (4) in [14]), and different models have different model parameter N. N is determined
either by theoretical assumptions [7,12] or by scenario-based empirical tests [9-11]. The
cross-pol term is the only variable to be solved. In previous studies, the solution is ob-
tained via an iterative approach [7-13]. However, the iterative approach often overesti-
mates the cross-pol intensity. In [14], we proposed a least squares (LS)-based method to
approximate the solution and obtained promising results based on the linear 7t/4 mode.

The current reconstruction methods were developed for either the linear /4 or cir-
cular CP mode, with specific reconstruction procedures. This is because CP measurements
are transmitting polarization dependent. When the transmit wave varies, CP channels
capture different combinations of the scattering coefficients, leading to different equation
forms of the co-polarization coherence. In the open literature, there is no study about es-
timating quad-pol scattering coefficients from the general CP mode, which refers to the
hybrid dual-pol mode with an arbitrary transmit ellipse wave. In this study, we deal with
the reconstruction problem from the general CP mode. First, the CP formalism method
[18] is exploited to formulate the system of non-linear equations for the quad-pol un-
knowns. The formalism is a linear operator, using the transmit wave parameters to map
the scattering vector to another vector which has a fixed reference point in the radar meas-
urement space for all CP modes. Second, the LS method is extended to the general CP
mode to refine the cross-pol term. Results in [14] showed that the LS method greatly im-
proved the reconstruction accuracy, especially for the estimation of the co-polarized phase
difference (CPD). The LS method needs a constant N-model to construct the objective. In
[14], we developed the symmetric scattering type a;-based CP decomposition method for
the linear 7/4 mode, with the purpose to give a priori estimate of N for the decomposi-
tion-based reconstruction model. Then, we extended the a;-based decomposition to the
general CP case [19]. It should be noticed that the a;-based CP decomposition if without
the descriptor standardization step will have different formulas for the /4 [14] and the
circular [20] modes. In this study, the general as-based decomposition are used to provide
an approximation for N.
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An overview of the current related techniques is presented. The current iteration-
based techniques, which were developed for either the circular or the linear CP modes,
are also extended for the general CP mode. The contents of this study are summarized in
Figure 1. In Section 2, we introduce the test data used for illustration. In Section 3, the
formalism of the general CP descriptors in terms of the covariance matrix is introduced.
In Section 4, we first summarize the reconstruction models, and then based on the formal-
ized CP covariance matrix the iterative solving approach is extended for the general CP
SAR images. In Section 5, the LS model function is proposed, and the approximation to
the model parameter N is also given. In Section 6, multiple polarimetric data sets are used
to show the reconstruction performances of both the iterative and the LS methods, as well
as the abilities of different CP modes for revealing the quad-pol information. Finally, the
paper is summarized in Section 7.

An arbitrary
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Figure 1. Outline of the study.

2. Test Data

RADARSAT-2 data acquired over Fuzhou, China, and Wallerfing, Germany, as well
as ALOS-2/PALSAR data acquired over San Francisco are used for verification. Corre-
sponding Pauli-basis images are shown in Figure 2. The Fuzhou area has complex terrain
types, including dispersed residential areas, mountain and hills, agriculture fields, wet-
lands, and sea surface. The Fuzhou data set was collected on 20 October 2013, with inci-
dence angle ranging from 34.4° to 36.0°. This image has 6140 x 3332 pixels, and the pixel
spacing is 4.73 x 4.81 m2. The Wallerfing area consists of large agriculture fields. Data sets
were collected regularly over this area to monitor the crop growth in 2014. The data sets
acquired on 28 May, 21 June, 15 July, and 8 August 2014 are included for demonstration.
All the Wallerfing data sets were collected with incidence angle ranging from 40.2° to 41.6°
on the descending pass. The image has 2001 x 2001 pixels, and the pixel spacing is 4.73 x
5.12 m2 The farmland mainly consists of 5 crop types, i.e., barley, corn, potato, sugarbeat,
and wheat. The ground truth of crop types is also given in Figure 2. The San Francisco
data was collected on 21 August 2018 with the center incidence angle of 33.871°. The image
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has 2389 x 2640 pixels, and the pixel spacing is 2.8 x 3.2 m2 The transversal lines and the
outlined areas in Figure 2c,d will be used for analysis in experiments.

— wheat

4 sugarbeat

- potatoes

cormn

barley

(c) (d)

Figure 2. Pauli-basis images. (a) The Wallerfing data (28 May 2014), RADARSAT-2. (b) The crop type information of the
Wallerfing area. (c) The San Francisco data, ALOS-2/PALSAR. Areas outlined by green, orange, and dark red are denoted
as urban 1, urban 2, and tilted urban areas. (d) The Fuzhou data, RADARSAT-2.

3. Formalism of the CP Descriptors

In this section, we will briefly introduce the formalized scattering vector and covari-
ance matrix [18].

A general form of the electromagnetic field is represented by a transverse ellipse
which is described by two parameters, i.e., the ellipse orientation angle 8 and the ellipti-
city angle x [1], as follows.

Eix(B, X)] _[cos® —sin@1[COSX
]‘[ Hjsinx

(0, _
E®. 1 [Eiy(G, X) sinf  cosO
_ [cosBcosX — jsinfsiny
" |sinBcosy + jcosOsiny

)
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where ||E;(8, x)|| = 1. The CP system measures a projection of the complex scattering
matrix § onto a transmitted wave. Then for an arbitrary transmit wave E;(6, ), the re-
ceived backscattered wave E,.(6, ) is

Eyc (6, X)] o Suu SHV] [Eix(et X)
= SE(0, x)=
Eyc(6, X) i ) Syu SwllEy(8, X) @)
_ [Eix(g' X)Sun + Eiyy (6, X)SHV]
Ey(0, X)Syv +Eix(0, X)Syu

For an arbitrary S, the received compact (or traditional dual) polarimetric signal is
totally dependent on 6 and x.For the commonly considered linear /4, left circular, right
circular, horizontal and vertical transmitted waves, the values of (6, x) are (1t/4, 0),
([-n/2 m/2], n/4), ([-n/2 m/2], —-m/4), (0, 0) and (w/2, 0), respectively.
Note that the circular polarization is not affected by wave orientation angles, and thus
6 e[-m/2 m/2]. Er(ﬁ, X) in (2) is received in the linear-polarization orthogonal basis
and can be easily transformed to the circular polarization basis through a unitary trans-
formation [1,6,21]. The dual-polarization measurement is independent of the elliptical ba-
sis of radar receivers, and thus we only discuss the linear H/V-polarization received CP
data. We notice that Eyc contains Syy and Eyc contains Syy when none of E;,.(8, x)
and E;, (6, x) is0. Then, the scattering vector (2) can be formulated as

B0 0=

I[EHc(er X)]I

= _[Ex]l _ (4 = o _ Ex(6, X) _ [Sun + xSuy

G =[g] = (s (B, 0)) B6 n=lgmg =l s ©
I.Eiy (9! X)J

where diag(-) is the diagonal matrix of a vector, and

x:Eiy(B' X) y:Eix(B, X)
Ex(©, x)'7 Ey@, X

are the wave component ratios. E; and E, are the formalized elements for Er @, x) to
characterize the scattered wave. This formalism is only for the general compact polarimet-
ric mode. It is not applicable to the conventional dual polarizations, i.e., the Syy/Syy or
Sun/Svy measurements.

From the defined scattering vector El, the second order product, named as the CP
covariance matrix following that in full polarimetry, is constructed for the partially polar-
ized backscattered waves, as follows.

(IE11?)  (E:E;")
(EE1")  (IE|%)

where H denotes matrix conjugate transpose, and (-) denotes ensemble average. C, is the
basis in this study to analyze the general CP matrix for the multi-polarization reconstruc-
tion.

The formalized scattering vector in (3) and the corresponding CP covariance matrix
defined in (4) provide a unified method representing CP data. For a monostatic polari-
metric SAR and reciprocal scatterers, the scattering matrix is symmetric, i.e., Syy = Syn.
In this case, expansion of €, in terms of the scattering coefficients of the medium is given
in (5). If scattering reflection symmetry is further assumed for the CP covariance matrix,
which means the components involving products of co-polarized and cross-polarized
terms are much smaller than the others and thus negligible, €, only contains the co-po-
larized and cross-polarized terms, as shown in (6). When the transmit wave is linearly
polarized, e.g., in the linear m/4 mode, C, has the same form as the wave covariance ma-
trix [7,8,12] except that the matrix power is doubled. When the transmit wave is circularly
polarized, €, has a different form from the wave covariance matrix as that shown in (4)
in [8]. This formalism provides a unified description for the backscattered wave, which

C, = (kykl) = )
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facilitates the analysis of CP imagery. Under this formalism, the system of non-linear
equations for the reconstruction is easily formulated as a function of the transmit wave,
which will be discussed in Section 4 and 5.

_[(C11)  (Ci2) _ (ISuul®  (SuuSvv) 2 lx|> xy*
=Ly ol = Lssan (Sl |+ USm]y 1 -
[ 2Re(x*(SuuSav)) x(SuySvv) + ¥ (SunShv)
x"(SyvShv) + Y{SuvSan) 2Re(y*(SyvShv))
_[(C11)  (Ci2)] _ (ISuul®y  (SuuSvv) 2 lx|> xy*
CZ_[(C12*> (C22) _|:<SVVS;IH) <|5VV|2) +(|SHV|)[X*Y |}’|2 ©)

4. Pseudo Quad-Pol Image Reconstruction Model and the Iterative Approach
4.1. A General Form of Reconstruction Models

In the literature, there are mainly five reconstruction models. The reconstruction
models in [7-11] have the same form as follows.

ISwl?  _1-1pl
ISanl?) + (IS~ N

where p is the co-polarized correlation defined by
(SunSyy)

= 8
2 ISP XISeel?) ®)

and N is the model parameter derived from either theoretical analysis or empirical curve
fitting. The Souyris et al. model [7] is derived from a pseudo-deterministic relationship by
linking p and the cross- and co-polarization ratio. By assuming the backscattered signal
is either fully polarized or fully depolarized, N is obtained as 4. The Nord et al. model [8]
is approximated from a mathematical inequality, and the equality is asserted by a rela-
tively small difference of the two sides of the inequality. Both Collins’s [9,10] and Li’s [11]
models are empirical models but with different regression equations, where Collins et al.
used the exponential model to fit N by considering the incidence angle, and Li et al. fitted
N as a function of the polarization ratio.

A backscattered process is a mixture of several elemental scattering processes. By
assuming that the backscattered energy is a sum of the surface scattering power P;, dou-
ble-bounce scattering power Py, and volume scattering power P,, we established a de-
composition-based power-weighted reconstruction model [12], as shown in (9), which use
Re({(SyuSyy)) as an indicator to discriminate between the surface and double-bounce re-
flections (refer to [12] for more details).

@)

<|5Hv|2) _ 1 —sglpl
(ISuul?) + (ISyvl?) N

©)

where sg = sign(Re((SHHS{}V))) is a signum function, and N = 4(2P4 + R,)/P,. This
power-weighted reconstruction model has an extra parameter sg which is either 1 or -1.
In the following sections, we use (9) as a general formulation of the reconstruction models,
and the model parameters are summarized in Table 1. The model parameter N is updated
during the iterative reconstruction procedure in the studies [8,11,12], which are referred
to as the variable N methods. While parameter N is a constant in the methods [7] and
[9], which are referred to as the constant N methods.
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Table 1. Parameters of the reconstruction models.

Souyris et al. [7] Nord et al. [8] Collins et al. [9] Li et al. [11] Yin et al. [12]
sg=1 sg=1 sg=1 sg=1 sg = sign(Re((SuuSyv)))
St — Swv|? 2P + P,
N=4 N = (lHH—;Nl) Empirical N Empirical N N=4"0""Y
(ISuv|?) R

4.2. Unified Experssion of the Model Parameters

In previous studies, the reason that different CP modes need different reconstruction
procedures arises from the fact that different equations are necessary to calculate the co-
polarized correlation coefficient p. See Equations (7) and (11) in [8] for instance. However,
with the unified CP covariance matrix defined in (6), the co-polarized coherence has a
general expression, given by

p= (C12) — ISuvI®)xy*
VUCia) = (ISuvIDIx1D (Caz) — (| Suy|?)yI?)

x and y are parameters depending on the transmit wave. With this expression, the re-
construction model in (9) is applicable to all CP modes.

Next, we consider the parameter sg, which only exists in the decomposition-based
reconstruction model [12]. Our previous studies [12,14] tested that for the linear 7/4 mode,
the total agreement between sign(Re({C;,))) and sign(Re((SHHS{}V))) is quite good. For
the general case, from the off-diagonal term of (6) it is observed that (C;,) = (SyuSyv) +
(ISuv|?)xy*, which indicates the sign of (SyySyy) is only affected by (|Syy|?)e/?%, where
6= angle(EL-yE i) is the relative phase of the transmit wave, which is a known number.
For the area dominated by a single scattering mechanism, |Re({SypSyv))| is usually larger
than (|Syy|?). Therefore, for the general reconstruction algorithm, we still use Re({C;,)) to
approximate the decision whether backscatter is dominated by surface or double-bounce
scattering [12-14]. Let sg. = sign(Re({C;,))). By using the test data shown in Section 2,
variation of the total agreement between sign(Re({C;,))) and sign(Re((SHHS\*,V))) with
the transmit wave parameter ¢ is shown in Figure 3. It shows that for the C-band data
when the relative phase § is +m/4 or £3m/4, the total agreement is as high as 99.92%
(99.96% for the L-band data), and when the relative phase § is +m/2 (e.g., one possible
mode is the circular modes), the total agreement is lowest but still with a good percentage
of 88%. Areas dominated by double-bounce scattering or double-bounce scattering taking
a relatively high amount, such as the urban areas, would have a lower overall agreement.
When the transmit wave is linearly polarized (i.e., § = 0 or £m), the overall agreement is
93.65% for C-band data and 93.83% for L-band data. The general form of the reconstruc-
tion models with model parameters derived from (6) constructs the unified reconstruction
model.

(10)
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Figure 3. Variation of the overall agreement between sign(Re({C;,))) and sign(Re((SHHS‘*,V))) with the relative phase of
the transmit wave §. (a) Fuzhou data, RADARSAT-2, (b) San Francisco data, ALOS-2/PALSAR.

4.3. The Decomposition-Based Variable N

The three-component model-based decomposition [16] is written as

C = f[Cs] + falCal + fi[Cy] (11)
where C= (I?LI;E) is the fully polarimetric covariance matrix with I;L =

[SHH V2Syy SVV]T; fs, fa and f, arethe decomposed parameters to be determined cor-

responding to the surface, double-bounce, and volume scattering models, which are given
by

IBI> 0 B lal2 0 «a 1 0 b
[CI=]0 O 0'[Cd]=[0 0 o,[CV]=[o 1-b 0],be[0, 1] (12)
g 0 1 a* 0 1 p* 0 1

where f and a are model parameters with arg(f) ~ 0 for surface scattering and
arg(a) =~ xm for double-bounce scattering. In Freeman and Durden’s 3-component de-
composition, b is set to 1/3. However, for the purpose of the pseudo quad-pol image
reconstruction, we set b = 0 [12,14]. According to the general CP expression in (6), scat-
tering models in (12) are synthesized as follows.

IBI? ﬁ] a2 a 1+05]x2  05xy* ]

Clepr = J[C = J[C]ep =

cder =[50 ) tealen =[98 St =[5 20 o] 03)
Then the general CP covariance matrix can be expanded as

C; = fsc[Cslep + faclCalcp + fuclCulcp (14)

where fi, fac, and f,. are expansion coefficients. This decomposition should be per-
formed under the constraint that the ratio of the total backscattered powers of the FP and
the CP data is known. Otherwise, the CP decomposed powers cannot be related to the FP
decomposed powers. Only when |x|? = |y|?, which corresponds to the CP modes with
either 8 = /4 or y = xm/4, the decomposed powers can be expressed as a function of
(ISgv|?). In this case, the total powers of the FP covariance matrix and the formalized CP
covariance matrix are equal by assuming reflection symmetry.

We assume that the CP decomposed volume scattering power is equal to that of FP,
i, foe = fy = 2(|Suy|?) (refer to (3) in [14]). Then, (14) can be solved following the Free-
man and Durden procedure. When Re((C;,)) is positive, surface scattering is dominant
and we let @ = —1. When Re({C;,)) is negative, double-bounce scattering is dominant
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and we let § = 1. It is easily derived that the decomposed powers, represented as a func-
tion of {|Syy|?), are

(if Re({C;2)) >0 thena=-1 (if Re({C1,)) <0 thenf =1
XY — |Z|? | XY —|Z|?
Pac = 25y oo Po=2gmr—rrs
X +Y + 2Re(2) or X +Y —2Re(2) (15)
' P =3fc = 6(ISuvl*) I P =3fic = 6{ISuvl?)
k Py = span, — Pyc — Py k Pyc = span, — Py — P

where

X =(Cyy) — 3<|SHV|2)
Y =(Cy3) — 3<|SHV|2>
Z = (C12) — {ISuv|*)xy*

span, = (Cy1) + (Cy3). Py, Py, and P, are the surface, double-bounce, and volume scat-
tering powers of CP data, respectively. Note that this solution is only valid for the case
when |x|? = |y|? ie, |x] =|y| = 1. Then N can be updated by (16), which is embedded
in the iteration procedure.

N = 4(2Pgc + Pyc) /Pyc (16)

4.4. The Iterative Solving Approach

By assuming reflection symmetry, we can obtain 3 equations from (6) for each pixel.
However, we have four unknows, i.e., {|Syul?), {ISyv|?), {ISuv|?), and (SyuSyv). When
the reconstruction model is further considered as the fourth equation, {|Syy|?) can be
solved by an iterative approach, as the procedures introduced in [7-13]. These studies
were only discussed for the typical linear- or circular- transmit CP mode.

Based on the unified CP descriptor and the reconstruction model in (9), the iterative
approach for solving (|Syy|?) for the mode with |x| = |y| is summarized as below.

Step 0: Initialization

o (G
@ e -
1—sg.|pw|
Savl? = ((C11) + (C.
(SuvI®) o) = ((C11) + (C32)) % N(O)+(|x|2+|y|2)(1—sgc|p(0)|)
Step 1: Iteration
B (Cr2) = (ISuv ) pyxy*
Pa+1) =
\/((Cu) - (|5Hv|2)(i)|x|2)((czz) - (lSHV|Z>(i)|y|Z) (18)

1 —sgc|pgsn|
Nasny + (x|2 + ly1D(1 - Sgclp(i+1)|)

where i =0,1,2 - is the iteration number. For the methods in [7-11], sg. =sg =1, as
listed in Table 1. For the decomposition-based reconstruction model [12], sg. =
sign(Re((C;;))). N varies and updated according to different models. For the Nord et al.
[8] and the Li et al. [11] models, N can be updated easily through the constructed FP co-
variance matrix at each iteration. For the decomposition-based method in [12], the model
parameter N is updated by the three-component decomposed-powers, which are a func-
tion of the cross-pol term (]S, HV|2)(i)- The updating method has been introduced in Section
4.3. Given an estimated value for (|Sgy|?)., the pseudo quad-pol data is constructed as

<|SHV|2)(L'+1) = ((Ci1) +(C32)) X
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(C11) = (ISuvl®)clx|? 0 (Ciz) = (ISuvl*)exy”
Cpseudo—quad = 0 2(|5HV|2>C 0 (19)
(Ciz) = (ISuvl®)ex™y 0 (Ca2) = (ISuv[®)clyI?

The iteration usually converges after several steps. However, the estimated cross-
polarized term is often overestimated [7-9,14]. In the next section, we propose a least
squares error estimation framework to optimize (|Syy|?) for all CP modes.

5. Pseudo Quad-Pol Image Reconstruction by Using the Least Squares Estimation
5.1. Least Squares Objective Function

The LS estimation is performed in a local window, and can be applied to both multi-
look and single-look data. However, if the multi-look data is used for the LS estimation,
the reconstructed pseudo quad-pol image may be over-filtered. Therefore, we use the sin-
gle-look complex data to fit the reconstruction model. Assuming that an optimal cross-
polarized term (|Syy|®) exists, then for each pixel in the window, the system of non-linear
equations is

ISunl? = Ciq — {ISuvl®)x/?
|5vv|2 =0Cp — (ISHV|2>|y|2

SuuSyv = Ciz — {ISuv|*)xy”* (20)
{ISuv]?) _ 1—sg.lpl
|Suul? + 1Syvl? N

where p is the local co-polarized correlation coefficient, as defined in (10). Substituting
the first 3 equations in (20) to the last one, a least squares error objective function is ob-
tained for {|Syy|?), as follows.

n

(1Sivl?)e = argmin " ((ISuv N
(ISmvl?) 4= (21)

~ (spancgy = (ISuvl?)(xl? + Y1) (1 = sgeloD)

where i is the i-th pixel in the local window, n is the window pixel number, and (|Suy|?).
is the LS estimate for the problem. The local window can be either square or non-square,
if an edge-aligned non-square window as that in [22] is used, image texture information
will be better preserved. The LS solution {(|Syy|?). is for the center pixel of the window.
After optimization, the reconstructed FP covariance matrix is obtained by (19).

In the LS model function, since pixels in a local window are used to find the best
fitting parameter, N should also be an average estimate from the local window. In this
study, we do not consider the empirical models, because they are related to specific ob-
servation scenarios. The variable N method is not applicable to the LS estimation because
N needs to be a fixed number. The Souyris et al. model [7] can be integrated into the LS
objective function since the model parameters are constant, with parameter settings as
sg. =1 and N = 4. For the decomposition-based model, sg. = sign(Re({C;,))) and N =
4(2P4¢ + P,)/Pyc, where Py, and P, are the decomposed powers from the CP data. In
[14], we proposed a new method to give a priori estimate for N based on the linear mt/4
mode. In [19], the decomposition was extended to a general case. Therefore, in this paper,
the decomposed powers are used to estimate N.

5.2. The Decomposition-Based Approximation to the Constant N

N is a parameter indicating the ratio between double-bounce and volume scattering
components. The iterative approach updates N based on the intermediate result of
(|Suv|?). For the LS estimation, N should be a constant. In [20], a CP decomposition was
proposed for the circular CP mode, where the single scattering mechanism is modeled by
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the symmetric scattering type angle a;. In [19], we generalize this decomposition to the
general CP case, but leave one degree of freedom, i.e., F, in (14) in [19], for the volume
scattering model, and take it as an argument for the decomposed powers. In this study,
when approximating N, let F, = 1. The reasons are as follows. (1) The decomposition-
based reconstruction model was proposed with F, =1 [12]. (2) The volume scattering
model has the same degree of polarization of 1/3 for all the CP modes which are with
balanced transmit wave channel amplitudes (i.e., |E;,| = |E;y ). Suppose the decomposed
powers from the a;-based decomposition are Py, and P, respectively, for the double-
bounce and volume scattering components. Then an approximation to N is obtained by
(16).

5.3. Solution Constraint

The cross-polarized term (|Syy|?) should be optimized under constraints. In [14], we
apply 2 conditions for (|Syy|?), which can be easily extended to the general CP case.

(1) The polarization intensity should be larger than 0, and in general the cross-polar-
ized intensity is smaller than the co-polarized intensities. Based on (6), it follows that
{|Sgv|?) should be estimated in the interval

[0 min( (C11) (C32) )]
A +1x» A+1y»

We tested this on several RADARSAT-2 and ALOS-2/PALSAR data sets for the linear
1t/4 mode, and on average 98.8% pixels are within this interval.

(2) In the model-based target decomposition, the decomposed volume scattering
power B, = 6(|Suy|?) should be smaller than the total backscattered energy span =
(ISuul?) + 2¢ISuv[?) + (ISyv|?), from which it follows that 4(|Suy|*) < (|Suul?) + (ISwv|?).
Substituting {|Syy|?) and (|Syy|?) by the CP covariance elements (Cy;) and (C,,) in (6),
we obtain

(Ci1) +(C22)

Suvl?) < ————
ISivl®) < 4 T s P

By using the same data sets as those used in the last test for the first condition, 98.2%
pixels satisfy this condition.
In summary, the cross-polarized term should be estimated in the interval

[0 min( (C11) (Cz2) (Ci1) +(Ca2) )]
@+1x» A+ly1» 4+ Ix12+ |yl

(22)

We use the Fuzhou data for illustration, percentage of pixels that satisfy this con-
straint is shown in Figure 4 for various CP modes. It shows that when the transmit wave
is balanced in amplitude, i.e., 8 = £7/4 or y = tm/4, the linear CP mode has the lowest
agreement and the circular mode the highest, but the difference is very small. When the
transmit wave is imbalanced in amplitude, i.e., 8 # +7/4 and y # *m/4, a decreased
satisfactory is observed, and the percentage decreases with channel imbalance increasing.
When the channel imbalance increases, the neglected terms in (5) by assuming reflection
symmetry gradually becomes comparable to the cross-pol term, thus resulting a decreased
percentage. However, in any case, the pixels falling in the interval take part in more than
96.5%.
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Figure 4. Percentage of pixels (the Fuzhou data) that satisfy the bound constraint for two types of CP cases. (a) Transmit
waves with balanced amplitudes, (b) transmit waves with imbalanced amplitudes.

6. Experiments

The LS-based methods are applied to the single-look complex data, and the estima-
tion is performed within a 7 x 7 square window. The iterative methods are applied to the
multi-look data where a7 X 7 sliding window is used for speckle reduction. F, is set to
1 for the symmetric scattering type-based decomposition.

The pseudo quad-pol imagery reconstruction can be implemented via the combina-
tion of the reconstruction models and the LS-based or the iteration-based solving ap-
proach. The reconstruction model can be with either constant N, which is a pre-defined
parameter, or variable N, which is updated during the iteration procedure. In Section 4.1,
we formulated the reconstruction model and presented both the empirical and theoretical
model parameters in Table 1. The empirical model is closely related to the observation sce-
narios and can only be applied to areas with a single terrain type, so we do not include the
empirical model in the experiments. The Nord et al. variable N model needs initial values
for the iterative approach and is sensitive to the initialization [9], which cannot be embedded
in the LS estimator. Thus, we only consider two reconstruction models, i.e., the N = 4
model [7] and the decomposition-based model [12]. These two models can be combined
with both the LS estimator and the iterative approach. For the iterative approach, different
updating strategies can be applied to the model parameter N, either constant or variable
with different initial values. Hence, from the explanation above, we consider 6 reconstruc-
tion algorithms, that is, the LS estimators with Souyris’s and Yin’ model parameters, the
iterative approaches with constant Souyris’s and Yin" model parameters, and the iterative
approaches with Yin's model in which N is variable and initialized with N = 4 as well as
initialized by the CP a;,- based decomposition method. The above algorithms are denoted
in turn as LSN4, LSND, IterNC4, IterNCD, IterNV4, and IterNVD, respectively.

Experiments are conducted on the following aspects: (1) performances of the iterative
and LS-based methods, (2) reconstruction accuracies of the reconstruction models, (3) re-
construction accuracies under different CP modes, and (4) comparison of the perfor-
mances of CP data, pseudo quad-pol data, and FP data for multi-temporal agriculture
field classification. Three CP modes, i.e., the linear /4 mode (6 = 1t/4, y = 0), an elliptical
mode (8 = /4,y = 1/8), and the left circular mode (6 = n/4, y = /4), are used for
demonstration. For these CP modes, the transmit waves are balanced in amplitude, i.e.,
[x| = |yl, so the variable-N algorithm is applicable. The linear n/4 and circular modes are
commonly considered imaging configurations. They are included so as to get comparable
results with those found in the open literature.
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Reconstructed results for the line segments in Figure 2 are given in Figure 5. It shows
that in general the results from the decomposition-based model is better than those from
the N = 4 model, no matter which solving approaches is used. For the variable N meth-
ods, we again verify that the initialization affects the reconstructed results, especially for
the circular CP mode, as can be observed from the last two rows in Figure 5. Initial values
given by the as-based decomposition generates better results than the initial guess with
N = 4. For the iterative methods with constant N, it shows that the N = 4 model under
the circular mode does not performs well for the ocean surface, as can be observed in the
IterNC4 plots that the blue profiles for the ocean surface has larger variations. Results
show that the iterative method with constant-N estimated by the a-based decomposi-
tion outperforms the other methods under the circular mode for the ocean surface. Com-
pared to the iterative methods, the LS estimator is superior for reconstruction of the urban
area data when combined with the decomposition-based model. In the LS-based method,
the linear CP mode gives lower estimates for the cross-pol term as compared with the
elliptical and circular CP modes for land areas. From Figure 5, it shows that the constant
N = 4 iterative method is not suitable for ocean surface reconstruction, especially in the
circularly polarized mode. Comparatively, the constant-N method with N estimated from
the a;-based decomposition (IterNCD) has the best reconstruction accuracy for ocean sur-
face under the circular mode. While for land areas, the LS-based method LSND has the
best result. However, for the urban area without obvious rotation, all methods tend to
overestimate the cross-pol term. Further, results in Figure 5 also show that the decompo-
sition-based model fit the urban areas better in both iterative and LS-based solving ap-
proaches, which is because the typical reflection asymmetry model, i.e., the helix scatter-
ing models, also satisfies the decomposition-based reconstruction model. However, the
reflection asymmetric models do not agree with the N = 4 model.
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Figure 5. Estimate profiles for {|Syy|?) along the transect lines in Figure 2. (a) ALOS-2/PALSAR San Francisco data, where
the four transect lines indicate data from ocean surface, forests, urban areas without obvious rotation, and tilted urban
areas, respectively; (b) RADARSAT-2 Fuzhou data.

Evaluation in terms of root mean square errors (RMSE) and percentages of the pixels
that deviate from the real values by 5% of the total range are given in Table 2. (|Syy|?)
directly affects the reconstruction performances and CPD is associated with the identifi-
cation of scattering mechanisms. RMSE is calculated for both {|Syy|?) and CPD, and the
pixel percentage of deviation is calculated for CPD. In Table 2, for each assessment index,
the first two methods that are with best estimation results are highlighted. Reconstruction
are performed under the aforementioned 3 CP modes for the test data sets. In total, each
method is quantified 27 times. Results show that for the LSND, LSN4, IterNCD, IterNC4,
IterNVD, and IterNV4 methods, the frequencies that those methods perform best are
21/27,1/27,10/27, 8/27, 13/27, and 2/27, respectively. The LS estimator with the decompo-
sition-based model can provide the best overall results, and the variable-N method ini-
tialized by parameters from the as-based decomposition is in the second position.

Table 2. Quantitative evaluation for log(|Syy|?) and CPD by using the root mean square error (RMSE) and the percentage
of pixels deviating from the real values by 5% of the total range. Three CP modes illustrated are (6 = m/4,x = 0),
(6 =1/4,y =m1/8),and (0 = /4, x = 1/4).

Data cp Rec. Errors LSND  LSN4 IterNCD TIterNC4 IterNVD IterNV4
Sets Modes

RMSE of log(|Suyl?)  1.161 1528 1361 1.403 1.289 1434
¥=0  RMSE of CPD 1211 1.290 1.229 1.330 1.192 1.235
|CPD-CPD |>7/10 28.9% 36.7% 32.8% 39.8%  31.1%  34.4%
ALOS.2 RMSE of log(|Syyl?)  1.247 1.559 1323 1.300 1.358 1599
oFdaa  X=m/8 _RMSEof CPD 1.484 1592 1511 1.649 1531 1567
|CPD-CPD [>7/10 37.8%  463%  395%  413%  403%  423%
RMSE of log(|Suyl?)  1.297 1.467 1.360 1.338 1.501 1574
x=m/4 RMSE of CPD 1.106 1.244 1.159 1121 1.140 1.141
|CPD-CPD [>7/10 41.9%  414%  43.3% 431%  441%  42.4%
RMSE of log(|Syvl?)  0.637 0.781 0.658 0.762 0.658 0.805
¥=0  RMSE of CPD 0.639 0.698 0.662 0.733 0.635 0.662
f:oi Fu- | CPD.-CPD |>7t/10 13.9% 16.0% 16.3% 19.3% 15.7% 16.8%
oy RMSE of log(|Suyl?)  0.608 0.788 0.571 0.638 0.680 0.902
x=m/8 RMSE of CPD 0.726 0.756 0.715 0.765 0.729 0.755

| CPD-CPD |>7/10 22.9% 25.1% 20.2% 21.1% 21.9% 23.6%
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RMSE of log(|Syv|?)  0.534 0.711 0.535 0.827 0.783 0.941

x=m/4 RMSE of CPD 0.578 0.630 0.591 0.583 0.576 0.588
|CPD-CPD |>71/10 20.2% 20.3% 21.6% 21.8% 20.4% 19.7%

RMSE of log(|Syv|?)  0.435 0.485 0.461 0.502 0.439 0.469

¥=0  RMSE of CPD 0.737 0.825 0.760 0.857 0.718 0.753

|CPD--CPD |>7/10 20.9% 24.1% 24.6% 28.9% 23.6% 25.2%

RS2 WE RMSE of log(|Sgvl|?)  0.467 0.527 0.421 0.428 0.454 0.543
doca x=m/8 RMSE of CPD 0.791 0.783 0.746 0.774 0.772 0.782
|CPD-CPD |>71/10 34.0% 36.3% 29.4% 30.8% 31.9% 34.1%

RMSE of log(|Syy[?)  0.390 0.493 0.488 0.427 0.580 0.606

x=m/4 RMSE of CPD 0.571 0.597 0.574 0.560 0.551 0.575

| CPD~CPD |>71/10 29.2% 27.7% 30.0% 29.6% 27.6% 26.6%

Rec. Errors=Reconstruction errors; CPDc=the reconstructed CPD; SF=San Francisco; RS=RADARSAT; WF=Wallerfing.
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Figure 6. (a) Scatter plots of the reconstructed CPD from the LSND method. (b) Relative errors of the reconstructed log(|Suv!?),

defined by Ilog(lS""lz)_log(lS”"lz)ci. ALOS-2/PALSAR San Francisco data.

log(ISuv|?)

In the LSND method, for the linear 7/4 mode, the elliptical model with (6, x) =
(m/4,7/8), and the circular mode, on average 0.98%, 0.6% and 0% pixels, respectively,
cannot find minimums in the solution constraint. With the LSN4 method, for the 3 CP
modes, 1.17%, 1.14%, and 1.83% pixels cannot find minimums within the constraint. This
indicates that the decomposition-based model is more accurate to fit the CP data under
different modes.

The reconstructed accuracy of CPD is another important factor to evaluate the recon-
struction performance. On average, the LSND method performs best in phase reconstruc-
tion. By using the L-band ALOS-2/PALSAR data for illustration, CPDs estimated by LSND
for the three CP modes are shown in Figure 6a. It shows that under the linear 7t/4 mode,
most pixels distribute along the diagonal line, indicating a superior reconstruction result.
The reconstructed {|Syy|?) is evaluated in Figure 6b in terms of the relative error. Similar
analysis results can be found in [14] (see Figures 5 and 6) for the C-band RADARSAT-2
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data over the same test site for the Linear CP mode. Figure 6b shows that for the urban
area without obvious rotation, the linear 7t/4 mode has smaller relative errors compared
to the other two modes, but still the relative error of city areas is larger than those of ocean
surface and forested areas. For the rotated urban area, the linear 7/4 mode has the larger
relative errors and in contrast the circular mode performs best. Since for this test set, the
rotated urban area and the forested areas are characterized by a similar cross-pol and co-
pol ratio, i.e., ratio between the cross-pol intensity and the sum of co-pol intensities, it is
expected that the circular mode would also perform better for the forested areas. Relative
errors of the reconstructed log(|Syy|?) for the areas outlined in Figure 2c are listed in Ta-
ble 3. The quantitative result is consistent with the explanation for the results shown in
Figure 6b.

Results in Figures 5 and 6b, and Table 3 show that a same method performs differ-
ently for different terrain types when the CP mode varies. Since from Table 2, it is shown
that apart from the LSND method, the IterNCD and IterNVD methods have relatively
better overall reconstruction accuracies, in Table 4 we further show the relative errors of
(ISuv|?) for those methods. In combination with the profiles in Figure 5, it confirms that
the IterNCD method is favorable for the circular mode to reconstruct the scattering coef-
ficient of ocean surface. The combination use of the linear CP mode and the LSND method
is better than any other combinations of the CP modes and the reconstruction algorithms
for the urban areas which do not possess obvious rotation angles. For the forested and
tilted urban areas, reconstruction results obtained from the circular mode are better, espe-
cially when LSND is used.

Table 3. Relative errors of the reconstructed log{|Syy|?) for the outlined areas in Figure 2c by using the LSND method. The CP

modes are with 6 = 7t/4.

CP Mode Areas Ocean Forest Urban Area 1 Urban Area 2 Tilted Urban Area
x=0 0.1607 0.1470 0.2548 0.5542 3.7927
x=1/8 0.1602 0.1305 0.2965 0.6452 1.9128
X =Tm/4 0.1410 0.1198 0.3746 0.7713 1.4856

Table 4. Relative errors of the reconstructed log(|Syy|?) for the outlined areas in Figure 2(c) by using (a) the IterNCD method, and
(b) the IterNVD method. The CP modes are with 6 = /4.

CP Mode Areas Ocean Forest Urban Area 1 Urban Area 2 Tilted Urban Area

(a)

X= 0.1761 0.1310 0.3414 0.7410 3.4842

x=m/8 0.1390 0.1197 0.3658 0.7551 2.5697

x =T/4 0.1019 0.1541 0.4251 0.7931 1.6888
(b)

X= 0.1708 0.1227 0.3065 0.7002 3.0527

x =/8 0.1759 0.1203 0.3549 0.7471 2.3744

x =T/4 0.1886 0.1556 0.4343 0.8200 1.4945
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Table 2 shows that for all methods, the deviation percentage which evaluates the
agreement of reconstructed and real CPDs is smallest in the linear 7t/4 mode. In combina-
tion with the scatter plots in Figure 6a, we found that the /4 mode outperforms the other
two CP modes in the reconstruction of the phase term. RMSE of CPD is larger for the /4
mode is due to the period of 2m radians phase. When the real CPD is close to £, a small
perturbation on the estimated {|Syy|?) will lead to dramatic changes of +27t in the esti-
mated CPD (e.g., from —7t to 7t or from 7 to —7), as can be observed in Figure 6a that in the
1t/4 mode a certain amount of pixels lies in the corners of (-m, 1) and (7, —m). This results
in larger RMSEs. For the other two test sets in Figure 2, distributions of the CPD estimated
by LSND under the 3 CP modes are quite similar to those in Figure 6a. The omitted terms
in (5) by assuming reflection symmetry has different impacts on CPD when the CP mode
varies. In Figure 7, assuming that (|Syy|?) is perfectly reconstructed, we show variation
of the deviation percentages of the reconstructed CPD with the varying CP modes. It
shows that for all test data sets, when the transmit wave channel amplitude is balanced,
the estimated CPD is least affected by the assumption of reflection symmetry in the linear
mode. The case that the channel amplitudes of the transmit wave are imbalanced is also
tested. We found that the more the CP mode is linearly polarized, the closer the recon-
structed CPD is to the real value. This implies that if applications are based on the pseudo
quad-pol images and the algorithms applied subsequently are CPD-based, results ob-
tained from the linear 7/4 mode may be expected to be closer to that of the FP mode. For
example, if CPD is used to discriminate surface and double-bounce scattering such as in
the application of Freeman-Durden’s decomposition, the overall agreements in
|CPD|>m/2 between the FP data (ALOS-2/PALSAR SF data) and the pseudo-FP data re-
constructed by LSND are 88.75% and 84.72%, respectively, for the linear m/4 and circular
modes, and by IterNVD the agreements are 89.35% and 81.34%, respectively.
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Figure 7. Variation of the percentage of pixels that deviate from the perfect reconstruction by 5% with the varying CP
modes. (a) The CP mode with |x| = |y|. (b) The CP mode with |x| # |y]|.

Another application is carried out for example, which is the crop type classification
by using the RS-2 Wallerfing data. The iterative Wishart classifier [23] is used to perform
the classification, with 5% pixels randomly selected as the training samples based on
ground data. For each data set, same training samples are used for all the subsequent ex-
perimental implementation. Although several studies [3,4,24] have been conducted on the
comparison of the performances of CP, pseudo quad-pol, and FP data for terrain type
classification, there is rare study giving a clear illustration on the variation of the overall
classification accuracies under different circumstances. In Figure 8, by using the Wal-
lerfing data acquired by RADARSAT-2 on May 28, 2014, we tested the classification per-
formances of the reconstructed data, the original 2 x 2 CP covariance matrix data, and the
original 3 X 3 FP covariance matrix data. The reconstructed (|Syy|?) is assumed to be
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TXmin With 7 € [0.1 1], where X,;, is the upper bound for the cross-pol term in estima-
tion. By this means, the pseudo FP data is accordingly reconstructed. It shows that com-
pared to the original CP data, the reconstructed data with the accurately estimated
(ISyv|?) greatly improve the classification accuracy, especially for the linear CP mode, in
which case the classification accuracy is improved by 5.3%. For the circular mode, when
the estimated (|Syy|?) is too large, the classification accuracy will deteriorate dramati-
cally. In Figure 8, we did not give the classification rates in the cases of {|Syy|?*)c = 0.9Xmin
and (|Syv|?)ec = Xmin for the circular mode, because in both cases the term {|Syy — Syv|?)/
2 of the reconstructed coherency matrix is close to 0 or even negative for a certain amount
of pixels, for instance, 15% pixelsinthe r = 0.9 caseand 23% inthe r = 1 case. However,
if the estimation is accurate, Figure 8 shows that in general the circular mode is better for
agriculture field classification.

Next we consider the performances of the pseudo quad-pol data sets reconstructed via
the test methods for multi-phase crop classification. The overall classification accuracies of
the 6 methods, and those of the original CP as well as the FP data are shown in Figure 9. We
observe that the circular mode performs best, which is in accordance with the analysis in
Figure 8. However, for the multi-phase data sets, due to different phenology periods and
disturbance of environmental changes, the best method evaluated in terms of overall classi-
fication accuracy varies. However, in general, data reconstructed by the iterative approach
with the decomposition-based model provides comparatively better and stable classifica-
tion accuracies if the Wishart classifier is applied. It also shows that classification carried out
on the reconstructed data is better than that on the original CP data.
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Figure 8. Variation of the overall classification accuracies with different polarimetric data sets,
including pseudo-FP data with different reconstruction accuracies, where the estimated (|Sgy|?)
is designed to be varying between [0.1Xmin Xmin], the pseudo quad-pol data with perfectly esti-
mated {|Syv|?), the2 X 2 CP covariance matrix data, and the 3 X 3 FP covariance matrix data
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Figure 9. Overall classification rates for the agriculture field by using the pseudo quad-pol data reconstructed by the LS-
based and iterative methods, the original 2 x 2 CP covariance matrix data, and the FP data. Data acquired on (a) 20140528,
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7. Summary and Discussion

In this study, based on the formalized CP descriptors which was one of the recent
developed works, we unified the current pseudo quad-pol imagery reconstruction models
into two frameworks, which are the LS error model and the iterative approach, to estimate
the FP scattering coefficients. By inducing this formalism, the system of nonlinear equa-
tions is parameterized by the transmit wave coefficients, and the most important is the co-
polarized coherence has a unified form for the general CP mode. By this means, the two
unknown solving approaches can be combined with any reconstruction models (either
empirical or theoretical N models) for an arbitrary CP mode. The decomposition-based
variable N method is also extended for the CP mode which is with balanced transmitted
wave channel amplitudes.

Experiments were carried out on 6 data sets to demonstrate the performances of re-
construction models and solving approaches. On average, the decomposition-based
model is more adaptive and provides better results than the N =4 model. Results
showed that by using a same reconstruction method the linear mode has better recon-
struction accuracy in the cross-pol term than the circular mode for urban areas. While the
circular mode always performs better for areas not dominated by double-bounce scatter-
ing, especially for ocean surface. If evaluated in terms of CPD, the linear /4 mode always
outperforms the circular mode. We also carried out same experiments on several other
data sets in addition to the data sets presented in this paper, and similar conclusions were
obtained.

Most reconstruction algorithms, including the methods summarized and extended
in this study, were proposed based on reflection symmetry. If backscatter of scatterers
does not follow the reflection symmetric assumption, then the reconstructed results will
have a larger estimation error. This is caused by the omitted terms, which are assumed to
be 0 by reflection symmetry but actually are comparable to the cross-pol term, thus lead-
ing to larger relative errors. The reconstruction model parameter N is the key factor for
good reconstruction. If N is accurate, both the LS-based and the constant-N iterative meth-
ods can achieve a perfect reconstruction. At this point the variable-N method is no longer
preferable. However, except the empirical N, there are only 2 theoretical methods that can
give a prior estimation for N, i.e., the N=4 and the N from the a;-based decomposition.
The N=4 model applies well for areas dominated by volume scattering, but this applica-
tion situation is very restricted. N estimated from the as-based decomposition is more
adaptive to the observation scenarios. However, since the CP mode only measures partial
information of the backscattering space, the difference of the decomposed powers from
CP and FP data is inevitable. Improvement on the accuracy of N still needs further stud-
ies, e.g., by developing semi-empirical models.
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