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Abstract: The main challenge encountered by Mediterranean winegrowers is water management.
Indeed, with climate change, drought events are becoming more intense each year, dragging the
yield down. Moreover, the quality of the vineyards is affected and the level of alcohol increases.
Remote sensing data are a potential solution to measure water status in vineyards. However,
important questions are still open such as which spectral, spatial, and temporal scales are adapted to
achieve the latter. This study aims at using hyperspectral measurements to investigate the spectral
scale adapted to measure their water status. The final objective is to find out whether it would be
possible to monitor the vine water status with the spectral bands available in multispectral satellites
such as Sentinel-2. Four Mediterranean vine plots with three grape varieties and different water
status management systems are considered for the analysis. Results show the main significant
domains related to vine water status (Short Wave Infrared, Near Infrared, and Red-Edge) and the
best vegetation indices that combine these domains. These results give some promising perspectives
to monitor vine water status.

Keywords: vineyard; water status; hyperspectral measurements; stem water potential

1. Introduction

A moderate hydric deficit is essential to ensure vigor of vineyards and to get both high
yield and quality of vineyards [1,2]. This is needed to restrict vegetative development and
foster the growth of berries, especially between the fruit set and veraison [3]. From veraison
to harvest, the optimal water status depends on the desired type of wine. Without water
restriction, the produced red wine will be herbaceous, diluted, and acidic, whereas a severe
deficit will result in red wines that are excessively tannic, hard, astringent, and alcoholic [3].
Several adaptation strategies have recently been developed to deal with this water con-
straint issue. Long- and short-term approaches were explored and different scenarios have
been considered, such as relocating some vineyards to a more adequate climate, developing
resistant varieties [4], improving soil or cover crop management [5–7] and preharvesting.
However, all these farming practices have different effects according to—among other
factors—the terroir, the way they are implemented, or the vine’s technological stage. Some
other solutions involve compensating for the lack of water, improving its retention or use,
and reducing the impact of water stress on the quality of the grapes. Moreover, climate
change in the south of Europe has led to an increase in temperatures and a decrease in
rainfall during summer [8]. This evolution has led to an increase of water constraint for
grapevines. Therefore, a fast and accurate identification of fields and regions suffering
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from water stress is important to set up efficient countermeasures [7]. Such information
could be a critical asset in terms of water management, for example, when restrictions
are applied to prioritize areas of greatest need. It could also be useful in the context of
plot selection, when preparing allotments and choosing plots that should be harvested
together [9,10]. In Europe, less than 30% of the wine-growing areas are presently irrigated
as opposed to more than 80% in the New World (Argentina, Australia, Chile, New Zealand,
etc.). However, this proportion is constantly increasing over the years and after further heat
wave episodes [11]. At the same time, in order to preserve the most important but also the
most vulnerable resource that is water, restrictions are set up to control and limit water use.
In addition, to preserve the specific characteristics of some French Appellation d’Origine
Contrôlée (AOC) wines, irrigation approvals are granted exclusively at particular times
and with respect to important water stress.

Whether it is to control quality and quantity or to limit the impact of droughts, it is
therefore necessary to quantify water stress levels in vineyards. To achieve this, measure-
ments are usually made in the field [12,13]. A common technique involves measuring
the stem water potential [12–16], which provides a better indication of the impact of soil
water content on grapevine water status than leaf water potential (when leaves are fully
exposed to sunlight) [14]. Other measurements can be done using stomatal conductance
or a sap flow sensor [12,13]. In any cases, measurement of water potentials is always
time consuming because of the high number of measurements required to get intra- and
interplot variability [13].

In this context, there is a particular need for new techniques that allow us to accurately
and efficiently map the vines’ water status. Among them, optical remote sensing seems
of particular interest because satellite sensors are available and already widely used in
agriculture. Multispectral images are now easily accessible in the context of the Copernicus
missions, thanks to the Sentinel-2 satellites [17,18]. Free access to the data set, combined
with its spectral (12 bands in the visible (VIS) to Short-Wave Infrared (SWIR) regions),
temporal (5 days revisit time with both satellites A and B), and spatial resolution (10 m to
20 m) makes it a powerful and versatile tool. Several recent studies have demonstrated the
relevance of Sentinel-2 images to detect irrigated crops [19] or estimate cotton water con-
sumption [20], for example. Some studies focused on the monitoring of vineyards [21,22],
the impact of heatwaves on irrigated vineyard [23] or their water status [24]. This last
recent study shows interesting correlations between stem water potential and Sentinel-2
images. However, only 6 vegetation indices (VIs) were tested and none of them included
red-edge bands, for example. It is the only study, to our knowledge, to have tested the
link between stem water potential (SWP) and Sentinel-2 images with a large number of
commercial vineyards throughout the season.

Overall, knowledge needs to be extended to other conditions/varieties/territories to
serve as a basis to set-up a robust and efficient tool to monitor vine water status. Moreover,
we think that it is necessary to evaluate if the spectral bands available in the satellites are
really efficient for identifying vineyard water status.

In order to do that, hyperspectral data are of particular interest. They can improve
our understanding of how plants’ sanitary status affects the whole range of spectral
signatures and allows us to highlight the most sensitive and reliable wavelengths or
spectral domains. Some previous studies focused on the whole spectrum to predict leaf
water content in maize [25] or grapevine [26–28]. Most of them relied on vegetation
indices (i.e., a mathematical combination of the reflectance at two or more wavelengths)
for maize [29], trees [30], wheat [31], millet [32], sorghum [32], cowpea [33], bean [33],
sugar beet [33], and grapevine [34,35]. Recent works using hyperspectral measurements
focused on finding the best wavelengths or the best combination of wavelengths related to
water status [26–28,34–36]. These studies often highlight wavelengths from SWIR, which
is as expected since it is the location of the water absorption bands. According to this
literature, the most promising vegetation indices (VI) are either directly related to water
content or indirectly related through their impact on nutrient status or on cell composition,
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for example. These studies were carried out on a single plot in a field or in experimental
green houses.

As hyperspectral sensors are still hard to deploy at a broad scale or for a potential
operational service (sensor, processing, and storage costs), we believe that the acquired
knowledge could, in turn, be used to process multispectral images more efficiently, target-
ing the bands that best fit with the most pertinent spectral domains.

This study is part of a global project to monitor the water status of vines by remote
sensing. It is the first phase that should enable us to validate our global understanding of the
spectral response of the vine to different water statuses. In order to switch from hyperspectral
to multispectral scale, several measurements were made from the leaf to the canopy. Indeed,
the transition between hyper- and multispectral is not so obvious since there are many issues
such as the spatial and spectral resolution of multispectral sensors. This paper focuses on
the link between SWP values and hyperspectral reflectance of the leaf as it is the first step to
understand the vines’ spectral answer under different water statuses.

In this paper, we use hyperspectral data to extend and potentially validate knowledge
over several vine plots with three varieties of grapes and over a more pertinent set of data
(different stages of development, from pea-size to ripening, and with different irrigation
schemes). The main goals are (1) to find out which spectral domains best explain the water
status in vines and (2) to define which vegetation index would be the best to accurately
monitor water status in vineyards. These results are a first step towards a more global
and challenging objective, which is to target the most relevant bands in multispectral
sensors, and could allow for the set-up of an operational and efficient tool to monitor vine
water status.

To achieve these objectives, four typical Mediterranean vineyards were monitored dur-
ing summer 2019. This study relies on the combination of two different field measurements:
hyperspectral leaves reflectance using an ASD FieldSpec 4 Hi-Res NG Spectroradiometer
in visible (VIS) to SWIR wavelengths (from 350 to 2500 nm) and water status measured
through stem water potential. The methodological approach explores both the reflectance
of leaves using raw wavelengths and data averaged by spectral domains. These features
are therefore used to search for correlations with stem water potential (SWP), which is an
indicator of the plant water status. The results highlight the best spectral domains related
to vine water status and the best vegetation indices for vine water status monitoring.

2. Materials
2.1. Study Sites

The study was conducted over four vineyard plots located in the Occitanie region
(Herault department) in the south of France (Figure 1). Plot A is located in La Livinière
in the Minervois AOC area near Carcassonne (43◦17′49.94′′N, 2◦37′05.82′′E); plot B is
located in Saint-Thibéry near Béziers and belongs to Protected Geographical Indication
(PGI) Côtes de Thongues (43◦22′36.82′′N, 3◦23′25.98′′E); plots C1 and C2 are located within
the Chapitre winery in Villeneuve-Lès-Maguelone near Montpellier (C1 43◦31′56.16′′N,
3◦52′03.85′′E and C2 43◦32′50.75′′N, 3◦50′29.43′′E). All the plots are managed in single
Guyot and ungrassed. The inter-row distance is approximately 2 m and the intervine plant
distance is approximately 1 m. Additional details for each plot are provided in Table 1.
Plot A benefits from a degraded Mediterranean climate with rainfall well distributed
throughout the year while plots B and C benefit from a typically Mediterranean climate
with a very significant amount of sunshine and relatively mild temperatures.

The vine variety planted in plots A and C2 is Syrah. This variety is cultivated all over
the world whatever the climate (France, Australia, South Africa, USA, etc.). Syrah has an
anisohydric behavior (i.e., it keeps its stomata open even in the case of water constraint),
which is favorable to photosynthesis in dry soil conditions but can be problematic in the
case of severe drought [37,38]. The Plot B variety is Chardonnay, which has the same
anisohydric behavior. On the other hand, the variety of plot C1 is Grenache, which has
an isohydric behavior that is well adapted to the Mediterranean climate (i.e., its stomata
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close as soon as the water content of the soil decreases) [37,38]. Vines could have evolving
behaviors fluctuating between the iso and anisohydric genotype, depending on their
development stage and climatic and soil conditions [39].

Figure 1. Locations of the four vine plots selected for study in the Occitanie region, France.

For each plot, A and B, three different irrigation schemes were monitored in order
to have a wide range of SWP values in the same plot at the same time (Table 1). C1 and
C2 were chosen as nonirrigated plots and were used for the last two weeks to complete
measurements on red varieties in addition to plot A (details are given further).

Table 1. Characteristics summary of the four vineyard plots.

Plot Variety Color Soil Typical Behavior Irrigation Conditions

A Syrah Red Shallow calcareous–silty Anisohydric Control (no irrigation),
W1 (low irrigation), W2 (high irrigation)

B Chardonnay White Deep sandy–loamy Anisohydric Control (no irrigation),
W1 (low irrigation), W2 (high irrigation)

C1 Grenache Red Clay–loamy Isohydric No irrigation
C2 Syrah Red Silty–clay Anisohydric No irrigation

2.2. Experimental Design
2.2.1. Irrigated Test Plots (A and B)

The first experiment on plot A was set up especially for this study while the second
on plot B was initially set up to determine the impact of water status on wine composition
and has been there since 2017. For both plots, drip irrigation systems were used and three
distinct areas were irrigated in three different ways: the first area was not irrigated (control)
in order to stress the vine as much as possible, the second one was irrigated just enough
to maintain a proper grape quality according to winegrowers (W1), and the third was
highly irrigated to maximize the yield (W2) (Figure 2, Table 2). For each irrigation scheme,
several subplots were defined for field measurements according to the Sentinel-2 pixels grid.
A subplot usually corresponds to a square of four pixels with a ground spatial resolution
of 10 m, except for the control area within plot B whose size is too small (Figure 2).

Irrigation was managed according to the expected type of wine and the vine develop-
ment stage, and was monitored for the two test plots (Table 2). Unfortunately, the irrigation
system installed in plot A broke down during the summer and some data related to the
amount of water supplied could not be recovered.
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Figure 2. Illustration of irrigated test fields with the three irrigation areas and the subplots’ locations
for measurements (A,B).

Table 2. Amount of water distributed for each tests plot (in millimeters). ND refers to no data.
(W1: low irrigation, W2: high irrigation).

Plot A Plot B

Control W1 W2 Control W1 W2

June 0 ND 14 0 15 25
July 0 ND 30 0 37 67

August 0 ND ND 0 25 33
Total 0 ND >44 0 77 125

2.2.2. Nonirrigated Plots (C1 and C2)

For each plot, a grid with Sentinel-2 pixels was created and six subplots (four pixels
of 10 m) were chosen to carry out measurements with the objective to be in areas that are
homogeneous in terms of vigor (Figure 3).

Figure 3. Location of measurements’ subplots in each of the nonirrigated fields (C1,C2).
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2.3. Field Measurements

Two measurements were carried out simultaneously during this experiment: (1) the
SWP was used to get the water status of vines, (2) the leaves’ reflectances were obtained with
a field spectrometer. Details on acquisition protocols will be given in Sections 2.3.1 and 2.3.2,
respectively. For each 20× 20 m subplot, both measurements were completed on 10 vines
chosen over three rows (Figure 4). Additionally, a Geo 7x GNSS(Trimble Geospatial Com-
pany, California, United States) receiver with accuracy ranging from 0.02 to 0.5 m was used
to precisely locate the vines and subplots in the field.

Figure 4. 20 × 20 m subplot with the locations of each targeted vine. SWP—stem water potential.

Measurements were carried out every two weeks starting from the middle of July
2019 up to the end of August 2019. This allowed us to cover vine growth from veraison to
harvest. Rainy days were avoided as much as possible for field measurements.

Rainfall and temperatures have been monitored for the whole period using data from
the Meteo-France (French national meteorological service’s) stations that were located
closest to the study sites. From Figure 5, one can see that plot A received a little more rain
than the other plots and the temperatures measured at this site were a little lower than at
the others (up to 5 degrees lower during the second week).

Figure 5. Diagram showing rainfalls and temperatures for the 3 locations in relation with measure-
ments periods (week 1 to 4). Tmean refers to the mean temperature for each plot.

Table 3 summarizes the measurements that have actually been carried out. Some leaf
reflectance measurements could not be carried out because of the climatic conditions.
Regarding Plot A, SWPs were missing on the fourth week due to time shortage and a lack
of availability of partner operators. Fortunately, measurements could be made on plots C1
and C2 to complete the data set for red varieties. The number of reflectance measurements
differs between days according to climatic conditions and, thus, time slots to acquire data.
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Table 3. Number of SWP and reflectance measurements acquired for each week and plot.

Plots Week1 Week 2 Week 3 Week 4
15–21 July 29 July–4 August 12–18 August 26 August–1 September

A
70 SWP

174 leaf reflectance
70 SWP

160 leaf reflectance
70 SWP

120 leaf reflectance 120 leaf reflectance

B
55 SWP

165 leaf reflectance
55 SWP

208 leaf reflectance
55 SWP

220 leaf reflectance
55 SWP

165 leaf reflectance

C1 60 SWP 60 SWP
60 SWP

108 leaf reflectance 60 SWP

C2 60 SWP 60 SWP 60 SWP
60 SWP

127 leaf reflectance

2.3.1. Water Status and SWP Data Set

• SWP data acquisition

The water status of each vine in the different subplots was assessed by measuring
the SWP using a Scholander pressure chamber, following the method described in [12,40].
One SWP measurement was taken per vine due to the time needed for all the vines.
The leaves were bagged with an insulating layer in the morning (between 09:00 and 11:00).
This leads to the closing of stomata and then to the balance of the sap between plant and
leaf. In the early afternoon (between 14:00 and 16:00), leaves were removed with their stem
and quickly set up in the pressure chamber. This step has to be done one leaf at a time,
as balance is broken as soon as the leaf is taken out. The actual measurement was then
made by cutting the tip of the stem and recording the pressure required to squeeze the first
drop of sap out of the stem.

According to this method, the higher the pressure, the more severe the water constraint.
It is usually accepted that the potential of free water with maximum availability is set to 0.
The value is converted from the positive pressure in bar applied to the petiole to extract
the sap to the negative pressure in MegaPascal (MPa) present within the petiole. The value
will decrease as the transpiration is high and the soil is dry [37] and, in case of drought,
it reaches very low values.

The relationship between measured pressure and actual water stress is not straight-
forward as it depends on both the development stage of the vine and the expected type
of wine. Optimal SWP as a function of those last two parameters have been defined em-
pirically [3] and three typical profiles are reported in Figure 6. Regarding white wines,
the aim is usually to have fruity aromas and a light wine, therefore, the plant should
not be overstressed to prevent berries from becoming too concentrated in sugar. On the
other hand, when considering full-bodied red wines produced for aging, a greater stress is
required so the plant produces more powerful and more concentrated aromatic compounds
in the berries.

Figure 6. Optimal SWP pathways to produce three distinct wines (adapted from [3]).
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• SWP data set description

Table 4 synthesizes SWP values acquired for all plots, to the extent of data with
both SWP and leaves reflectance measured on the same day. The SWP values range from
−1.64 MPa to −0.51 MPa, which covers almost the whole range expected from Figure 6.

Table 4. Synthesis of Stem Water Potential values for each plot. n—number of samples; MPa—
MegaPascal; STD—standard deviation.

SWP (MPa)

Data and Variety n Mean Max Min STD

All 118 −0.99 −0.51 −1.64 0.33
Plot B Chardonnay (white) 59 −0.75 −0.51 −1.32 0.20
Plots A and C (red) 59 −1.23 −0.72 −1.64 0.25
Plots A Syrah 36 −1.12 −0.72 −1.64 0.25
Plot C1 Grenache 11 −1.30 −1.17 −1.50 0.08
Plot C2 Syrah 12 −1.49 −1.32 −1.62 0.09

Figure 7 provides the temporal evolution of SWP with respect to the three optimal
pathways presented in Figure 6. SWP values for plot B are almost totally included between
the first two curves (i.e., plain yellow line and dashed red line, respectively), which means
irrigation was well controlled to produce a white, light wine (Figure 6) and fits with the
data gathered on the amount of distributed water (Table 2). Regarding plot A, SWP values
are included between the two lower curves (i.e., dashed red line and dash and dotted
brown line), except for the second week, possibly in relation to the breakdown of the
irrigation system mentioned in Table 2, which led to an overflow of water in the plot. SWP
for plot C2 ended up below the lower curve (i.e., dashed and dotted brown line), reflecting
the important water stress that occurred during the last week in accordance with the lack
of an irrigation system for red varieties.

The data of plots A and C were then analyzed together, as they reflect the typical
behavior of red varieties of plots without a suitable irrigation system to ensure correct
water status during the fourth week.

Figure 7. SWP variability for each week by plot according to optimal water courses (from Figure 6).
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2.3.2. Visible–Near-Infrared (VNIR)/SWIR Reflectance Spectra

Reflectance spectra were acquired using an ASD FieldSpec 4 Hi-Res NG Spectrora-
diometer (Malvern Panalytical Ltd.; Malver, United Kingdom) that covers the visible–near-
infrared and short-wave infrared spectral range (350–2500 nm) with a spectral resolution
of 3 to 6 nm (2151 channels). Leaves’ measurements were carried out using both the ASD’s
leaf clip (version 2) and the ASD contact probe (spot size of 12 mm), providing controlled
illumination and observation conditions throughout the field campaign.

Spectral measurements were carried out during the same days of SWP measurements,
between 10:00 and 14:00, on leaves selected on the same vine stocks. The acquisition and
preprocessing protocol is divided into four phases:

• The spectrometer was calibrated using a white reference (Spectralon panel) and a dark
current correction was applied. Such calibration is performed every 15 to 30 min to
take into account temperature changes over the day.

• Three to five raw spectra were acquired on each vine stock, on healthy, young, and
mature leaves located preferentially at the top of foliage (i.e., the ones that could be
more easily observed from unmanned aerial vehicles (UAVs) or satellites). The mea-
surements were acquired during the whole summer by only two people, alternately
and during the day, to minimize operator variability in selection of leaves. Each spec-
trum is an average of 30 repeated scans. GPS coordinates were also automatically
associated to each spectra during the acquisition process.

• Each raw spectrum was ultimately converted to reflectance and exported into an
ASCII file using the manufacturer’s ViewSpec Pro software.

• The last step of preprocessing consisted of checking all spectra to remove outliers
according to their reflectance values especially the ones that had a low reflectance
level due to measurement error. Spectra were then averaged by row subplot. Samples
without SWP measurements for the considered date were also removed from the
database (e.g., data for plot A and week 4, as mentioned in Table 3).

The final steps of preprocessing are synthesized in Figure 8. The final database
comprises 118 spectra that will be used in our study.

Figure 8. Preprocessing steps, from raw spectra to the database actually used in our study. Outliers
were removed according to their reflectance values, especially the ones that had a low reflectance
level due to measurement errors.

Figure 9 below shows an example of leaves’ spectra acquired on August 23rd in plot B.
Figure 9a presents the spectra of a row subplot with W1 irrigation management. Figure 9b
gives all the spectra for each row subplot of the three irrigation areas.
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(a) (b)

Figure 9. Leaves’ spectra acquired on 23 August 2019 in plot B (SWP mean value for this date: control
= −1.2 MPa, W1= −0.80 MPa, W2 = −0.65 MPa). (a) Example of one spectra of a row subplot for W1
irrigation; (b) all spectra for each row subplot of the three irrigation areas.

3. Methods

From the database presented in Section 2.3.2, one cannot find any obvious difference
in spectra, as their main variations in reflectance are related to the global shapes of ma-
jor vegetation absorption (e.g., [41,42]) and not to differences in SWP/water stress (e.g.,
Figure 9). Among the many existing remote sensing processing techniques (e.g., [43,44]),
we chose to focus on highlighting the most significant domains related to vine water status.
Indeed, the final goal is to verify whether it would be possible to use multispectral data to
monitor vine water status; meaning checking which domains and, therefore, which spectral
bands are needed.

The methodology implemented in this study is summarized in Figure 10. Details
of data acquisition are described in the previous section. Each statistical analysis and
interpretation is carried out for either (i) all the data at the same time (n = 118), (ii) by
grouping plots A and C (n = 59), or (iii) taking only plot B (n = 59). This allows us to
maintain continuity in the measurements and a consistent range of stem potential values
for each week and each water pathway (Figure 7). The first step of processing consisted of
extracting features from leaves’ measurements from both (1) the raw spectra (Section 3.1.1)
and (2) spectra that were averaged by wavelength domains (Section 3.1.2). The features
retrieved were (a) the reflectance values for each independent wavelength or the average
reflectance value for each wavelength domain and (b) the mathematical combination of
reflectances at several wavelengths or for several domains.

The second step corresponds to a statistical analysis. Two methods were tested, (1) lin-
ear regression (Section 3.2.1) and (2) ExtraTree regressor, and their features’ importance
(Section 3.2.2), which allows us to highlight relations between features and SWP.

We also chose to evaluate the performance of a classification algorithm. Among this
family of algorithms, Support Vector Machines (SVM) are the standard. The SVM im-
plementation in the Sklearn Python package [45] was used. Here, three classes adapted
from [3] were considered depending on the variability of the data set: (1) no water con-
straint SWP > −0.7 MPa, (2) low water constraint −0.7 MPa > SWP > −1.1 MPa, and (3)
high water constraint SWP < −1.1 MPa. This leads to limitations on the applicability of
such an approach, as the class depends on the variety and should evolve along the season.
Consequently, the results will not be described but will be discussed in Section 5.5.
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Figure 10. Flowchart of the method applied to identify the best domains related to vine water
status using raw and average spectrum by domain. NDSI—Normalized difference spectral indices;
HVI—Hyperspectral vegetation indices; MVI—Multispectral vegetation indices).

3.1. Feature Extraction
3.1.1. Raw Spectrum

• Using each wavelength separately:
The first feature set consists of the leaves’ reflectance values using all the available
1974 wavelengths separately.

• Using wavelength combinations:
The second feature set relies on the combination of reflectances at multiple wave-
lengths. To achieve this, two types of combination were tested: (1) the Normalized
Difference Spectral Index (NDSI) and (2) the existing Hyperspectral Vegetation Indices
(HVI):

– In the case of NDSI, a feature data set is constructed using two-wavelength
combinations ([46–48]) in following the formula:

NDSIij =
Ri − Rj

Ri + Rj
, (1)

where Ri and Rj refer to the reflectance values at li and lj, respectively. This
way, each possible combination of wavelengths over the whole spectrum was
systematically tested. This approach allows us to normalize the reflectance and
provide a clear overview of the most significant wavelengths. The spectral
domains are directly highlighted in the correlation matrix (see Section 3.2.1).
Several studies demonstrated that NDSI often performs better than common
published indices [49,50].

– The seven most widely used HVIs have been selected for evaluation in this study
(Table 5). These indices are known to be linked to the plants’ water status, either
directly or using an index related to chlorophyll (itself affected by water content).
HVI relies on the combination of two or more wavelengths and each of them is
designed to highlight a specific physical property of vegetation.
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Table 5. Hyperspectral vegetation indices selected for this study and their formulas according to literature. Each wavelength
is given in nanometers.

Index (Abbreviation) Use Formula Reference

Indirect water sensitive VI

Red-Edge Chlorophyll (CI) Chlorophyll
R750
R710

− 1 [51]

Modified Chlorophyll Absorption (MCARI) Chlorophyll (R700 − R670)− 0.2 ∗ (R700 − R550) ∗
R700
R670

[52]

Photochemical Reflectance (PRI) Chlorophyll and Water
R531 − R570
R531 + R570

[53]

Direct water sensitive VI

Water Band (WBI) Water
R900
R970

[54]

Normalized Difference Water Index Water
R857 − R1241
R857 + R1241

[55]

(NDWI)

Moisture Stress Index (MSI) Water
R1650
R830

[56]

Leaf Water Index (LWI) Water
R1300
R1450

[36]

3.1.2. Average Spectrum by Domains

In a second step, the objective was to decrease the spectral resolution to mimic what
could be observed using a multispectral sensor. The goal was to identify from the whole
spectrum which wavelength domains would be the most efficient at estimating SWP.
To achieve this, the spectrum was divided into 19 wavelength domains and each of them
was defined in relation with the spectrum’s global shape, itself directly related to the
vegetation composition and structure (Figure 11).

For instance, the main water absorption in the short-wavelength infrared, located
around 1.2, 1.4, and 1.9 µm, were used to define the three domains SWIR b, e, and j, respec-
tively. Additional constraints were also taken into account, especially to ensure compliance
with Sentinel-2 bands (e.g., Red-Edge_a and _b related to S2 Red-Edge bands 5 and 6,
respectively) and to avoid atmospheric absorption. Table 6 synthesizes the wavelength
range associated to each wavelength domain.

Eventually, to produce those artificial multispectral spectra, reflectance values over
the whole wavelength range for each domain were averaged. By this way, the aim was to
get a first overview of what can be obtained with a multispectral sensor but not to exactly
mimic one sensor or another.
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Figure 11. Vine spectral signature in the visible (VIS) to short-wave infrared (SWIR) wavelengths,
with the 19 selected domains separated by dotted lines. Water and atmospheric absorption are high-
lighted over the spectrum. Sentinel-2 spectral and spatial resolution are reported above the spectrum.

Table 6. Correspondence between wavelengths and domains used in this study. NIR—Near Infrared.

Wavelength (nm) Domain Wavelength (nm) Domain Wavelength (nm) Domain

400–500 Blue 1131–1190 SWIR b 1801–1870 SWIR i
501–600 Green 1191–1330 SWIR c 1871–2000 SWIR j
601–670 Black 1331–1390 SWIR d 2001–2100 SWIR k
671–700 Red-Edge_a 1391–1480 SWIR e 2101–2310 SWIR l
701–750 Red-Edge_b 1481–1550 SWIR f 2311–2474 SWIR m
751–1000 NIR 1551–1760 SWIR g
1001–1130 SWIR a 1761–1800 SWIR h

As in Section 3.1.1, the first kind of analysis focused on the search for a direct cor-
relation between the averaged reflectance for each domain and SWP. Then, two types of
mathematical combinations were tested: (1) the Normalized Difference Spectral Index
(NDSI) and (2) the existing Multispectral Vegetation Indices (MVI):

• This time, NDSIs are computed for each domain (D) according to this formula:

NDSIij =
Di − Dj

Di + Dj
, (2)

where Di and Dj refer to the averaged reflectance values for the domains i and j,
respectively. This way, each possible combination of domains is systematically tested.

• Seven MVIs were selected on the basis of both indices found in the literature and
our previous analyses using every wavelength. Literature indices not relying on the
identified wavelengths range were discarded. These selected MVIs are mostly linked
to chlorophyll content. Nevertheless, in order to take into account domains linked
directly with water absorption, two HVIs were specifically adapted with relevant
SWIR domains. All the selected indices were computed according to the formulas
in Table 7.
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Table 7. Multispectral vegetation indices selected according to the previous analyses using raw
wavelengths and literature.

Index (Abbreviation) Use Formula Used Reference

Normalized Difference Vegetation
Index (NDVI)

Vigor NIR−RED
NIR+RED [57]

Modified Chlorophyll Absorption
Ratio Index/Optimized Soil
Adjusted Vegetation Index
(MCARI/OSAVI)

Chlorophyll (REa−RED)−0.2∗(REa−GREEN)∗( REa
black )

(1+0.16)∗( NIR−RED
NIR+RED+0.16 )

[58]

Normalized difference Red-Edge
(NDRE)

Chlorophyll, Water NIR−REa/b
NIR+REa/b

[51]

Inverted Red-Edge Chlorophyll In-
dex (IRECI)

Chlorophyll NIR−RED
REa
REb

[59]

Red-Edge Chlorophyll Absorption
Index(RECAI)

Chlorophyll NIR−REb
GREEN ∗ REa

GREEN [60]

Normalized Difference Infrared In-
dex(NDII)

Chlorophyll, Water NIR−SWIRg
NIR+SWIRg [61]

Red-Edge Position (REP) Chlorophyll 40 ∗ ( RED+NIR
2 )−REa

REb−REa
[62]

Hyperspectral indices adapted to
multispectral
Moisture stress Index (MSI) Water SWIRg

NIR [56]

Leaf Water Index (LWI) Water SWIRc
SWIRe [36]

3.1.3. Available Data Set Summary

The available data set and the number of features are summarized in Table 8.

Table 8. Summary of available features. NDSI—Normalized difference spectral indices; HVI—
Hyperspectral vegetation indices; MVI—Multispectral vegetation indices).

Spectrum Features Number of
Features

Raw reflectance
by wavelengths

Each wavelengths 1974
NDSI 1,947,351
HVI 7

Reflectance average
by domains

Each domain 18
NDSI 153
MVI 9

3.2. Statistical Analysis

In an attempt to highlight the relation between spectral signatures and SWP, this study
focused on regressions to test the different extracted features, either using all wavelengths
(see Section 3.1.1) or only wavelength domains (see Section 3.1.2).

3.2.1. Linear Regression

For each extracted feature set, linear regression was carried out to study their linear
correlation with SWP. The toolbox used is LinearRegression from the Scikit-Learn Python
package [45]. The first parameter analyzed was the p-value, which was used as a limit
related to the level of significance of the relationship. The lower limit was set to 0.0001.
Then, the performance indicator chosen was the determination coefficient (R2), which
assesses how strong the linear relationship is between the two variables (i.e., how much of
the variability in SWP measurements can be explained by this specific feature). The results
are shown as follows:

• With a simple line graph for linear regression by wavelengths;
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• With a correlation matrix for NDSI, HVI, and MVI, to compare features’ performance
and highlight visually which wavelength ranges or domains are the most significant
to extract water status from spectral measurements.

3.2.2. Extra Trees Model

Within the family of algorithms dedicated to the extraction of feature importance,
decision trees are commonly used [63]. Among them, ExtraTrees (Extremely Randomized
Trees) are quite simple to operate and are computationally efficient. Moreover, unlike
linear regression, they can find a nonlinear mapping function between features and SWP
values. This algorithm was used in this study on raw reflectance by wavelengths as it is
well suited for a large amount of data. Indeed, decision tree algorithms recursively split
the data set to learn accurately [64]. ExtraTrees is a machine learning method similar to
Random Forest, except that it tends to have a lower variance: instead of searching for
the optimal feature/split combination, for each feature, a random value is selected for
the split [65]. ExtraTrees selects k features randomly and calculates a Gini index (relative
value of statistical dispersion measuring the deviation of the feature distribution from a
perfectly equal distribution) for each feature [66]. An equal distribution would mean that
all features are equally important. The sklearn Python package [45] was used to compute
ExtraTrees. Model performance was evaluated using Root Mean Square Error (RMSE).
The Gini index was used to evaluate the Feature Importance, and also the wavelength
significance, with the more significant contributions being associated with higher values.
The sum of the feature importance values is always equal to 1.

3.3. Results Interpretation

To highlight significant domains for each analysis, R2 and p-value or Feature Impor-
tance were used. With the large amount of data and analysis, it was important to be able to
highlight the spectral domains that most frequently appeared to be significant. In order to
do this, we have created an “Importance criteria” based on the frequency of occurrence of
the domains among those identified as the most significant. The most significant domains
(with the best R2 or FI) receive a score of 10, significant domains to a lower extent (sig-
nificant values but lower R2 or FI) receive a score of 1, and insignificant domains receive
a score of 0. A logarithmic scale has been chosen in order to better emphasize the most
significant domains compared to the other ones. When the spectral domain is emphasized
for all the plots, the score is doubled. The scores obtained for each group (all plots, plots
A and C, or plot B) and for each type of analysis are then summed up to provide the
importance criteria (IC). This simple indicator allows us to easily visualize which domains
are most often significant (higher importance criteria).

4. Results
4.1. Correlation between SWP and Leaves’ Raw Spectra

This section aims to identify the wavelengths that are most sensitive to plants’ water
status and to identify the wavelength domain they belong to. The presented results focus
on the correlation between SWP values and either (i) the raw wavelengths separately or (ii)
combinations of wavelengths (NDSI or HVI).

4.1.1. Linear Regression between SWP and Raw Wavelengths

A linear regression was systematically done to evaluate the correlation between SWP
and the 1974 wavelengths. The result is a coefficient of determination R2 associated to
each independent wavelength, either when considering all the plots together (Figure 12)
or separately (Figure 13). All the significant correlations (p-value < 0.0001, i.e., above the
dashed line) show relatively low absolute values (R2 ranging from 0.25 to 0.43).

When considering the whole database (Figure 12), the significant wavelengths
(p-value < 0.0001 and R2 > 0.35) are encompassed within the 1500 to 1700, 1750 to 1850,
and 2050 to 2250 nm ranges. When considering only plots A and C (Figure 13a), the most
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significant wavelengths (p-value < 0.0001 and R2 > 0.35) are encompassed within the 707 to
722, 1800 to 2000, and 2100 to 2500 nm ranges. When considering only plot B (Figure 13b),
the most significant wavelengths (p-value < 0.0001 and R2 > 0.25) are encompassed within
the 1400 to 1480 and 1870 to 1900 nm ranges.

From the intervals defined above, one can determine the spectral domains of par-
ticular interest from Table 6. When considering the whole database, the most significant
wavelengths are located only in the SWIR spectral region, especially in the “SWIR g”,
“SWIR h”, and “SWIR l” domains. To a lesser extent, “SWIR k” could also be included as a
domain of interest. When considering only plots A and C, the most significant wavelengths
are associated to “SWIR h”, “SWIR j”, and “SWIR m” and, to a lesser extent, “SWIR l” and
“Red-Edge b”. When considering only plot B, the most significant wavelengths are located
in the “SWIR e” and “SWIR j” domains. Considering all the data or data grouped by plot
(A and C, or B), the SWIR domain is always highlighted. It is worth pointing out that for the
three analyses, nothing stands out in the VIS or the near infrared (NIR) wavelength ranges.

Figure 12. Determination coefficient of linear regressions for each wavelength when considering the
whole database. The spectral domains defined in Table 6 are reported above the graph.

(a) (b)

Figure 13. Determination coefficient of linear regressions for each wavelength when considering
only plots A and C (left) or only plot B (right). The spectral domains defined in Table 6 are reported
above the graph. (a) Plots A and C. (b) Plot B.

4.1.2. ExtraTree Regression between SWP and Raw Wavelengths

The Feature Importance derived from the Extra Trees method highlights the most
frequently used wavelengths in the decision trees of the algorithm. The result is a feature
importance value associated with each independent wavelength, either when considering
all plots at the same time (Figure 14) or separately (Figure 15). The RMSEs are lower in the
second case (RMSE of 0.14 and 0.17 for plots A and C, and plot B, respectively) than when
all plots are processed together (RMSE of 0.25).

When all data are aggregated together (Figure 14), the wavelengths that are high-
lighted as the most frequently used are encompassed within the 670 to 740, 1400 to
1480, 1520 to 1700, and 1750 to 1800 nm ranges. When considering only plots A and
C (Figure 15a), the highlighted wavelengths are encompassed within the 680 to 740, 1400
to 1460, 1800 to 1950 nm ranges, and around 2500 nm. When considering only plot B
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(Figure 15b), the highlighted wavelengths are encompassed within the 500 to 750, 1400 to
1500, and 1800 nm to 1950 nm ranges.

From the intervals defined above, the most highlighted wavelengths when considering
the whole database are mainly located in the “SWIR h” domain. To a lesser extent, other
highlighted wavelengths are found in the “SWIR g”, “SWIR e”, and “Red-Edge a” domains.
When considering only plots A and C, highlighted wavelengths are mainly located in
the “SWIR e”, “SWIR j”, and “SWIR m” domains. To a lesser extent, other highlighted
wavelengths are found in the “Red-Edge a” and “Red-Edge b” domains. Lastly, when
considering only plot B, highlighted wavelengths are mainly located in the “SWIR i”,
“SWIR e”, and “Red-Edge b” domains. To a lesser extent, other highlighted wavelengths are
found in the visible spectrum associated to the three “Blue”, “Green”, and “Red” domains.

Figure 14. Feature importance (FI) calculated for each wavelength using the ExtraTrees Regressor
method when considering the whole database. The spectral domains defined in Table 6 are reported
above the graph. (RMSE = 0.25).

(a) (b)

Figure 15. Feature importance (FI) calculated for each wavelength using the ExtraTrees Regressor
method when considering only plots A and C (left) or plot B (right). The spectral domains defined in
Table 6 are reported above the graph. (a) Plots A and C (RMSE = 0.14). (b) Plot B (RMSE = 0.17).

4.1.3. Linear Regression between SWP and NDSI Using Raw Spectra

The previous section demonstrates that significant (p-value < 0.0001) relationships
exist between SWP and reflectance at specific wavelengths. Nevertheless, the relationship
could be improved to be stronger (better R2 and RMSE). To go a step ahead, NDSIs are
tested, as normalizing the absolute reflectance values allows us to minimize spectral
signatures unrelated to water content in leaves.

Results in this section rely on NDSI using reflectance at every wavelength available in
the raw spectra (Equation (1)). Each possible combination of two wavelengths over the
whole spectrum is systematically tested and a linear regression is done between its result
and SWP. The determination coefficient is then depicted in a correlation matrix, allowing
us to easily visualize which wavelength combinations have the stronger relationship with
the plant’s water status.
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Figure 16 displays the correlation matrix obtained when considering the whole
database. The higher determination coefficients (around 0.6) are dark red, while the
lower ones (close to 0) are white. A visual analysis of the correlation matrix shows that com-
binations that are the most correlated with stem potentials (p-value < 0.0001 and R2 > 0.45)
combine wavelengths (the first range refers to the horizontal axis while the next one(s)
refers to the vertical axis):

• From the 800 to 1400 nm range with wavelengths (i) around 1800 nm, (ii) from the
2100 to 2300 nm range, and (iii) from the 1550 to 1700 nm range;

• From the 1800 to 1900 nm range with wavelengths from the 2150 to 2300 nm range;
• From the 670 to 700 nm range with wavelengths from the 1900 to 2400 nm range.

According to Figure 17a, for plots A and C, the most important NDSI (p-value < 0.0001
and R2 > 0.6) combined wavelengths as follows (the axis read first is the horizontal one):

• From the 700 to 750 nm range with wavelengths from the 700 to 2400 nm range;
• From the 500 to 600 nm range with wavelengths from the 600 to 700 nm range;
• From the 500 to 1900 nm range with wavelengths around 1900 nm;
• From the 1600 to 1800 nm range with wavelengths around 1800 nm.

For plot B (Figure 17b), the most important NDSI (p-value < 0.0001 and R2 > 0.6)
combined wavelengths as follows (the axis read first is the horizontal one):

• From the 800 to 1400 nm range with wavelengths (i) around 1900 nm and (ii) from the
1400 to 1500 nm range;

• From the 1400 to 1500 nm range with wavelengths from the 1500 to 1800 nm range;
• From the 1900 to 2000 nm range with wavelengths from the 2000 to 2400 nm range;
• From the 1650 to 1800 nm range with wavelengths from the 1800 to 1850 nm range.

From the intervals defined above, the most highlighted wavelengths when considering
the whole database are mainly located in the SWIR region(“SWIR g”, “SWIR i”, “SWIR
k”, and “SWIR l”). To a lower extent, “Red-Edge a” and “NIR” also seem to be significant.
For plots A and C, the most significant domains are the “Red”, “Red-Edge b”, “SWIR i”,
and “SWIR j”. To a lower extent, other highlighted domains are “Red-Edge a” and “NIR”.
Regarding plot B, the highlighted domains are “SWIR e” and “SWIR j”, and, to a lower
extent, “NIR”, “SWIR a”, “SWIR b”, “SWIR c”, “SWIR d”, “SWIR g”, and “SWIR h”.

In general, SWIR regions always appear to be significant as well as the “NIR” domain
to a lower extent. Moreover, “Red-Edge a” is highlighted for two of the three analyses by
plot group.

Figure 16. Correlation matrix showing the coefficient of determination between NDSI’s results and
SWP when considering the whole database. The spectral domains defined in Table 6 are also reported
along the two axes.
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(a) (b)

Figure 17. Correlation matrix showing the coefficient of determination between NDSI’s results and
SWP when considering only plots A and C (left) or only plot B (right). The spectral domains defined
in Table 6 are also reported along the two axes. (a) Plots A and C; (b) Plot B.

4.1.4. Summary of the Results for All Correlations Tested on Raw Spectra

The results from the three previous sections are summarized in Figure 18. Each domain
defined in Table 6 is reported as a cell in the table. The darker the cell, the greater the signifi-
cance of the domain (black cell for an importance score of 10, grey cell for an importance
score of 1, and white cell for a score of 0). Results show the two domains that are most often
highlighted (importance criteria ≥50), “SWIR j” and “SWIR h”. Four other domains seem
also to be relevant (importance criteria ≥40), “SWIR e”, “SWIR d”, “SWIR i”, and “SWIR l”.

Regarding the level of significance, with all plots, the determination coefficient in-
creases from 0.35 to 0.45 between raw wavelengths and NDSI indices. Concerning plots
A and C and plot B apart, the coefficient increases from 0.25 or 0.3 to 0.6 between the two
features (and even reaches a maximum of 0.8).

Figure 18. Summary of the three previous sections’ results for the three methods either with the data of all plots, for plots A
and C, or for plot B. The darker the cell, the greater the significance of the domain: black cell for an importance score of 10
(best R2 or FI), gray cell for an importance score of 1 (significant p-value but lower R2 or FI), and white cell for a score of 0
(result not significant). When the spectral domain is emphasized for all plots, the score is doubled. The sum of the scores for
each domain is recorded at the bottom of the table and is called the “Importance Criteria”.
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4.1.5. Linear Regression between SWP and Hyperspectral Vegetation Indices

Based on previous analyses, the calculation of vegetation index with reflectance of
two wavelengths seems to give better results than with a single-wavelength reflectance.
Therefore, the aim here is to verify the effectiveness of HVIs that are regularly used in the
bibliography to describe the water content of vegetation.

According to Table 9, for all the data, the two most relevant HVIs (p-value < 0.0001)
are as follows:

• Normalized Difference Water Index (NDWI) with wavelength reflectance in “SWIR c”
and “NIR”;

• Moisture Stress Index (MSI) with wavelength reflectance in “SWIR g” and “NIR”.

For plots A and C, the most significant HVI (p-value < 0.0001) is Leaf Water Index
(LWI) with wavelength reflectance in “SWIR c” and “SWIR e”.

For plot B, four HVIs appear to be significant (p-value < 0.0001):

• CI with wavelength reflectance in “Red-Edge a” and “Red-Edge b”;
• MSI with wavelength reflectance in “SWIR g” and “NIR”;
• NDWI with wavelength reflectance in “SWIR c” and “NIR”;
• WBI with wavelength reflectance in “NIR”.

These HVI are less significant than some NDSIs (respectively, R2 = 0.4 at most versus
R2 > 0.6) as found by [47]. This could be due to the particularity of each data set which
may lead to slightly different answers in the spectrum.

Table 9. Coefficient of determination between HVI and SWP (values in bold are different from 0 at
significance level alpha = 0.05).

All Data Plots A and C Plot B

Variables SWP

SWP 1 1 1
CI 0.007 0.043 0.397 *
MCARI 0.004 0.135 0.019
PRI 0.004 0.040 0.140
WBI 0.091 <0.001 0.272 *
NDWI 0.398 * 0.006 0.258*
MSI 0.317 * <0.001 0.286 *
LWI 0.059 0.621 * 0.047

*: p-value < 0.0001.

4.2. Correlation between SWP and Leaves’ Spectra Averaged by Domains

The purpose of this section is to verify the previous results on the importance of
wavelengths in specific domains to identify vine water status, but using the reflectance
averaged by spectral domains. This approach will help with erasing disparities between
close wavelengths within the same spectral domain as they are expected to spectrally
behave in the same way. Correlations with each domain apart were computed using linear
regression and ExtraTrees. The results highlight the same spectral domains and do not
provide any additional information. Domain combinations provide more significant results
with NDSI or MVI.

4.2.1. Linear Regression between SWP and NDSI Using Domains

When focusing on all the plots (Figure 19), the domains used by the best NDSIs
(R2 > 0.4 and p-value < 0.0001) belong to the following:

• “SWIR c” with “SWIR b”;
• “SWIR i” with “SWIR d”;
• “SWIR k” and “SWIR l” with “NIR” to “SWIR d”;
• “SWIR g” with “NIR”.
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With only plots A and C (Figure 20a), the domains used by the best NDSIs (R2 > 0.5
and p-value < 0.0001) belong to the following:

• “Red-Edge a” with “SWIR j” and “SWIR m”;
• “Red-Edge b” with “SWIR d”, “SWIR e”, “SWIR h”, and “SWIR i”;
• “SWIR g” with “SWIR i”.

For plot B (Figure 20b), the domains used by the best NDSIs (R2 > 0.5 and
p-value < 0.0001) belong to the following:

• “SWIR e” with “NIR” and “SWIR a” to “SWIR h”;
• “SWIR d” with “SWIR a”, “SWIR b”, and “SWIR c”;
• “SWIR j” with (i) “SWIR a” to “SWIR d” and (ii) “SWIR g” to “SWIR l”.

In general, “SWIR g” and “SWIR d” appear in all the results. Moreover, the “NIR”
is highlighted for two of the three analyses by plots group. The correlation coefficients
obtained here are lower than those obtained with wavelength combinations but confirm
the effectiveness of using SWIR and NIR domains.

Figure 19. Correlation matrix between NDSI using the reflectance value average by domains and
SWP for all plots.

(a) (b)

Figure 20. Correlation matrix between NDSI using the reflectance value average by domains and
SWP for plots A and C and plot B. (a) Plots A and C. (b) Plot B.
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The previous results are summarized in Table 10. For each analysis, both the chosen
thresholds and the identified domains are highlighted. Regarding the latter, each domain
defined in Table 6 is reported as a cell in the table. The darker the cell, the greater the
significance of the domain (importance score of 0 for white cell, 1 for grey cell, or 10 for
black cell). Results show the domain that is most often highlighted (importance criteria =
40) is “SWIR g”. Four other domains are also relevant to a lower extent (importance criteria
≥ 20), “NIR”, “SWIR b”, “SWIR c”, and “SWIR d”.

Table 10. Summary of the previous results.

4.2.2. Linear Regression between SWP and Multispectral Vegetation Indices

Table 11 shows correlation coefficients between MVI and SWP values. When consider-
ing the whole database, the best correlations between MVI and SWP values (p-value < 0.0001)
are Normalized Difference Infrared (NDII) and MSI. They both combine “NIR” with “SWIR
g”. For plots A and C, the most significant MVIs (p-value < 0.0001 and R2> 0.35) are
Red-Edge Position (REP), Normalized difference Red-Edge (NDRE)1,2, and Red-Edge
Chlorophyll Absorption (RECAI); they all combine “NIR” with “Red-Edge a” or “Red-
Edge b”. Regarding plot B, only the LWIs with “SWIR c” and “SWIR e” appears to be
significant (p-value < 0.0001).

MVIs highlight the importance of the SWIR domain (in particular, “SWIR c”, “SWIR
e”, and “SWIR g”) but also demonstrate the relevance of “NIR” and “Red-Edge a” or
“Red-Edge b”.

From the results of our study, it appears that NDVI, an index widely used to monitor
vegetation, is not well suited to identify the water status of grapevines as it has the lower
determination coefficient.

Table 11. Coefficient of determination between MVI and SWP (values in bold are different from 0 at
significance level alpha = 0.05).

All Plots Plots A and C Plot B

Variables SWP

SWP 1 1 1
NDVI 0.002 0.162 0.064
MCARI/OSAVI 0.007 0.202 0.002
LWI 0.109 0.185 0.475 *
REP 0.003 0.411 * 0.023
IRECI <0.001 0.307 * 0.043
RECAI <0.001 0.367 * 0.044
NDII 0.309 * 0.244 * <0.001
MSI 0.309 * 0.243 * <0.001
NDRE1 0.004 0.359 * 0.037
NDRE2 0.002 0.397 * 0.034

*: p-value < 0.0001.

5. Discussion

The main objectives of this paper are to (1) highlight the best spectral domains related
to vine water status and (2) identify the most promising vegetation indices that could be
used with multispectral data.
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5.1. Summary of the Results

Table 12 synthesizes all the results obtained by wavelengths and by domains. The first
analysis by wavelengths highlighted the SWIR domains from “SWIR g” to “SWIR j” plus
“SWIR e” and “SWIR l”. These domains coincide with water absorption (“SWIR e” and
“SWIR j”) and with the maximum reflectance in the SWIR (“SWIR g” to “SWIR i” and
“SWIR l”). The second analysis by domains highlighted the “SWIR g” corresponding to a
maximum reflectance in the SWIR. “NIR” and “SWIR b” to “SWIR d” are also emphasized.

Regarding VI, when considering all plots, the most promising HVI and MVI include
NIR and SWIR, in particular, “SWIR g” (NDWI, MSI, and NDII). For plots A and C, the most
relevant HVI is LWI with “SWIR c” and “SWIR e”, while the most relevant MVIs are REP,
NDRE, RECAI, and Inverted Red-Edge Chlorophyll (IRECI) with “NIR”, “Red-Edge a”,
“Red-Edge b”, and “Red” or “Green”. For plot B, the most relevant HVI is CI with “Red-
Edge a” and “Red-Edge b”, whereas the most relevant MVI is LWI with “SWIR c” and
“SWIR e”.

In this paper, we aim at identifying the most suitable VI to be used to process satellite
images, especially images acquired by Sentinel-2. The results presented here show that the
most promising VIs use the following domains: “NIR” and “SWIR g” (NDII and MSI) and
the “NIR”, “Red-Edge”, and “Red” or “Green” (REP, RECAI, IRECI, and NDRE).

Table 12. Summary of all the previous sections’ results. The importance criteria from Table 10 and
Figure 18 are gathered at the top for each feature. The bands that compose the vegetation indices
(VI) are checked and shaded out. The determination coefficients obtained between each VI and
SWP value are also gathered at the right of the table for all plots or plots A and C and plot B apart.
The most important values (IC and R2) are shown in darker green.

5.2. Spectral Domain and VI Sensitivity

In accordance with the literature [26,28,36,48,56,67], the wavelengths most correlated
with SWP belong to the SWIR domain, in particular, to the minimum (“SWIR e” and “SWIR
j”) that corresponds to water absorption, or to the maximum (“SWIR c”, “SWIR d”, “SWIR
g”, “SWIR i”) reflectance in this range. Those particular spectral signatures (1259 nm in
“SWIR c”, 1264 nm in “SWIR c”, and 1334 nm in “SWIR d”) indeed correspond to the
vibrations of the O–H stretch in water molecules [28].

On another level, the Red-Edge domain also seems to be of particular interest. This do-
main gives insight into leaf chlorophyll concentration [62,68,69], which is itself related to
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the availability of water in the plant [70–72]. The “Red-Edge” domain has already been
linked to the water status of the vine by [20], who estimated crop coefficient (Kc) using
a time series of Sentinel-2 images, or by [73], who correlated stem water potential and
UAV data.

NIR combined to red-edge or SWIR, and red combined to green also appear to be of
interest, even if slightly less than previous observations. First, a water absorption band
is located within the NIR, around 980 nm. Second, this domain gives insights into leaf
morphology and structure [47,74], which is also affected by water content. “Green” and
“Red” are related to pigments present in plants (xanthophyll and chlorophyll), which also
react to water stress, according to [26].

Among the most promising indices according to this study, only MSI is directly related
to the water content of the vegetation [24,56,75,76]. The NDRE is usually used to assess
chlorophyll content [51] but [77] already mentioned that it could also be used to identify
drought stress. In the literature, the four other indices (NDII, REP, IRECI, and RECAI) are
used only for chlorophyll concentration and biomass assessment ([59–62]). Nevertheless,
as mentioned before, those indices may still reflect the impact of water stress on plants,
as suggested by [73], as they provide insights on nutrient assimilation or chlorophyll
content and, therefore, on biomass.

In this paper, we have highlighted the SWIR, Red-Edge, and NIR as the most inter-
esting spectral domains for monitoring water status. Nevertheless, finding a very specific
parameter allowing its specific monitoring in operational conditions is not as simple,
as these domains could also be affected by other stresses such as diseases or deficiencies,
especially regarding Red-Edge and NIR domains. Further experiments will be needed to
test the robustness of these domains or VIs for vine water status monitoring over vineyards
that are affected by other types of stresses. However, whatever the results, information
from remote sensing tools must always be considered as a decision support tool and will
never replace field knowledge and observations.

5.3. Correlation Differences between Wavelengths and Domain Reflectance

Correlations with domains are always weaker than with wavelengths. For example,
for plots A and C, LWI computed with wavelengths values leads to a coefficient of determi-
nation of 0.62, whereas the same vegetation index computed with average wavelengths in
domains leads to a coefficient of determination of 0.19. The best coefficient of determina-
tion between MVI and SWP values is 0.48 while between HVI and SWP values it is 0.62.
This can be explained by the way domains’ reflectances are computed in averaging the
reflectance values of 30 to 250 wavelengths, taking into account Sentinel-2 bands. It can
erase some particularly strong correlations that are effective with only certain wavelengths
apart. This choice, therefore, has arbitrary aspects and could be improved in the perspective
of other explorations. Indeed, the perspective of using finer and more focused domains in
areas of interest could give a better result if the objective is of no to use it with data from an
already launched satellite.

In this paper, hyperspectral measurements were used to highlight the most relevant
domains that can be used with a multispectral satellite such as Sentinel-2. However, this
paper also underlines other domains that are not yet present or usable in the current multi-
spectral satellites but could be in the future at a reasonable price for temporal monitoring.
For this purpose, analyses were almost exclusively focused on spectral indices (NDSI,
HVI, and MVI). The fact is, with perspectives other than a commercial monitoring service,
with the possibilities offered by hyperspectral data, it is possible to implement more specific
analysis methods such as Gaussian or Chemometrics processing, which can use the shape
of the whole spectrum.

Nowadays, available and affordable commercial satellites for Earth Observation (EO)
are multispectral. However, more and more programs deal with the use of hyperspectral
satellite for EO. These include the Italian PRecursore IperSpettrale della Missione Applica-
tiva (PRISMA) satellite from the Italian Space Agency, which was launched on 22 March
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2019. It has 250 spectral bands from 400 nm to 2500 nm with a spatial resolution of 30 m
and a panchromatic acquisition at 5 m. Another European hyperspectral satellite is the
Environmental Mapping and Analysis Program (EnMAP), a German hyperspectral satellite,
which is in a development and production phase and should be launched in 2021. It has
230 spectral bands from 420 to 2450 nm with a spatial resolution of 30 m and temporal
resolution of four days. A last mission can be cited, the Indian Hyperspectral Imaging
Satellite (HySIS) with 256 bands from 400 nm to 2400 nm, a spatial resolution of 30 m,
and which was launched in 2018.

5.4. Correlation Differences between Plots

The analysis often performs better for plots A and C or plot B apart than with all plots
together. For example, the RMSE for ExtraTrees algorithm with plots A and C or Plots B is
almost half the size of the RMSE with all plots. It can be explained by the sample variability.
Indeed, plots A and C are planted with red grape varieties while plot B is planted with a
white one. Moreover, plot B has been less stressed than plots A and C.

The correlations are generally a little more important for plots A and C than for plot B.
Moreover, for plot B, the significant wavelengths are almost exclusively those in the SWIR.
The very low values of SWP for plots A and C may have affected the leaves’ metabolism
more and impacted the chlorophyll content and leaves’ structure more than plot B. This
could explain why Red-Edge and NIR domains are more sensitive for these data as they
are related to plant structure and pigment content.

Moreover, some wavelengths appeared to be relevant for plots A and C and for
plot B apart, but were no longer when all the plots were grouped together. For example,
wavelengths in the “SWIR j” with wavelengths in the “SWIR k” to “SWIR m” seems
to be highlighted for plots A and C in Figure 17a and for plot B in Figure 17b, but in
Figure 16, these wavelengths no longer appear to be relevant. The same occurs for NDSI
with wavelengths in the “SWIR g” and “SWIR h” and NDSI with wavelengths in the “SWIR
j” and “SWIR g”, which seem to be highlighted in Figure 17 but no longer in Figure 16.
This can be explained by the distribution of the data for each plot, as shown in Figure 21
below. Indeed, as in Figure 21a, even if an NDSI seems to be well correlated with SWP
values for plots A and C (R2 = 0.59) or for plot B (R2 = 0.55), with all plots, the correlation
will be lower (R2 = 0.33) as the distribution of the data are not the same for the two data
sets. The result is even more obvious in Figure 21b,c, where there is almost no correlation
when all plots are aggregated (R2 = 0.12 and R2 < 0.1, respectively).

It demonstrates the importance of taking into account the difference between plots
or varieties. In fact, varieties react in different ways according to their specifications and
adaptations to water stress [78].

5.5. Choice of Analysis Method

The two chosen analyses do not always show exactly the same results. This may be
due to the fact that one (Linear regression) emphasizes linear and the other (ExtraTrees)
nonlinear relationships. In addition, Linear regression used one wavelength apart while Ex-
traTrees used all wavelengths together. Moreover, regarding regression choice, the results
are not always very high but remain significant (p-value < 0.0001). It could be reasonable
to think about further investigations with the classification method. The results of classifi-
cations tests with the SVM algorithm are promising, with accuracy rates up to more than
95% for plots A and C with NDSI by wavelengths (Figure 22b) and up to more than 85%
with NDSI by domains (R2 < 0.6 for regression correlation coefficient). Moreover, the same
domains than those with the regression method seem to be the more efficient (Figure 22a),
except for the four cases shown as dotted lines. However, the classification of SWP values
in three categories can be limited for further investigation. Indeed, these classes are well
suitable for the red variety but not for the white one (see Figure 7). Moreover, it is not
adapted for all development stages (Figure 6). Nevertheless, the SWP value distribution of
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the database used for this study does not allow the creation of more classes, as the number
of samples by class would not be well balanced.

(a) (b)

(c)

Figure 21. Scatterplots showing the relationship obtained between NDSI by wavelengths and SWP
values for three examples. (a) NDSI with 1810 nm in “SWIR h” and 1650 nm in “SWIR g”; (b) NDSI
with 1910 nm in “SWIR j” and 1650 nm in “SWIR g”; (c) NDSI with 1910 nm in “SWIR j” and 2200 nm
in “SWIR l”.

(a) (b)

Figure 22. Correlation matrix showing coefficient of determination and accuracy between NDSI
by wavelengths and SWP values or classes for plots A and C. Same significant domains are high-
lighted with a black line. One domain is more significant with classification than with regression;
it is surrounded with a black dotted line. Three domains that are not present with regression are
surrounded with a blue dotted line on the classification correlation matrix. (a) Regression method.
(b) Classification method.

5.6. From Hyperspectral to Multispectral Data

As highlighted in the introduction, this work is a step towards our main final objective:
to identify the most recommendable spectral domains or VIs for water status monitoring
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using multispectral satellite imagery. This paper focuses on vine leaves’ reflectance, we are
aware that the results obtained here cannot be directly extrapolated to data obtained by
satellite, as a pixel signature is usually mix of leaves, soil, and shadow signatures. Moreover,
each multispectral band takes into account several wavelengths according to a distribution
function specific to each band and each sensor.

In order to provide an intermediate step in terms of spatial resolution between leaves’
spectra and satellite imagery, additional measurements were also made on the vine canopy
(about 30 cm above, at arm’s length) during the field campaign. The measured reflectance
is, in this case, no longer related to pure end-members, but rather, is a mixture of vine
leaves, soil under the vine row, and shadows.

The final canopy database is composed of 113 spectra. These data were analyzed
following the methodology described in the paper and results globally show the same trend
as for leaves’ spectra but with much lower levels of significance. This can be explained
by the mixture effect and/or the environmental conditions (unstable weather with cloud
passing by, three operators with possible differences in height above the foliage during the
measurement, difference in the height of the foliage within the plots, etc.). For instance,
in Figure 23, one can see that the feature importance algorithm highlights nearly all the
same domains but with feature importance values four times smaller. The two differences
are located around 1750 and 2000 nm (dotted lines in Figure 1).

In the further transition from hyperspectral acquisition to multispectral images, we can
expect other impacts on the significance of the results. A future work could be the first to
mimic Sentinel-2 sensors, for example, taking the distribution functions of each band.

Figure 23. Feature importance with ExtraTrees Regressor methods for all plots with leaves and canopy
reflectance. Same highlighted domains are surrounded by black lines, differences are surrounded by
dotted lines.

6. Conclusions

This paper investigates which spectral domains appear to be the most relevant to
assess vine water status. In order to achieve this goal, leaves’ hyperspectral reflectance
were measured between 350 nm and 2500 nm on four vine plots with different amounts of
water every two weeks from July to August. Correlations were searched with the regression
method between leaves’ reflectance and a measure of vine water status, the SWP. First,
results show the relevance of the SWIR domain, which is directly sensitive to water content.
Additional results also reveal the benefits of the NIR and Red-Edge bands, which are
indirectly linked with water content through its impact on chlorophyll content and cell
structure. The ultimate goal of the project is to verify the effectiveness of using Sentinel-2
images to monitor vine water status. The most relevant multispectral vegetation indices
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that can be used with Sentinel-2 appear to be those with NIR and Red-Edge bands (REP,
NDRE2, and RECAI) and those with NIR and SWIR bands (NDII and MSI).

The longer-term objective would be to verify whether the spectral bands present
in Sentinel-2 would allow the water status of the vineyards to be monitored. Further
researches are in progress using Sentinel-2 images to investigate vegetation indices as well
as machine learning methods (regression and classification) and test data from several
years and locations. The aim is to provide temporal and spatial monitoring of vineyard
water status at a large scale.
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