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Abstract: This study was focused on the metropolitan area of Florence in Tuscany (Italy) with the
aim of mapping and evaluating thermal summer diurnal hot- and cool-spots in relation to the
features of greening, urban surfaces, and city morphology. The work was driven by Landsat 8 land
surface temperature (LST) data related to 2015–2019 summer daytime periods. Hot-spot analysis
was performed adopting Getis-Ord Gi* spatial statistics applied on mean summer LST datasets to
obtain location and boundaries of hot- and cool-spot areas. Each hot- and cool-spot was classified by
using three significance threshold levels: 90% (LEVEL-1), 95% (LEVEL-2), and 99% (LEVEL-3). A
set of open data urban elements directly or indirectly related to LST at local scale were calculated
for each hot- and cool-spot area: (1) Normalized Difference Vegetation Index (NDVI), (2) tree cover
(TC), (3) water bodies (WB), (4) impervious areas (IA), (5) mean spatial albedo (ALB), (6) surface
areas (SA), (7) Shape index (SI), (8) Sky View Factor (SVF), (9) theoretical solar radiation (RJ), and (10)
mean population density (PD). A General Dominance Analysis (GDA) framework was adopted to
investigate the relative importance of urban factors affecting thermal hot- and cool-spot areas. The
results showed that 11.5% of the studied area is affected by cool-spots and 6.5% by hot-spots. The
average LST variation between hot- and cold-spot areas was about 10 ◦C and it was 15 ◦C among
the extreme hot- and cool-spot levels (LEVEL-3). Hot-spot detection was magnified by the role of
vegetation (NDVI and TC) combined with the significant contribution of other urban elements. In
particular, TC, NDVI and ALB were identified as the most significant predictors (p-values < 0.001)
of the most extreme cool-spot level (LEVEL-3). NDVI, PD, ALB, and SVF were selected as the most
significant predictors (p-values < 0.05 for PD and SVF; p-values < 0.001 for NDVI and ALB) of the
hot-spot LEVEL-3. In this study, a reproducible methodology was developed applicable to any urban
context by using available open data sources.

Keywords: land surface temperature; hot-spot analysis; Getis-Ord Gi* statistics; dominance analysis;
local urban features; urban mitigation strategies

1. Introduction

The 2018 Revision of World Urbanization Prospects [1] reported that more than half
of the world’s population is concentrated in cities (about 55%). Based on the 2018 United
Nation projections, the world population in urban areas will continue to grow to nearly
88% in 2050.

Very high demographic values are already visible in Europe today (about 75%) and a
value of slightly more than 70% was observed in Italy in 2018. The continuous and rapid
growth of the world population, associated with the significant increase of urban sizes,
is a challenge for the sustainable development of cities. This situation puts considerable
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pressure on ecosystems and on economic and natural resources. This phenomenon finds its
most representative expression in the significant increase of impervious surfaces, defined
as the permanent covering of soil by artificial impermeable materials [2], and in a dramatic
reduction of urban vegetation.

According to the recent estimation of artificial land cover [3], Italy is the European
country with the fifth highest concentration of artificial surfaces (6.8% in 2015). As
demonstrated by data provided by the Italian National Institute for Environmental Pro-
tection and Research (ISPRA: Istituto Superiore per la Protezione e Ricerca Ambientale,
www.isprambiente.gov.it), soil imperviousness continues to increase, and this situation
causes soil degradation and irreversible loss of habitats, natural and agricultural areas [4].
Furthermore, the uncontrolled increase of impervious surfaces and decrease of natural
soil and vegetation in cities compared to suburban or rural areas amplify the effect known
as surface urban heat island (SUHI), in general creating important thermal anomalies
variously distributed according to the characteristics of the cities. SUHI is a typical daily
process when the sun is shining, therefore more pronounced during daytime and in the
summer [5,6]. This is partially confirmed by a recent study [7] showing that globally, the
daytime SUHI is higher than the night-time, with the summer season showing the highest
values compared to winter. However, these authors also revealed significant differences
in the seasonality of SUHI for different climate zones, such as for arid and equatorial
urban clusters. Understanding the complexity of the spatial heterogeneity of land surface
temperature (LST) and its relationship with various influencing factors [8] is of great impor-
tance in remote sensing applications and urban climate studies. The urban thermal surface
anomalies differ greatly by city [9–11] and are due to the inherent characteristics of urban
environments (i.e., city size, population density, geometry, topography, characteristics
of urban elements and surface materials, vegetation and types of vegetation, and water
body distributions) that modify the radiative and thermal properties of urban infrastruc-
tures [12]. Dark surfaces with low albedo materials and in general artificial impervious
surfaces strongly limit evaporative cooling conditions and “trap” the heat [13].

Thermal analyses in cities should consider all the artificial and natural components
interacting with the urban ecosystem. Vegetation [14], tree cover and impervious sur-
faces [11,15], water bodies [16], surface albedo [17], urban morphology [18] and solar
radiation exposure [19] were identified as important indicators able to modify urban
microclimatic conditions as they play an important role in the surface energy balance.

The urban environment was widely investigated by a recent study [20] demonstrating
that vegetation and impervious surfaces were the most important urban features affecting
the daytime LST.

Urban green infrastructures and blue spaces (water bodies, i.e., rivers, ponds, and
wetlands) have the potential to mitigate heat in the city, providing reliable habitat for many
species [21] and other environmental and cultural benefits contributing to adaptation to
climate change [22].

For this purpose, the characterization and spatial location of urban LST anomalies
represents a fundamental step in order to target accurate climate adaptation and urban
regeneration actions, i.e., the use of nature-based solutions that can reduce summer surface
and air temperatures and save energy [23].

Application of the Local Indicators of Spatial Autocorrelation (LISA) [24] method is a
topic of extreme interest for this field as it can lead to a spatial mapping technique being
developed to identify the existence of significant spatial anomalies of the investigated
urban elements. Local statistical methods, such as Getis-Ord Gi* [25], allow the thermal
spatial pattern to be analyzed by estimating the value of the feature within its spatial
context of neighboring features [26]. This latter is a performant and robust method of
hot-spot detection already used in previous studies [27–35].

The method has the great strength of identifying statistically significant spatial clus-
ters/anomalies of both high (hot-spot) and low (cold- or cool-spot) LST values. A hot-
(cool-) spot area is defined statistically significant when its points are characterized by
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a “cloud” of homogeneously high (or low) LST values [33]. Currently, few studies have
done a thermal hot-spot analysis by analyzing the surface thermal layers through local
spatial autocorrelation and after investigating the urban and greening features inside the
outcomes [29,31,34]. The possibility to use increasingly performing and higher resolution
satellite images also represents a strength also for analysis on the urban microclimate.
Remote sensing images from Landsat 8 satellite are the most widely used open data used
at the local scale to analyze LST variations thanks to medium-high spatial and temporal
resolutions and the availability for large portions of the earth [36–38].

The aim of this study was to spatially identify the summer hottest and coolest areas in
the Florentine metropolitan area during daytime through a well-defined thermal hot-spot
detection technique and characterizing these LST-related anomalous areas by examining a
set of open data on local urban features layers. The Florentine metropolitan area (Tuscany,
Italy) has already been investigated with the purpose of mapping the heat-related risk for
the vulnerable population (elderly) during the summer season and providing information
on intra-annual LST variability related to imperviousness [36,39,40]. At the moment,
however, there is still no specific analysis on hot-spot detection and the urban elements
that characterize it are not known in detail.

The identification of hot- and cool-spots by means of a robust and replicable method-
ology, as well as definition of the urban elements that contribute to urban hot- or cool-spots,
provide extremely important information to implement operationally targeted and local
mitigation actions with the goal of improving the urban thermal situation and in general
the quality of life of urban dwellers.

2. Materials and Methods

The overall design of the study is based on the following workflow (Figure 1).
The methodology is structured as follows. Section 2.1 briefly describes the study-area.

Section 2.2 concerns daytime summer LST and derivate layers analysis, based on Landsat
8 remote sensing data. Section 2.3 is focused on thermal hot-spot detection performed by
using Getis-ord Gi* statistics for each value in LST datasets. Adjacent features returning
the highest or lowest values within Gi* statistics were considered statistically significant
hot/cool-spot areas. Subsequently, Section 2.4 reports the characterization of hot- and cool-
spot areas on the basis of a large dataset, defined in the study as “urban features layers”:
Normalized Difference Vegetation Index, tree cover, water bodies, impervious surface,
albedo, surface area, Shape Index, Sky View Factor, theoretical solar radiation, and popula-
tion density. Finally, Section 2.5 is related to the description of thermal hot-spot statistical
analyses. All outcome layers (raster data) were projected in ETRS89-extendend/LAEA
Europe coordinate system.

In this study the underlying assumption is that summer hot-spots are originated by
a local combination of multiple urban features layers. For this reason, the contributions
of any urban elements (vegetation and water bodies, urban surfaces, morphology, atmo-
spheric, and demographic characteristics) that could exacerbate or mitigate urban thermal
conditions during summer diurnal times, were quantified probabilistically by using a
logistic modeling approach.

Dominance analysis [41] was used to evaluate the relative importance of predictors
by using logistic generalized linear models and thus comparing the set of urban features
variables used as predictors in hot-spot models. The importance of a predictor variable
to a given model was measured as the increase in the model’s ability to explain the linear
variability of the outcomes when a single predictor was added.
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Figure 1. Workflow of data processing.

2.1. The Study-Area

This study was conducted on the metropolitan area of Florence, located in central Italy,
the northern part of the Tuscany Region. The area includes 20 municipalities belonging to
the administrative units of three main cities, i.e., Florence, Prato, and Pistoia (Figure 2).

A first criterion to delimitate the investigated metropolitan area was based on the
elevation, in this way avoiding biases linked to the topographical lapse rate of LST. A
maximum elevation value of 200 m a.s.l. was adopted to focus the analysis only on the
densely urbanized plain area. The considered metropolitan area is about 674.90 km2, with
latitudinal and longitudinal ranges varying from 43◦39′25”N to 43◦59′53”N and from
10◦48′28”E to 11◦24′57”E. The average topographic slope is about 10% and the area has a
prevailing southern exposure. The most important water elements are the Arno river and
its tributaries the Greve and Bisenzio.

According to the Köppen–Geiger climate classification [42], the metropolitan area of
Florence has a borderline Mediterranean (Csa) and Humid subtropical climate (Cfa), with
a moderate influence of the sea and warm summers.

Geographical and demographic characteristics of the study area are described in
Table S1 in the Supplementary Materials. The area has a total of about 1 million inhabitants
located in twenty municipalities and Florence, Prato, and Pistoia are among the five
most populated cities in Tuscany (source: Italian National Institute of Statistics, ISTAT,
https://www.istat.it/en/).

https://www.istat.it/en/
https://www.istat.it/en/
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Figure 2. Geographical location map of the metropolitan area of Florence.

The metropolitan plain represents the most important settlement area of Tuscany,
densely inhabited and influenced by strong human pressures. As recognized by the
last Regional Landscape Plan of Tuscany [43] the metropolitan area is characterized by
territorial fragmentation and a high concentration of residential, commercial, and industrial
zones and road infrastructures. It is also affected by wetlands and natural areas, enclosed
by highly anthropized zones. These characteristics are expected to decrease the amount of
agricultural land, with the loss of agroecosystems, wetlands, and alteration of the riparian
vegetation. Data from the Italian National Institute of Environmental Protection and
Research (ISPRA) show a percentage of Tuscany soil consumption in 2019 equal to 6.15%,
compared to 7.10% national average value [4]. Florence is recognized for a high degree of
imperviousness with 41.70% of soil consumption (4267 ha) in 2019.

2.2. Land Surface Temperature (LST) and Derivate Layers
2.2.1. Daytime Summer Land Surface Temperature (LST) Layer

Land Surface Temperature (LST) is an important geophysical parameter of surface
energy balance, used to monitor surface thermal processes [38,44,45]. The LST layer in this
study was obtained by using Landsat 8 TIRS (Thermal Infrared Sensor) remote sensing data
products from the U.S. Geological Survey [46] (https://earthexplorer.usgs.gov), referred to
the summer season (from June to August) for the period 2015–2019.

LST was calculated from clear-sky images at 30 m horizontal resolution (the 100 m
original resolution of TIRS bands was resampled to 30 m by the U. S. Geological Survey)
for daytime (09:58 UTC). Landsat 8 data scene details are reported in Table S2 in the
Supplementary Materials. Fourteen scenes (path 192, row 30) covering all the hottest
summer months were used by selecting three scenes per year, except for 2018 (that had
two scenes). The maximum arbitrary cloud cover threshold adopted in this study to ensure
image reliability was less than 3.5%.

LST retrieval was based on the official methodology provided by the U.S. Geological
Survey [46] and it was performed using the open source R software [47]. The method
involved the conversion of DN (digital number) values of the thermal band (band 10) into

https://earthexplorer.usgs.gov
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top of atmosphere spectral radiance values (TOA), by using the bandwidth-specific factors
from the metadata:

TOA = ML Qcal + AL, (1)

where ML (3.34 × 10−4) is band-specific multiplicative rescaling factor; Qcal is quantized
and calibrated standard product pixel values (DN); AL (0.10) is band-specific additive
rescaling factor. Spectral radiance values were used to estimate the top of atmosphere
brightness temperature (Tb):

Tb = K2/ln [(K1/TOA) + 1], (2)

where K1 (774.88) and K2 (1321.07) are band-specific thermal conversion constants. Surface
emissivity (ε) was calculated by adopting the NDVI method [48] on bands 4 and 5. These
two bands were previously atmospherically corrected in QGIS Semi-Automatic Classifica-
tion Plugin [49]. As confirmed by Sekertekin and Bonafoni [50], the land surface emissivity
model of Sobrino et al. [48] provides the best performance on all LST retrieval methods,
with a low root mean square error value (2.52 K). Finally, LST was extracted as follows:

LST (K) = Tb/[1 + (λ Tb/c2) ln(ε)], (3)

where λ is the wavelength of emitted radiance (10.8 µm); and c2 is obtained by the follow-
ing equation:

c2 = h × c/s = 14,388 µm K, (4)

where h is Planck’s constant (6.626 × 10−34 J s); c is the speed of light (2.998 × 108 m/s);
and s is Boltzmann constant (1.38 × 10−23 J K−1).

Mean summer daytime LST was calculated by using all available images converted
from Kelvin to Celsius degrees (◦C).

2.2.2. The Urban Thermal Field Variance Index (UTFVI) Layer

Following the estimation of LST, the Urban Thermal Field Variance Index (UTFVI)
was selected to apply an ecological evaluation of summer daytime surfaces determined by
thermal conditions. Several recent studies used this index to evaluate the SUHI impacts on
the quality of urban life [36,51,52]. UTFVI was used to quantitatively describe the SUHI
effect and was estimated by the following equation:

UTFVI = (LST − LSTmean)/LSTmean, (5)

where LST is the surface temperature of a certain point, recorded for each pixel in the
daytime summer period 2015–2019 (described in Section 2.2.1) and LSTmean is the average
value of the whole study area extracted as raster statistics in QGIS (32.6 ◦C). UTFVI was
calculated by using raster calculator in QGIS environment. Six ecological evaluation
thresholds were identified in association with the severity of SUHI phenomenon [51]:

1. UTFVI < 0.000 (“excellent”) and absent SUHI;
2. UTFVI between 0.000 and 0.005 (“good”) and weak SUHI;
3. UTFVI between 0.005 and 0.010 (“normal”) and moderate SUHI;
4. UTFVI between 0.010 and 0.015 (“bad”) and strong SUHI;
5. UTFVI between 0.015 and 0.020 (“worse”) and stronger SUHI;
6. UFTVI > 0.020 (“worst”) and strongest SUHI.

In this study, adverse ecological conditions were defined for UTFVI ≥ 0.010 (from
“bad” to “worst”) while all the other situations were defined as favorable ecological condi-
tions (from “excellent” to “normal”).

2.3. Thermal Hot-Spot Detection

The hot-spot analysis conducted in this study was addressed to detect urban areas
with daytime LST values showing spatially widespread LST values and thus creating
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positive or negative structural LST anomalies. Getis-Ord Gi* statistic is the method used
to identify statistically significant spatial clusters of high (hot-spots) and low LST values
(cool-spots) at local scale.

The criterion for identifying a statistically significant hot-spot (or cool-spot) is that the
feature/area should have the highest (or lowest) value, while being surrounded by other
features/areas with similar LST values [25]. The analyses for this study were conducted
using the Hot-Spot Analysis tool (Getis-Ord Gi*) available in ArcGIS ESRI environment [53].
The method was performed on the averages of daytime summer LST dataset from Landsat
8 imageries, previously converted to a spatial point object. Considering the Landsat
8 resampling carried out by USGS (30 m spatial resolution), the horizontal distance of each
LST point object was 30 m. Getis-Ord Gi* statistic method was focused on the calculation
for each LST point taken in the context of neighboring points.

The final outputs provided by the Hot-Spot Analysis tool were the significant hot- and
cool-spot areas, spatially defined by the following formula [25]:

Gi∗ =
∑n

j=1 wi,jxj − X ∑n
j=1 wi,j

S

√ [
n ∑n

j=1 w2
i,j−
(

∑n
j=1 wi,j

)2
]

n−1

, (6)

where xj is the attribute value for feature j; wi,j is the spatial weight between feature i and j;
n is equal to the total number of features.

X and S are mean and variance values, respectively:

X =
∑n

j=1 xj

n
(7)

S =

√
∑n

j=1 x2
j

n
−
(
X
)2 (8)

Getis-Ord Gi* application performed in GIS environment requires an appropriate band-
width to be selected (expressed in meters) in order to perform a reliable hot-spot analysis.

The methodological approach suggests the use of metrics such as inverse Euclidean
distance and neighbor maximum distance by considering only the eight neighboring
pixels [33]. This approach was applied in the present study for hot-spot detection and the
corresponding bandwidth value was about 42.43 m.

The output of the Gi* statistic also provides measures of statistical significance for
each feature/area: the probability (Gi* p-value) and standard deviation (Gi* z-score) values.
Gi* z-score is a measure of how much the features/areas are clustered, and the Gi* p-value
is the probability that the hot-spot patterns found are only due to a random spatial process.

Strictly speaking, a high z-score and a low p-value indicates a significant hot-spot. A
low negative z-score and a small p-value indicates a significant cool-spot. The higher (or
lower) the z-score, the more intense is the clustering. Thus, three macro groups of thermal
patterns were identified:

1. cool-spot: statistically significant clustering of low LST values (Gi* z-score < −1.65);
2. hot-spot: statistically significant clustering of high LST values (Gi* z-score > 1.65);
3. other areas with no significant spatial correlation (−1.65 < Gi* z-score < 1.65).

Confidence level identifies the statistically significance of hot- and cool-spots at thresh-
olds of 90%, 95% and 99%. Therefore, in the Florentine metropolitan area, hot-spots
were categorized by 3 × 2 progressive groups based on confidence level thresholds [31]:
“Cool-spot99 (cool-spot LEVEL-3)”, “Cool-spot95 (cool-spot LEVEL-2)”, “Cool-spot90
(cool-spot LEVEL-1)”, “Hot-spot90 (hot-spot LEVEL-1)”, “Hot-spot95 (hot-spot LEVEL-2),
“Hot-spot99 (hot-spot LEVEL-3)”.

Table 1 shows the hot- and cool-spot classification based on Getis-Ord Gi* approach.
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Table 1. Hot-spot classification by applying Getis-Ord Gi* approach.

Gi* Hot-Spot Classes Confidence Levels Probability
(Gi* p-Value)

Standard Deviation
(Gi* z-Score)

Cool-spot99 (LEVEL-3) 99% <0.01 <−2.58
Cool-spot95 (LEVEL-2) 95% <0.05 <−1.96
Cool-spot90 (LEVEL-1) 90% <0.10 <−1.65

Other areas Not significant 0 −1.65 < z-score < 1.65
Hot-spot90 (LEVEL-1) 90% <0.10 >1.65
Hot-spot95 (LEVEL-2) 95% <0.05 >1.96
Hot-spot99 (LEVEL-3) 99% <0.01 >2.58

The highest standard deviation (Gi* z-score > 2.58 or Gi* z-score < −2.58) and the
lowest probability (Gi* p-value < 0.01) classes defined areas with extreme values (LEVEL-3)
where the highest or lowest LST values were clustered with 99% confidence level.

An Inverse Distance Weighted (IDW) interpolation technique was applied on the
Getis-Ord Gi* resulting points maps, in this way obtaining hot- and cool-spot raster maps
with Landsat 8 grid resolution. This method is suitable to interpolate a raster surface from
dense data by using a specific search radius [54]. These outputs were vectorized to obtain
hot- and cool-spots as a polygonal feature layer.

2.4. Urban Feature Layers
2.4.1. Vegetation and Water Bodies Layers
Normalized Difference Vegetation Index (NDVI)

Normalized Difference Vegetation Index (NDVI) is one of the most widely applied
vegetation indices and an important descriptor of greenness of the biomes. NDVI is
considered as land use land cover indicator to quantitatively explore the relationship
between the thermal environment and urban expansion [55,56], and to investigate the
greening effect on LST changes [32,35,36].

In this study, NDVI is derived from Copernicus Sentinel-2 level-2A raster products
by using high-resolution (10 m) remote sensing imagery of the summer daytime period
(June to August) in the year 2017. The index was calculated from the reflectance in the red
(RED) and near-infrared (NIR) portions of the electromagnetic spectrum, as shown by the
following equation:

NDVI =
NIR− RED
NIR + RED

, (9)

where NIR and RED are band 8 and band 4, respectively.
Theoretically, NDVI values are represented as a ratio ranging from −1 to +1, where

positive values indicate vegetated areas and negative values denote non-vegetated areas or
vegetation affected by stress. NDVI values are influenced by several factors (vegetation
phenology, climatic conditions, water availability) and thresholds may differ by locations
and time of the year [57].

Four NDVI thresholds for surface types are generally recognized: NDVI ≤ −0.20 for
water, from −0.20 ≤ NDVI < 0.20 for impervious, 0.20 ≤ NDVI < 0.60 for non-irrigated
pervious and NDVI ≥ 0.60 for irrigated pervious surfaces. The rationale of the index is
that healthy vegetation has a high reflectance in the near-infrared and a low reflectance in
the red band, thereby enhancing the interpretation of vegetation cover while suppressing
subtle noise from other land cover types.

Tree Cover

Tree cover layer was developed by ISPRA, in the framework of the project “ASI
Habitat Mapping” with the purpose of producing a high-resolution (10 m) land cover map
of Italy.

In this study, the tree cover was mapped on satellite images of Copernicus Sentinel-1
and Sentinel-2 related to the summer of 2017, in Google Earth Engine environment. The
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methodology was based on NDVI calculation and the evaluation of thresholds applied
on multitemporal remote sensing imagery. The final output is the tree cover binary raster
layer (where 0 and 1 are non-tree cover and tree cover surfaces respectively) at 10-m spatial
resolution for the summer of 2017. Further information on the workflow methodology is
available in Morabito et al. [11].

Water Bodies

Water bodies (rivers, ponds, wetlands, and any other open water) were extracted
from the Regional Land Use and Land Cover map (vector data) at scale 1:10,000 for the
year 2016, produced by the Environmental Modelling and Monitoring Laboratory for
Sustainable Development, LaMMA Consortium (http://www.lamma.rete.toscana.it/).
The final output is the water bodies binary raster layer (assuming 1 if water elements
were present, or 0 if they were absent) and 2 m horizontal resolution was selected as the
maximum threshold in order to spatially combine this data with the other feature layers.

2.4.2. Urban Surfaces Layers
Impervious Surface

Impervious surfaces were detected through a high-resolution (10 m) raster layer for
the year 2017, provided by ISPRA. The original data is freely available for the entire Italian
territory at National Environmental Information System Network website [58]. These
data were produced through a semi-automatic classification methodology that allowed to
detect consumed land, and the map is updated every year through the photointerpreta-
tion of changes [4,59]. Therefore, impervious areas include buildings, road and railway
infrastructure, impervious non-built areas and sports fields, construction sites, perma-
nent greenhouses, mining areas, landfills, and other infrastructure. Further information
on the applied methodology is available in the latest report “Land consumption, Land
Cover Changes, and Ecosystem Services” published by ISPRA [4] and in other publica-
tions [11,40,60].

Albedo

Albedo is the fraction of solar radiation reflected by a surface, depending on various
artificial or natural features, including material, color, type of soil, tillage, water content, age
of residue [61]. Surface albedo plays an important role in the thermal urban environment
and is considered one of the most influencing parameters on the radiation balance of the
land surface [62,63].

Albedo values are expressed in a range between 0 (no reflection) and 1 (maximum
reflection, typical of a perfectly white surface). Many studies estimated the main typical
values of albedo for a variety of natural and artificial surfaces: such as for deciduous forest
with leaves (0.18), coniferous forest (0.16), bare soil (dry 0.12, wet 0.15) [61], grass (0.25),
water surfaces in relation to different values of solar altitude (ys) (0.05 for ys > 45◦, 0.08 for
ys = 30◦, 0.12 for ys = 20◦, 0.22 for ys = 10◦), asphalt (0.15), and concrete (new 0.55, aged
0.20) [64].

In this study surface broadband albedo (α) was estimated from the Sentinel-2 Level-
2A raster products of the 2017 daytime (from 10:00 to 11:00 UTC) summer period by
integration of narrowband reflectance across the shortwave spectrum. The following
formulas were adopted to obtain a surface albedo map, considering the observed surface
as Lambertian [63,65]:

α =
N

∑
B=1

pB ×wB, (10)

wB =

∫ HB
LB

Rsλ × dλ∫ 3
0.3 Rsλ × dλ

, (11)

http://www.lamma.rete.toscana.it/
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where pB is the surface reflectance for a specific band B; wB is the weighting coefficient;
Rsλ is the extraterrestrial solar radiation for the wavelength; dλ is the bandwidth; LB and
HB are the lowest and the highest wavelength limits assigned to Sentinel-2 bands. These
equations were applied on the VNIR (B2, B3, B4 and B8) and SWIR (B11 and B12) bands.
The SWIR bands, with the original 20-m pixel size, were resampled at 10 m in order to
obtain a more resolute albedo map, also consistent with the other urban surface layers.

2.4.3. Urban Morphology, Atmospheric and Demographic Layers
Hot-Spot Surface Area and Shape Index (SI)

Hot-spot surface areas were calculated for each hot- and cool-spot category (LEVEL-1,
2, and 3, respectively, for hot- and cold-spot areas). Shape is also an important parameter
for urban thermal analysis as the relationship existing between city size, urban form, and
the magnitude of the SUHI it produces, has been demonstrated [66]. The Shape Index (SI) is
an areal shape metric based on perimeter-area relationships and measures the complexity of
a patch compared to a standard shape (squares for raster data, circles for vector data) of the
same size [67]. Initially proposed as a diversity index in landscape ecological studies [68],
SI is defined as the ratio between patch perimeter and the square root of patch area (m2),
adjusted by a constant to account for a square standard [69]:

SHAPE =
0.25pij
√aij

, (12)

where pij is perimeter (m) of patch ij; aij is area (m2) of patch ij.
The index was applied to each individual cool- and hot-spot feature (patch), with the

aim of providing a measurement of geometrical complexity of the hot-spot pattern. SI
values equal to 1 correspond to square patches and increase without limit as patch shape
becomes more irregular. SI was computed by the R environment software using specific R
packages: “landscapemetrics” [70] and “landscapetools” [71]. The final output is a raster
layer with 30 m horizontal resolution.

Sky View Factor (SVF)

The Sky View Factor (SVF) was used as an indicator to describe the urban geometry.
It is a dimensionless parameter that returns, with values between 0 and 1, the degree of
exposure of a surface to the celestial vault or portion of sky visible from a given point located
at ground level [72]. This factor is influenced by the components of the urban fabric, street
furniture and trees: values close to 1 correspond to a large visible portion, while values close
to 0 indicate a limited view of the sky. SVF can be classified into four categories [73,74]:
SVF < 0.25, dense space; 0.25 < SVF < 0.50, semi-dense space; 0.50 < SVF < 0.75, semi-
open space; and SVF > 0.75, open space. Moreover, SVF plays an important role in the
description of urban radiation properties: the higher its value, the greater the incidence
of direct solar radiation (Jiao et al., 2019). The calculation methodology was introduced
by Oke [72] and has been widely developed in urban climatology studies [75–77]. For a
clearer understanding, the SVF calculation of urban geometry is explained by the following
Equation [72]:

SVF = cos (tan−1 (2 × H/W), (13)

where H is the height of the obstacle and W is the distance between obstacles.
The SVF was calculated using the aspect ratio (H/W) of each outdoor open space

of the metropolitan area and considering all the streets as street canyons [76]. The input
data is the Digital Surface Model (DSM) raster layer, obtained from airborne LIDAR
(Light Detection and Ranging) data of the Tuscany Region and the Italian Ministry of the
Environment, where the information on building and terrain vertical elevation is stored
in every pixel. DSM layers were collected over the period 2007–2010 from LIDAR point
cloud data and are freely available at Regional database of Tuscany (GEOscopio platform,
http://www502.regione.toscana.it/geoscopio/cartoteca.html). A unique DSM layer of

http://www502.regione.toscana.it/geoscopio/cartoteca.html
http://www502.regione.toscana.it/geoscopio/cartoteca.html
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the metropolitan area was obtained by performing 2-m resampling merging the original
LIDAR-derived DSM layers (that have 1 m and 2 m horizontal resolutions) available for
the investigated areas. As supported by a recent study [77], the DSM layer resolution is an
important parameter.

The SVF map was acquired by SAGA (System for Automated Geoscientific Analyses)
environment [78] for each pixel of 2 m size of the DSM, therefore considering all obstacles
on the surface and depending on the search radius and number of directions (where
hemisphere is dissected). The following two input parameters were used, radius of 100 m
and 60 search directions as indicated in previous relevant studies [76,77].

Global Solar Radiation

The term “global solar radiation” refers to the amount of direct and diffuse hourly
radiation (Wh/m2) reaching a given surface. Solar radiation was simulated using the
Area Solar Radiation tool in ArcGis environment [53] with reference to the daily time
frame (24 h) of a specific summer day: the summer solstice (June 21st). The aim was to
assess the average exposure to global summer solar radiation, under clear sky conditions.
The input data was a DSM raster layer, geometrically resampled from 1 m to 2 m and
obtained from the final union of airborne LIDAR-derived DSM layers. The calculation
was based on the algorithm initially developed by Rich [79] and later improved by Fu and
Rich [80]. The height of the sun was simulated by knowing the latitude and longitude and
the height of urban elements, projecting shadows, and thus calculating the potential solar
incidence. As for SVF, the radiation model required the setting of the search distance, the
number of directions, in addition to the parameters of atmospheric transmissibility and
the proportion of global radiation fluxes [81]. The final output is a raster layer with 2 m
horizontal resolution.

Population Density

Population density data of the Italian National Institute of Statistics (ISTAT) were
used to analyze the population spatial distribution in the Florentine metropolitan area.
The dataset is freely available on the GEOscopio Regional web platform and consists of
the most recent spatial population density database (vector data), divided into census
sections covering the whole Tuscany Region. Population density was analyzed in QGIS
environment [82] by filtering data exclusively for the residential housing layer, previously
downloaded from the GEOscopio platform. The population density data was converted to
a raster layer with 2 m horizontal resolution to spatially matching with the other urban
feature layers.

2.5. Methodologies to Perform Thermal Hot-Spot Statistical Analyses

The thermal hot- and cool-spot statistical analyses were conducted to describe all
urban features layers, previously analyzed. All statistical analyses were performed using
IBM SPSS software [83] and R environment [47]. Maps were provided by using QGIS
desktop software [82]. QGIS Field Calculator and Zonal Statistic are the tools used to
compute surface areas and extract mean values of urban features layers, respectively. The
following data were used to fill hot- and cool-spot polygonal layers: label of Gi* confidence
level (CL), mean Normalized Difference Vegetation Index (NDVI), tree cover area (TC),
water bodies area (WB), impervious area (IA), mean albedo (ALB), surface area (SA), mean
Shape index (SI), mean Sky View Factor (SVF), mean global theoretical solar radiation of
June 21st (RJ), and mean population density (PD). By using this data matrix, preliminary
non-parametric group wise comparisons were conducted by using the Mann–Whitney [84]
and Kruskal–Wallis procedures [85] in IBM SPSS environment [83] to put in evidence
the raw differences among confidence level classes. The relationships between urban
features layers and hot- and cool-spot status, at various significance levels, were analyzed
using logistic Generalized Linear Models (GLMs). The use of LST as predictor was not
possible because strong non-linearity existed between LST and urban feature layers and
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linear modeling assumptions were generally not respected. With the aim of performing
logistic GLM modeling, a dummy binary variable “HOTSPOTLEV” was created, where
the hot-spot referred to LEVEL-1 was taken as reference and set to 0 value in both cool-
and hot-spots. Four logistic GLMs were used:

1. “Cool-spot ≥95 model”: where HOTSPOTLEV = 1 for LEVEL-2 (95%) and LEVEL-
3 (99%);

2. “Cool-spot ≥99 model”: where HOTSPOTLEV = 1 for LEVEL-3 (99%);
3. “Hot-spot ≥95 model”: where HOTSPOTLEV = 1 for LEVEL-2 (95%) and LEVEL-

3 (99%);
4. “Hot-spot ≥99 model”: where HOTSPOTLEV = 1 for LEVEL-3 (99%).

Three R packages were used: “pscl” [86] to perform pseudo R-squared computation;
“MASS” [87] to perform AIC backward selection; and finally “dominanceanalysis” [88] to
obtain a measure of relative importance in GLMs modeling context.

SVF and RJ variables were excluded from the cool-spot model due to lack of LIDAR-
derived DSM: the data were only available for about 34.4% of cool-spot areas. The four
GLM predictors were selected using minimal Akaike information criterion (AIC) [89] in
a stepwise algorithm [87]. AIC technique has been acknowledged as a useful strategy to
select the best variable or models in various situations [90]. The pseudo R-squared value of
selected models, the AIC and complete model summaries of selected models were com-
puted. GLMs were definitively performed including the variables with a p-value < 0.05.
Finally, a General Dominance Analysis (GDA) [41] was performed on the selected signifi-
cant variables with the aim of quantifying the singular linear average contribution of each
predictor in hot- and cool-spots concerning their respective reference level. Dominance
analysis is one of the most successful methods for evaluating predictor importance [91]. It
examines the contribution of each predictor to the model’s fit in all subset models by using
the change in model fit (i.e., R2) and compares it in a pairwise fashion to the contribution
of each of the other predictors [92]. More details on GDA analysis were reported in Luo
and Azen [93]. The McFadden’s measure [94] was used as pseudo R-squared in the GDA
computation. This dimensionless measure varies between 0 and 1 [95] and has the most
intuitively reasonable interpretation as a proportional reduction in error measure [96].

3. Results
3.1. Daytime Summer LST and UTFVI Spatial Variations

The descriptive statistics of averaged values of LST and UTFVI are shown in Table S3
in the Supplementary Materials. The quantitative description of UTFVI coverage area for
the 2015–2019 period is shown in Table 2 for the whole metropolitan area and the three
largest cities (Florence, Pistoia, and Prato), and in Table S4 in the Supplementary Materials
for the other municipalities.

Table 2. Percentage coverage area by Urban Thermal Field Variance Index (UTFVI) classes for the overall metropolitan area
and the three largest municipalities.

Study-Areas
UTFVI Coverage Area (km2) (%)

Excellent
<0.000

Good
0.000–0.005

Normal
0.005–0.010

Bad
0.010–0.015

Worse
0.015–0.020

Worst
>0.020

Florence 32.4 (33.6) 16.9 (17.6) 17.1 (17.8) 18.5 (19.2) 9.7 (10.1) 1.6 (1.7)
Pistoia 42.4 (47.4) 26.7 (29.8) 13.3 (14.8) 5.4 (6.0) 1.6 (1.8) 0.2 (0.2)
Prato 16.8 (21.2) 17.1 (21.5) 21.4 (26.9) 15.6 (19.6) 7.1 (8.9) 1.5 (1.9)

Metropolitan area 296.8 (44.0) 147.7 (21.9) 119.1 (17.6) 74.9 (11.1) 29.7 (4.4) 6.6 (1.0)

Note: coverage area values are calibrated on raster data. The percentage values are related to each study-area.

The spatial representations of LST and UTFVI are shown in Figures 3 and 4.
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Figure 3. Daytime summer land surface temperature (LST) map (2015–2019).

Figure 4. Daytime summer Urban Thermal Field Variance Index (UTFVI) map (2015–2019).

Florence and Prato are the cities that have shown by far the largest surface area
affected by adverse ecological conditions (approximately 30 and 24 km2, respectively),
covering about 27% and 22% of the whole metropolitan area affected by the same condi-
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tions, respectively. Considering the whole metropolitan area, almost 17% of the surface
was affected by adverse ecological conditions while the rest revealed favorable ecological
conditions (Table 2). In particular, eight municipalities exceeded the metropolitan percent-
age threshold of adverse conditions in relation to the municipal area: Sesto Fiorentino
(38.8%), Florence (31.0%), Poggio a Caiano (30.5%), Prato (30.4%), Montemurlo (28.2%),
Campi Bisenzio (25.5%), Calenzano (19.6%), and Agliana (19.0%) (Table 2 and Table S4 in
the Supplementary Materials). Conversely, more than half of municipalities showed higher
percentage values of favorable conditions than the metropolitan area value. The greatest
extension of territory characterized by favorable ecological conditions was observed in
Pistoia (82.4 km2), representing almost 15% of the whole metropolitan area covered by the
same UTFVI classes.

3.2. Spatial Distribution and LST Variation Among Hot-Spot Classes

Descriptive statistics relating to hot-spots and their spatial representation are shown
in Table 3, Figure 5, and Table S5 in the Supplementary Materials.

The whole metropolitan area is covered by almost 20% of thermal anomalies and
cool-spots are almost double the hot-spots: 11.5% of cool-spots with average LST minimum
and maximum values ranging from 26.6 ◦C to 28.2 ◦C and 6.5% of hot-spot areas with LST
values ranging from 36.9 ◦C to 38.1 ◦C (Table 3). Almost half of the municipalities exceeded
the average metropolitan percentage coverage threshold of cool-spots. Thirty-five percent
of municipalities revealed a higher percentage coverage value of hot-spots than the average
metropolitan area value.

Figure 5. Hot-spot detected map.
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Table 3. Percentage coverage area of Gi* hot-spot classes with relative averaged values of LST.

Study-Areas Gi* Hot-Spot
Classes

SA
(km2) (%)

N. Hot-Spot
Polygons/SA

(n/km2)

LST (◦C)

Mean Min Max Sd

Florence

Total cool-spots 3.2 (3.3) 137.8 27.6 27.0 28.3 0.5
Cool-spot99 (LEVEL-3) 0.5 (0.5) 22.0 25.3 24.9 26.1 0.3
Cool-spot95 (LEVEL-2) 1.3 (1.3) 70.8 26.6 26.2 27.3 0.4
Cool-spot90 (LEVEL-1) 1.4 (1.5) 241.4 27.9 27.2 28.6 0.5

Other areas 79.4 (82.4) 0 33.4 24.7 39.0 2.3
Hot-spot90 (LEVEL-1) 8.0 (8.3) 52.6 37.3 36.7 37.8 0.4
Hot-spot95 (LEVEL-2) 5.0 (5.2) 22.0 38.2 37.6 38.7 0.3
Hot-spot99 (LEVEL-3) 0.8 (0.8) 25.0 39.9 39.3 40.6 0.3

Total hot-spots 13.8 (14.3) 39.9 37.6 37 38.1 0.4

Pistoia

Total cool-spots 8.5 (9.5) 169.5 27.3 26.5 28.2 0.6
Cool-spot99 (LEVEL-3) 2.6 (2.9) 32.7 25.1 24.6 26.1 0.4
Cool-spot95 (LEVEL-2) 3.9 (4.4) 88.5 26.4 25.6 27.4 0.6
Cool-spot90 (LEVEL-1) 2.0 (2.2) 505.5 27.8 27.0 28.6 0.7

Other areas 78.7 (87.9) 0 32.7 22.8 37.8 1.9
Hot-spot90 (LEVEL-1) 1.5 (1.7) 44.0 37.2 36.6 37.6 0.3
Hot-spot95 (LEVEL-2) 0.7 (0.8) 24.3 38.1 37.4 38.5 0.3
Hot-spot99 (LEVEL-3) 0.1 (0.1) 10.0 40.1 39.0 41.0 0.5

Total hot-spots 2.3 (2.6) 36.5 37.4 36.8 37.8 0.3

Prato

Total cool-spots 2.8 (3.5) 132.1 27.3 26.7 28.1 0.5
Cool-spot99 (LEVEL-3) 0.7 (0.9) 35.7 25.3 24.9 25.9 0.3
Cool-spot95 (LEVEL-2) 1.3 (1.6) 54.6 26.6 25.9 27.7 0.6
Cool-spot90 (LEVEL-1) 0.8 (1.0) 342.5 27.7 27.1 28.5 0.6

Other areas 66.4 (83.5) 0 34.0 23.4 38.5 2.0
Hot-spot90 (LEVEL-1) 5.7 (7.2) 69.1 37.4 36.8 37.9 0.4
Hot-spot95 (LEVEL-2) 4.1 (5.2) 23.9 38.1 37.6 38.6 0.3
Hot-spot99 (LEVEL-3) 0.5 (0.6) 56.0 39.7 39.3 40.0 0.2

Total hot-spots 10.3 (13.0) 50.5 37.6 37.0 38.1 0.4

Metropolitan area

Total cool-spots 77.7 (11.5) 134.3 27.4 26.6 28.2 0.6
Cool-spot99 (LEVEL-3) 25.5 (3.8) 20.2 25.3 24.8 26.1 0.4
Cool-spot95 (LEVEL-2) 34.3 (5.0) 70.4 26.5 25.8 27.5 0.6
Cool-spot90 (LEVEL-1) 17.9 (2.7) 419.2 27.8 27.0 28.6 0.7

Other areas 553.2 (82.0) 0 33.0 22.7 39.6 2.2
Hot-spot90 (LEVEL-1) 24.2 (3.6) 76.0 37.3 36.7 37.8 0.4
Hot-spot95 (LEVEL-2) 16.9 (2.5) 22.5 38.2 37.5 38.7 0.4
Hot-spot99 (LEVEL-3) 2.9 (0.4) 35.9 39.8 39.2 40.4 0.3

Total hot-spots 44.0 (6.5) 52.8 37.6 36.9 38.1 0.4

Note: Gi* hot spot classes are related to hot-spot detection by using Getis-Ord Gi* method. SA (%) is Gi* hot-spot surface area relative to
each study-area. Surface areas are calibrated on vector data. Max: maximum value. Sd: standard deviation.

Considering all the cool- and hot-spots in terms of surface areas in km2, the highest
values were respectively observed in the municipalities of Lastra a Signa (9.9 km2) (Table S5
in the Supplementary Materials) and Florence (13.8 km2) (Table 3). These latter surface
areas represented 12.7% and 31.4% of the respective total cool- and hot-spots area of the
whole Florentine metropolitan area.

The total cool-spots revealed a higher value of polygons per km2 (134.3 n/km2) than
the total hot-spots (52.8 n/km2). The lowest values were observed in LEVEL-3 and LEVEL-
2 for cool- and hot-spots, respectively, while the highest values were always observed
in LEVEL-1. Both for the whole metropolitan area and the single municipalities, LST
variations within the three cool- and hot-spot levels were stable (Table 3): about 1.0 ◦C
LST variation was estimated between the previous and next level. In addition, an increase
of about 10 ◦C was generally observed going from the total average cool-spot to the total
average hot-spot classes.

Concerning the overall metropolitan area, a mean LST increase of about 14.5 ◦C was
observed between the most extreme cool- and hot-spot levels (LEVEL-3). Focusing on
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these two classes, the lowest averaged LST values were observed in cool-spots of Pistoia
and Serravalle Pistoiese (about 25 ◦C), whereas the highest averaged LST values were
observed in hot-spots of Serravalle Pistoiese (about 42 ◦C) (Table 3 and Table S5 in the
Supplementary Materials).

3.3. Statistical Analyses on Urban Features
3.3.1. Hot-Spot Statistics

The averaged urban feature values (namely NDVI, TC, WB, IA, ALB, SA, SI, SVF, RJ
and PD) for cool- and hot-spot levels in the overall study-area are shown in Tables 4 and 5.

Table 4. Averaged values of urban features in cool-spot classes, with the exception of the sum of
surface area.

Urban Features Total
Cool-Spots

Cool-Spot90
(LEVEL-1)

Cool-Spot95
(LEVEL-2)

Cool-Spot99
(LEVEL-3)

NDVI (adim.) 0.79 *** 0.77 a 0.84 b 0.91 c

TC (%) (m2) 85.0 *** (6825) 82.8 a (2028) 89.1 b (12,858) 97.0 c (45,676)
WB (%) (m2) 3.5 *** (119) 3.7 a (71) 3.4 b (250) 1.7 a (188)
IA (%) (m2) 5.4 *** (259) 6.0 a (127) 4.5 b (512) 2.7 b (933)
ALB (adim.) 0.16 *** 0.17 a 0.16 b 0.15 c

SA (km2) 77.7 *** 17.9 a 34.3 b 25.5 c

SI (adim.) 1.2 *** 1.1 a 1.3 b 1.4 c

SVF (adim.) 0.69 *** 0.70 a 0.66 b 0.59 c

RJ (Wh/m2) 4505.19 *** 4572.11 a 4330.83 b 4072.41 c

PD (people per km2) 14.0 *** 16.0 a 10.7 b 1.5 a

Note: percentage values are related to cool-spot surface area (SA). NDVI: Normalized Difference Vegetation Index.
TC: Tree cover. WB: Water bodies. IA: Impervious area. ALB: Albedo. SI: Shape Index. SVF: Sky View Factor. RJ:
Global solar radiation of 21 June. PD: Population density. For Cool-spot SVF and RJ data were available only for
about 34.4 % (26.7 km2) of the overall Cool-spot coverage area (77.7 km2). *** p-value < 0.001. Different letters
indicate statistically significant differences (p-value < 0.05) between cool-spot levels.

Table 5. Averaged values of urban features in hot-spot classes, with the exception of the sum of
surface area.

Urban Features Total Hot-Spots Hot-Spot90
(LEVEL-1)

Hot-Spot95
(LEVEL-2)

Hot-Spot99
(LEVEL-3)

NDVI (adim.) 0.18 *** 0.20 a 0.14 b 0.06 c

TC (%) (m2) 1.7 *** (90) 2.0 a (92) 0.6 a (104) <0.1 b (14)
WB (%) (m2) 0.1 (6) 0.2 a (6) <0.1 a (10) 0
IA (%) (m2) 79.1 *** (16,240) 76.4 a (11,001) 86.6 b (38,100) 97.8 b (24,485)
ALB (adim.) 0.24 0.24 a 0.24 a 0.24 a

SA (km2) 44.0 *** 24.2 a 16.9 b 2.9 b

SI (adim.) 1.3 *** 1.3 a 1.4 b 1.2 b

SVF (adim.) 0.80 ** 0.80 a 0.78 b 0.79 ab

RJ (Wh/m2) 5236.5 * 5260.97 a 5235.80 a 5408.18 b

PD (people per km2) 1895.5 *** 1849.5 a 2532.8 b 319.7 c

Note: percentage values are related to hot-spot surface area (SA). NDVI: Normalized Difference Vegetation Index.
TC: Tree cover. WB: Water bodies. IA: Impervious area. ALB: Albedo. SI: Shape Index. SVF: Sky View Factor. RJ:
Global solar radiation of 21 June. PD: Population density. * p-value < 0.05. ** p-value < 0.01. *** p-value < 0.001.
Different letters indicate statistically significant differences (p-value < 0.05) between hot-spot levels.

The extreme cool-spot level (LEVEL-3) was characterized by the highest TC, NDVI
and SI values and the lowest IA and WB frequencies, SVF, RJ and PD (Table 4). Looking
at the variation among the cool-spot levels, significant (p-value < 0.001) increases going
from LEVEL-1 to LEVEL-3 were observed for SI (27.3%), NDVI (18.2%) and TC (17.1%).
In addition, significant (p-value < 0.001) decreases were observed for PDE (90.6%), IA
(55.0%), WB (54.1%), SVF (15.7%), ALB (11.8%) and RJ (10.9%). No progressive trend
was estimated for SA, showing the minimum and the maximum values in LEVEL-1 and
LEVEL-2, respectively.
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The extreme hot-spot level (LEVEL-3) was characterized by the highest IA and RJ, and
lowest TC, NDVI values, SA, SI, and PD and the absence of WB (Table 5). Considering the
variation among hot-spot levels, significant (p-value < 0.001) decreases going from LEVEL-
1 to LEVEL-3 were observed for TC (100.0%), SA (88.0%) and NDVI (70.0%), whereas a
significant increase (p-value < 0.001) was only observed for IA (28.0%), with almost 100% of
surface area covered by imperviousness in LEVEL-3. Significant variations among hot-spot
levels, even if with no progressive trends, were observed for SI and PD (p-value < 0.001),
SVF (p-value < 0.01) and RJ (p-value < 0.05). Instead, no significant variations among the
hot-spot levels (p-value > 0.05) were observed for WB and ALB.

3.3.2. Dominance Analysis

Selected logistic GLMs summaries and the main results of GDA are shown in Tables 6 and 7
for cool-spot models and Tables 8 and 9 for hot-spot models.

Table 6. Summaries of selected cool-spot logistic Generalized Linear Models.

Cool≥95 Model Cool≥99 Model

McFadden’s R2 = 0.156 AIC = 10,823 McFadden’s R2 = 0.181 AIC = 867.23

Coefficients Coefficients

Estimate Std. Error Z-Value P-Value Estimate Std. Error Z-Value P-Value

Intercept −2.040e+00 2.289e−01 −8.915 *** Intercept −4.140e+00 +7.634e−01 −5.423 ***
NDVI +2.419e+00 +1.817e−01 +13.316 *** NDVI +3.470e+00 +7.236e−01 +4.795 ***

TC +1.086e−04 +4.883e−06 +22.241 *** TC +1.370e−05 +1.649e−06 +8.310 ***
WB +1.854e−04 +4.684e−05 +3.959 *** ALB −1.796e−01 +3.435e+00 −5.228 ***
ALB −8.096e+00 +9.198e−01 −8.802 *** - - - - -

Note: McFadden’s R2 is McFadden’s pseudo R-squared. Std. error: standard error. Significant codes: *** p-value < 0.001.

Table 7. Average contribution by predictor (General Dominance Analysis of selected Cool-spot
logistic GLMs).

Cool≥95 Model Cool≥99 Model

Predictors
Average Contribution

Predictors
Average Contribution

McFadden’s R2 McFadden’s R2

TC 0.114 TC 0.077
NDVI 0.030 NDVI 0.073
ALB 0.009 ALB 0.032
WB 0.003

In Cool≥95 model (R2 = 0.156), NDVI, TC, WB and ALB were highly significant
predictors (p-value < 0.001), tagged by positive coefficients except for ALB (Table 6). GDA
performance in Cool≥95 model (Table 7) revealed TC as the most relevant predictor
(R2 = 0.114), followed by NDVI (R2 = 0.030) and ALB (R2 = 0.009). In Cool≥99 model (Mc-
Fadden’s R2 = 0.181), NDVI, TC, and ALB were identified as highly significant predictors
(p-value < 0.001) (Table 6) and the highest average contribution followed what was already
shown in the Cool≥95 model (Table 7).

In Hot≥95 model (R2 = 0.118), most variables were identified as significant pre-
dictors (p-value < 0.05 to p-value < 0.001) (Table 8): IA, RJ (p-value < 0.001) and PD
(p-value < 0.05) revealed positive coefficients, while NDVI, TC, ALB, SVF (p-value < 0.001),
and SI (p-value < 0.01) showed negative coefficients. NDVI was the most important pre-
dictor (R2 = 0.051), followed by SI (R2 = 0.029), IA (0.027) and the other urban elements
indicated in Table 9. Hot≥99 model (R2 = 0.241) was characterized by four significant
variables (p-value < 0.001 for NDVI and ALB; p-value < 0.01 for SVF and PD) identified by
negative coefficients (Table 8). Furthermore, for this model, NDVI was the most important
predictor (R2 = 0.199), followed by the other three urban elements (Table 9).
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Table 8. Summaries of selected hot-spot logistic Generalized Linear Models.

Hot≥95 Model Hot≥99 Model

McFadden’s R2 = 0.118 AIC = 2154.9 McFadden’s R2 = 0.241 AIC = 663.99

Coefficients Coefficients

Estimate Std. Error Z-Value p-Value Estimate Std. Error Z-Value p-Value

Intercept −2.267e+00 +1.004e+00 −2.259 * Intercept +2.564e+00 +9.784e-01 +2.620 **
NDVI −5.319e+00 +6.093e−01 −8.729 *** NDVI −1.868e+01 +2.050e+00 −9.112 ***

TC −1.703e−03 +3.845e−04 −4.430 *** ALB −8.452e+00 +2.272e+00 −3.720 ***
IA +1.677e−05 +2.530e−06 +6.628 *** SVF −1.847e+00 +8.909e−01 −2.073 *

ALB −5.733e+00 +1.355e+00 −4.230 *** PD −2.211e−04 +8.611e−05 −2.568 *
SI −5.265e−01 +1.832e−01 −2.874 ** - - - - -

SVF −4.143e+00 +8.676e−01 −4.775 *** - - - - -
RJ +1.306e−03 +2.632e04 +4.962 *** - - - - -
PD +3.763e−05 +1.762e−05 +2.135 * - - - - -

Note: McFadden’s R2 is McFadden’s pseudo R-squared. Std. error: standard error. Significant codes: * p-value < 0.05. ** p-value < 0.01.
*** p-value < 0.001.

Table 9. Average contribution by predictor (General Dominance Analysis of selected Hot-spot
logistic GLMs).

Hot≥95 Model Hot≥99 Model

Predictors
Average Contribution

Predictors
Average Contribution

McFadden’s R2 McFadden’s R2

NDVI 0.051 NDVI 0.199
SI 0.029 PD 0.029
IA 0.027 ALB 0.008

SVF 0.023 SVF 0.005
RJ 0.015
TC 0.009

ALB 0.004
PD 0.001

4. Discussion

This study, through the use of open data and a robust and replicable methodology,
allowed the distribution of summer daytime surface thermal hot- and cool-spots in the
Florentine metropolitan area to be quantified and spatially represented, identifying the
urban features layers that contribute to thermally characterizing these urban landscapes. In
particular, the application of a clear and reproducible procedure (the Getis-Ord Gi* statistic)
for urban thermal hot-spot detection based on summer daytime Landsat 8 imageries
combined with a parametric hot-spot characterization through local urban features layers
(based on open data) provided useful information for planning targeted urban mitigation
strategies involving specific urban elements in certain areas of the city.

The correct thermal clusters detection is an important issue in urban thermal studies
since LST values of a certain location are not independent but are spatially auto-correlated
with those of its neighboring areas because of land surface heat fluxes [97].

The significance of hot-spot detection is its capacity to allow statistically-based esti-
mates of spatial variation in thermal aggregation, identifying significant hot-spots in the
LST datasets at local level [28,35].

About 20% of the selected metropolitan area (121.7 km2 of SA) was affected by thermal
anomalies, i.e., 11.5% by cool-spots and 6.5% by hot-spots. As in Jamei et al. [35], also in
this research a remarkable part of the study-area (82.0%) has a random LST distribution.
We found that cool-spot areas show a higher degree of fragmentation, more than double
with respect to the hot-spot ones, in terms of number of cool- and hot-spot polygons per
surface area. This is justified by the fact that the large extent of urban areas characterized
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by soil consumption creates compact hot-spot areas interrupted by more fragmented
cool-spot areas.

The average LST variability of 10 ◦C observed in this study between hot- and cool-
spots is in agreement with previous studies [33] where the authors showed that the average
summer LST difference between hot- and cool-spots can reach 9.1 ◦C. Furthermore, the fact
that all twenty municipalities in our study revealed a similar average LST variability and
about 14.5 ◦C between the extreme hot- and cool-spot levels (LEVEL-3) could be explained
by the right trade-off between the amount of impervious areas and other urban surface
layers, the typical LST-related cooling layers (i.e., blue and green infrastructures) and
morphological features.

The strength of our results is determined by the fact that data have been collected in
a stable period from morphological, structural, and demographic point of view for the
study-area where no major large-scale regeneration interventions were observed.

4.1. The Role of Urban Features on Thermal Pattern

Identification of the dominant LST-related factors minimizing their adverse effects,
was recognized as an important challenge by recent studies [35,98]. Extensive research
demonstrated that LST is closely linked to many parameters: land-use patterns, land
coverage, landscape structures and land-use configuration [99,100]. In particular, a more
recent study [20], conducted in four cities of the United States, highlighted the strong
influence of NDVI and TC, followed by ALB and WB, on daytime LST. This very interesting
result is also confirmed in our study since exactly these four variables were identified as
significant predictors in the logistic GLMs cool-spots developed and three of these variables
(NDVI, TC and ALB) were found to be significant predictors in the logistic GLMs hot-spots.
In addition, Logan et al. [20] also revealed that an increase of vegetation and decrease of
impervious surfaces were linked to the greatest daytime LST with about a 15 ◦C change.
This finding was in agreement with the average LST variation between the extreme hot-
and cool-spot levels (LEVEL-3) in the Florentine area, where an average difference of
14.5 ◦C was found.

In this study, the local urban features were considered by using open data, in this way
ensuring the reproducibility of the analyses in other urban areas. In order to characterize
the urban thermal hot-spot pattern, various urban features data were considered: vege-
tation and water bodies, urban surfaces, morphological, atmospheric, and demographic
characteristics layers. Previous studies [29,34,35] performed a geospatial-based hot-spot
analysis by using the combination of urban features such as NDVI and PD, selected as
proxies for vegetation density and human activity, respectively. As recently suggested by
other authors [33,35], understanding the right trade-off between the amount of different
urban elements determining hot-spot areas enabled the development of targeted mitigation
strategies to counteract overheating in cities.

Nevertheless, the estimation of urban features’ effects on the surface thermal con-
ditions is a complex challenge and has some limitations, especially if linear regression
models are performed [20]. In our case, we are aware that the low pseudo R-squared values
(from GDA results) confirmed the difficulty in evaluating linear relationships for clustered
hot- and cool-spot areas. However, it must also be considered that our analyses focused
on highlighting the different combinations of urban features layers that characterize the
hottest or coolest urban areas, thus acting on the extreme classes (hot- and cool-spots) of
the overall urban LST-pattern.

Identification of the urban elements that contribute to and characterize the various
levels of hot- and cool-spots (obtained by the dominance analysis) represents a great
strength in this study. In particular, the results obtained can provide useful information to
suggest subsequent intervention addressed to mitigate thermal anomalies in the Florentine
metropolitan urban area. We found a greater number of urban elements contributing
to characterize hot-spot areas than cool-spot ones, while few variables were needed to
characterize extreme hot- and cool-spots levels (LEVEL-3). This result is in good agreement
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with the findings of Shi et al. [101], who demonstrated that the daytime summer thermal en-
vironment in a high-density city in China involved several urban design factors, including
sky view factor, surface albedo, vegetation cover ratio, building density, and mean building
height. Regarding the cooling effects of open spaces, it was widely demonstrated that
blue and green spaces are the main LST-drivers [102], in addition to reflective materials, as
capable of increasing the surface albedo [103], as also highlighted in our study.

Vegetation has a key role as a strong modulator for thermal phenomenon [7] favoring a
cooling effect especially through the evapotranspiration and the shading effect [5,104]. Lit-
erature has widely shown the negative correlation between NDVI and LST [8]. Instead, the
ALB–LST relationship is complicated and moderately weak in part because both low and
high albedo areas can have either reduced or enhanced daytime LST in some cases [17,105].
This is probably linked to the heterogeneity of urban fabric and the complexity of urban
energy fluxes. In addition, a previous study [106] demonstrated that the decreased surface
ALB was driven by denser vegetation, highlighting that the relationship between vegeta-
tion greenness and surface albedo was stronger for sparse vegetation community than for
the dense one. The importance of vegetation was also confirmed in our study, in addition
to some surface properties: NDVI and ALB were the common elements of both hot- and
cool-spot models contributing to describe their thermal conditions. Significant increases of
NDVI and TC values were associated to a decrease of ALB values going from the lowest
(LEVEL-1) to the highest (LEVEL-3) cool-spot level. The coolest areas (LEVEL-3) revealed
the lowest ALB, probably linked to different and darker tree cover species in the study area.
As suggested by literature [61,64], the vegetation shows low albedo values ranging from
0.16 for coniferous forests, 0.18 for deciduous forests to 0.25 for grass land. However, the
low albedo of plants and generally vegetation do not contribute to overall warming and
LST increase because the excess warmth is offset by evaporative cooling from transpiration.

In hot-spot areas significant decreases of vegetation indices (NDVI and TC) and stable
ALB values were observed moving from hot-spot LEVEL-1 to LEVEL-3. The different
dynamics observed in hot-spot areas were associated with an almost absolute prevalence
of imperviousness in hot-spot LEVEL-3 (IA > 97%, NDVI 0.06 and TC surfaces < 0.1%). On
the other hand, the stability of albedo levels was probably related to the characteristics of
the surfaces that in these urban areas were uniformly characterized by built-up surfaces.
Further insights are certainly needed to better understand the mechanistic pathways
associated with the role played by various urban elements.

However, the results provided by this study represent an important source of infor-
mation for planners and policy-makers to localize mitigation strategies on specific hot- and
cool-spots. Our results suggest that interventions on hot-spot areas must be generally able
to involve various urban elements, while those on cool-spots or the extreme hot-spot level
(hot-spot LEVEL-3) must be more targeted by considering fewer elements.

4.2. Cool-Spot Sites

The cool-spot pattern was characterized by features linked to the vegetation (TC and
NDVI), water bodies (WB), and urban surface (ALB). In both cool-spot models, TC, NDVI
and ALB were the highly significant predictors, whereas WB was an additional predictor
only in the cool-spot≥95 model. Cool-spots had low WB values (3.5%), high vegetation
density (NDVI always greater than 0.7 and TC surface above 80%), and an average value
of ALB of 0.16, confirming the prevalence of pervious surfaces [57,61]. Concerning the
vegetation feature, the highest values were observed in the extreme cool-spot level (LEVEL-
3): TC was almost 100% with NDVI close to 0.90.

Previous studies have shown that an increase in vegetation cover helps to mitigate
SUHI effects through the direct effect of evapotranspiration and shading [5,104]. The
cooling effect of urban vegetation has been consistently demonstrated in several cities over
the past twenty years using remote sensing at all scales [107–111], and more specifically the
effect of TC on SUHI was clearly demonstrated during daytime summer in ten metropolitan
Italian cities [11]. It has become widely accepted that TC has higher cooling effect than
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grass [111,112]: trees have a more intensive evapotranspiration process than an equivalent
area of grass, in addition to the fundamental shading effect.

As stated by Alavipanah et al. [113], the relationship between LST and the proportion
of vegetation was non-linear in urban areas, showing lower LST where the proportion
of vegetation was between 70% and almost 80% per km2. There is a consensus in the
scientific literature that the TC cooling effect varied greatly between tree species for several
reasons, such as the different physiological traits, foliage density, tree height, and canopy
geometry [114,115].

Another interesting aspect is the effect provided by the size and shape of green areas.
In a recent study [116] carried out on the city of Arizona (US), the authors concluded that
the large green space of an irregular shape improved daytime cooling. A more recent
study [117] proposed that when the green areas size was limited (<1 ha), a compact shape
(circular or square) would be more effective in LST decreasing, while when the area was
large (>1 ha), the complex shape of the blue-green space had a good cooling effect. These
findings were in agreement with our results. In particular, in the Florentine metropolitan
area, the lowest average summer LST values (about 25 ◦C) were observed in the cool-spot
LEVEL-3: characterized on average by high values of TC ratio (97.0% on the total surface
area, corresponding to a size about of 4.6 ha), and a more irregular shape than the other
cool-spot levels and hot-spots at the same level.

Our results confirmed the important role provided by TC for summer cool-spots. In
addition, also WB revealed a strong cooling effect as confirmed by other studies [16,118],
especially during the summer [119]. A study conducted in China stressed the importance
of the percentage of WB in maximizing the cooling effect of green spaces [120]. In our
study, WB partially characterized the cool-spot pattern since the average WB percentage
values were very low (3.5%) compared to the surface area. Regarding the urban surface
composition, cool-spots showed relatively low ALB values, lower than 0.20, revealing a
value corresponding to the typical reflective power of TC areas [61].

4.3. Hot-Spot Sites

The hot-spot pattern revealed a more complex structure and involved a greater number
of urban elements, as compared to the cool-spot one. The level of thermal significance
was linked to many urban feature layers considered in this study and, in particular, the
vegetation state (NDVI and TC), features of urban surfaces (IA and ALB parameters), urban
morphology (SI and SVF), atmospheric (RJ), and demographic (PD) features.

The complex hot-spot pattern could be explained in relation to the combined and
interconnected role that different urban features layers play during daytime in the surface
energy balance and consequently modify the urban microclimatic conditions. The com-
plexity of urban thermal environment was also confirmed by several studies [20,100,101]
mentioned in Section 4.1. However, as seen also for cool-spots, vegetation (the NDVI) and
ALB were the urban elements generally identified as significant predictors.

The presence of vegetation was on average very low, as confirmed by NDVI values
lower than 0.20, corresponding with the typical values of the impervious surfaces [57],
and also a value of TC lower than 2%. Conversely, hot-spots were mostly characterized
by high IA values (79.1%) associated with low ALB values (0.24), resulting in a high
thermal storage capacity. Indeed, IA, as we expected, is the main driver for LST increases,
as confirmed by other studies in Italian cities [11,36,40,60], and high values could have
negative impacts on plant diversity and ecosystem services [121]. It has been demonstrated
that the combined effect of surface properties and urban geometry mostly influence the
urban thermal environment, especially in the surface energy flux distribution [111,122].
Studies on the thermophysical properties of materials have highlighted how different urban
elements (building roofs, road paving, green surfaces, and urban forests) can influence
the microclimatic conditions of the urban environment as a function of albedo [17,103,123].
Surface characteristics of building materials are clearly important and strongly influence the
urban microclimate, i.e., dark-colored surfaces, characteristic of asphalt paving, typically
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have a low albedo and tend to have greater heat capacity and lower reflectivity, contributing
to the SUHI [103,124]. Moreover, LST of urban areas is not only related to the structure and
composition of land surfaces, but also to the urban areas shape [66,125]. As suggested by
Zhou et al. [66], city size shows a strong influence on UHI intensity. In particular, the larger,
more compact, and less dispersed the cities are, the stronger their UHI intensity tends to be.
Therefore, in this study SI was considered as an important parameter providing a measure
of hot-spots geometrical complexity over the metropolitan area. The SI value of the extreme
level (LEVEL-3) was closely related to square or circular geometries, revealing the highest
average LST value of the study-area (39.8 ◦C) associated to a more regular shape than the
corresponding cool-spot level, as also confirmed in previous studies [126,127].

Concerning urban morphology, mean SVF equal to 0.80 suggested the predominance
of open spaces [73,74], resulting in a high sky exposure and a greater amount of solar
radiation (RJ = 5236.5 Wh/m2, on average) with respect to the cool-spots (SVF = 0.69 and
RJ = 4505.19 Wh/m2, on average).

The results of Scarano and Sobrino [128] showed that the LST is strongly related to the
solar access of surfaces during the morning period in the Italian city of Bari: surfaces with
high ALB values warm more quickly by day, given the absence of building and obstacle
shadows. Therefore, high sky exposure and solar radiation could have negative impacts
on the urban micro-climate because they increase the need for mechanical cooling and
ventilation and subsequently energy consumption [129]. PD also have a strong effect on the
thermal environment [66]. The demographic characteristics of the study-area showed about
1896 people per km2, linked to greater energy consumptions than those in the cool-spots
characterized by a lower density (PD = 14.0 people per km2, on average).

We found that the median hot-spot (LEVEL-2) was the most densely populated among
hot-spot areas, whereas the hottest hot-spot (LEVEL-3) was the least, because it was
prevalently industrial and with few residents. In line with the studies of Yue et al. [126]
and Sun et al. [127], the highest average LST of the study-area (39.8 ◦C) was observed in
LEVEL-3 hot spot characterized by a more regular SI (average 1.2).

4.4. Study Limitations

This study has some limitations in terms of data and tools. First of all, due to the
limitation of Landsat 8 image acquisition, only imageries around 10:00 a.m. were selected
and other daytime periods were not considered. As stated by a recent study [50], the cubic
convolution resampling by USGS on TIRS data represents a limitation and, therefore, we are
aware that is also affects the point sampling used for the Getis-Ord Gi* statistic. However,
because averaged summer LST data were used in this study accounting for spatial clusters
of high and low LST values, this kind of bias can be certainly considered limited. In
addition, the Italian population density dataset used was not based on the 2015–2019
period data, so this may not exactly coincide with the current demographic characteristics.

Additional approaches can be implemented in this study, such as for surface albedo
calculation. The method used in the present study for the surface albedo layer [63] assumed
the observed surface as Lambertian and this might be a potential limitation in some
instances. Although the Lambertian assumption may fail over different land covers, it
can be considered reliable in the following study because the satellite data are acquired
near midday (from 10:00 to 11:00 UTC) and during summer when a large solar elevation
angle is observed. Generally, no albedo changes for rough surfaces are observed at solar
elevation angles greater than 25–30◦ [130]. In the Florentine metropolitan area during
the summer months, at about 10:00, the solar elevation angle is on average above 40◦;
therefore, the used approach is suitable during the daytime summer period. On the
other hand, this approach loses robustness when applied during winter, when lower solar
elevation angles are observed [63]. Based on findings provided by another recent study on
spatial heterogeneity of LST [8], an additional approach for surface albedo retrieval can be
implemented in future studies. This method [131] considered the intrinsic black-sky and
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white-sky albedo values of the surface derived from Sentinel-2A products and was applied
in a recent study [132].

In the present study we used open data of local urban features layers analyzed by
using tools often suggested by the recent literature, such as QGIS and the proprietary
software ArcGIS. However, a wide range of software and spatial analysis tools can be
applied to urban features layers.

Moreover, future studies could apply the hot-spot detection in different seasons to
analyze interannual variations. Further investigation on urban thermal environment could
consider more detailed features of green infrastructure and urban morphology, such as
different vegetation canopies (i.e., grass and shrubs), the size and height of trees and
buildings, the street geometry and their orientation.

5. Conclusions

This study provides an important contribution exploring the urban thermal pattern
on the Florentine plain area through the recognition of statistically significant summer
hot- and cool-spot areas, and also showing a design related to local urban features. This
statistical approach provides a robust and effective mapping technique to quantify and
represent the LST cluster pattern performed by using open remote sensing data and
also sourcing an extensive of the literature focused on urban climate and remote sensing
applications. The originality of this study lies precisely in processing LST data obtained
from satellite images through the application of a robust and replicable spatial-statistical
hot-spot detection methodology (the Getis-Ord Gi* statistic), essential for identifying
“urban landscape clouds” characterized by significant surface thermal anomalies. This
methodology made it possible to quantify the surface of the Florentine metropolitan area
affected by summer daytime thermal anomalies (18%): 6.5% of hot-spots and 11.5% of
cold-spots. Furthermore, a higher degree of fragmentation of cool-spot areas, more than
double than the hot-spot ones, was observed.

The scientific community [11,20,29,34,35,100,101] is in agreement on applying the
urban feature layers analyzed in this work for urban climate studies as they accurately
describe the main urban structure and characteristics. In addition, the selected layers
are particularly suitable to investigate the urban plain context of hinterland Italian cities.
However, in cities with different geographical, morphological and built-up characteristics,
also additional urban elements can contribute to a better characterization of thermal
hot-spot, such as the distance from wide water bodies or from the sea coast line, slope
exposure, and the orientation of street network, to name a few. Understanding the processes
underlying hot- and cool-spot detection, combined with an investigation of the various
urban surface layers contributing to their formation in different urban contexts, is of
importance, especially to mitigate the summer SUHI effect [97].

The results of this study revealed that the complex mosaic of urban features layers
favors different configurations and levels of thermal hot- and cool-spot patterns, thus
representing key factors of the Florentine metropolitan area landscape. In detail, a greater
number of urban elements contributing to characterize hot-spot areas than cool-spot
ones were found. The surface heating effects (hot-spots) of the study area depended
on several urban feature layers, such as vegetation (NDVI and TC), urban surfaces (IA
and ALB), morphology (SI and SVF), and the atmospheric (RJ) and demographic (PD)
characteristics. Instead, the surface cooling effects (cool-spots) were more related to a
restricted group of urban elements involving vegetation and water bodies layers (NDVI,
TC, and WB) and one urban surface layer (ALB). In addition, few variables were needed to
characterize extreme hot- and cool-spot areas (LEVEL-3), with NDVI and ALB identified
as common elements contributing to describe their thermal conditions. These findings
highlighted the importance of urban design based on nature-based solutions [22] and
reflective materials [103] to improve the urban thermal conditions and consequently the
thermal comfort of urban dwellers. Therefore, the proposed methodology based on an
open data chain processing could be considered reliable in terms of its reproducibility in
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other urban contexts. It can provide a useful support for urban planners and policy makers
to localize more targeted thermal hot-spot mitigation strategies addressed to specific urban
feature layers.

In particular, the identification of urban elements that characterize thermal hot-spot
areas should allow decision makers to locate the best mitigation actions (such as greening
and cool materials), aimed at improving the local thermal pattern. Moreover, this work,
through the detection of thermal critical areas, provides interesting insights to plan fu-
ture urban-microclimate-improvement-based physical simulations by using tools such as
ENVI-MET at very small scale, in this way allowing a more reliable implementation of
urban design.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-4292/13/3/538/s1, Table S1: Municipal and investigated areas of the study areas with relative
demographic characteristics; Table S2: Landsat 8 remote sensing data specification of the 2015–2019
period; Table S3: Descriptive statistics of averaged values of LST and UTFVI of the 2015–2019 period
for the overall metropolitan area and other municipalities areas; Table S4: Percentage coverage area
by UTFVI classes; Table S5: Percentage coverage area of Gi* thermal hot-spot classes with relative
averaged values of LST.
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