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Abstract: Semantic segmentation of LiDAR point clouds has implications in self-driving, robots,
and augmented reality, among others. In this paper, we propose a Multi-Scale Attentive Aggregation
Network (MSAAN) to achieve the global consistency of point cloud feature representation and
super segmentation performance. First, upon a baseline encoder-decoder architecture for point
cloud segmentation, namely, RandLA-Net, an attentive skip connection was proposed to replace the
commonly used concatenation to balance the encoder and decoder features of the same scales. Second,
a channel attentive enhancement module was introduced to the local attention enhancement module
to boost the local feature discriminability and aggregate the local channel structure information.
Third, we developed a multi-scale feature aggregation method to capture the global structure of
a point cloud from both the encoder and the decoder. The experimental results reported that our
MSAAN significantly outperformed state-of-the-art methods, i.e., at least 15.3% mIoU improvement
for scene-2 of CSPC dataset, 5.2% for scene-5 of CSPC dataset, and 6.6% for Toronto3D dataset.

Keywords: LiDAR point cloud segmentation; attentive skip connection; channel attentive enhance-
ment; multi-scale aggregation; deep learning

1. Introduction
1.1. Background

Point clouds contain 3-dimensional (3D) information. Benefitting from the progress
of modern sensor technology, high-quality point clouds can be obtained relatively eas-
ily. In computer vision and remote sensing, point clouds can be obtained by four main
techniques including photogrammetric methods, Light Detection and Ranging (LiDAR)
systems, Red Green Blue-Depth (RGB-D) cameras, and Synthetic Aperture Radar (SAR).

LiDAR point clouds are widely used in many 3D understanding tasks nowadays,
such as classification, semantic segmentation, object detection; among them, semantic
segmentation of LiDAR point clouds is a crucial step toward high-level 3D point cloud
understanding, which has significant implication in automatic driving, robotics, augmented
reality (AR), smart city, among others. In this work, we focus on developing effective deep
learning-based models for the semantic segmentation of LiDAR points clouds, improving
from recent developments outlined in the review section below.

1.2. Reviews

Most conventional segmentation methods design and extract handcrafted features
such as geographic features, spatial attribution of 3D shapes, histogram statistic from
point clouds, and then apply machine learning methods such as Support Vector Machine
(SVM) [1], Random Forest (RF) [2], Conditional Random Field (CRF) [3], and Markov
Random Field (MRF) [4] to model the designed features for segmenting. Handcrafted
features rely on prior knowledge of designers, introduce additional uncertainties from
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hyper-parameter settings and possess limited generality. Recently, with the emergence of
open-source point cloud datasets and the rapid development of GPU technology, deep
learning-based methods have dominated the field of point cloud semantic segmentation,
which automatically learn high-level semantic representations end-to-end.

Convolutional Neural Network (CNN) has been seen widely in applications, e.g., in im-
age processing, video analysis, and natural language processing [5]. However, convention-
ally, CNN can only process structural data such as images and cannot be directly applied to
unordered and unstructured point clouds. To apply CNN to 3D point clouds, point clouds
have been transformed to structural data using multi-view representation [6,7], spheri-
cal representation [8–10], volumetric representation [11–13], lattice representation [14,15],
and hybrid representation [16,17]. However, this kind of method confronts problems in
memory consumption and inaccurate expression, among others.

Currently, the mainstream technology is those methods that directly process unstruc-
tured point clouds, which can be separated into four categories: point-wise MLP methods,
point convolution methods, RNN-based methods, and graph-based methods [18].

Point-wise MLP methods. These methods apply shared-MLPs as basic units. The pioneer
of this kind of method is PointNet [19]. PointNet applies MLPs and symmetric pooling
function to learn global features of input points. However, global features cannot capture
local structural information and relations between points, which limits the ability of the
network. PointNet++ [20] divides the point cloud into a set of small point clouds and
extracts local features by using PointNet as a basic unit. Inspired by and based on PointNet
and PointNet++, some modules are further introduced to learn local features better. [21]
proposed a PointSIFT module to achieve orientation encoding and scale awareness to adapt
to eight orientations and patterns of different scales. PointWeb [22] proposed an Adaptive
Feature Adjustment (AFA) module to learn relationships among local neighboring points.
RandLA-Net [23] proposed an efficient and lightweight network to process 3D point clouds
by applying random down-sampling to boost efficiency and save memory, introducing a
local geometric feature extraction module to capture geometric information, and utilizing
an attentive pooling module to aggregate local features.

Point convolution methods. Efficient convolutional operations are proposed for point
clouds. PointCNN [24] learned an X-transformation from the input points, which could
weight input features associated with the points and permute the points into a latent and
potentially canonical order. KPConv [25] proposed a new convolutional operation, KPConv,
where the weights of convolutional kernels were assigned to the input points close to them
based on the Euclidean distances.

RNN-based methods. These methods are applied to capture intrinsic contextual features
of point clouds. [26] proposed a point-wise pyramid pooling module to capture local
coarse-to-fine structures and utilizes two-directional hierarchical RNNs to obtain spatial
long-range discrepancies.

Graph-based methods. These methods focus on capturing potential shapes and geometric
structures. SPG [27] defined point clouds as a set of simple shapes and super-points and
generated directed graphs to capture structural and contextual information. GACNet [28]
proposed a graph attention convolution to learn features from local regions selectively,
with learnable shapes of kernels to adapt to objects with different shapes.

Despite the current progress of point cloud segmentation, further improvements are
envisioned. First, the attention mechanism [29,30], which has been shown to be effective
for the global balance and consistency of the encoder and decoder features in recent image
segmentation [31,32], has not been applied to point cloud segmentation methods. Refs.
[20,22–25,28] only apply the traditional skip connection, i.e., a concatenation operation,
to combine encoder and decoder, which results in a semantic gap between the feature
layers. Second, the multi-scale convolutional features are critical for grasping the entire
structure of a point cloud, but most of the recent methods [20–25,27,28] only focus on the
structures of input format and the encoder but neglect multi-scale information fusion in
the decoder. The accuracy of point cloud segmentation is expected to improve with a
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careful design of considering the attention modules and the multi-scale information fusion.
In addition, the details of CNN structures can also be improved towards better local feature
representation.

1.3. Our Works

In this paper, we propose a Multi-Scale Attentive Aggregation Network (MSAAN)
for LiDAR point cloud semantic segmentation to address the above-mentioned limitations.
Our contributions are summarized as follows.

(1) An Attentive Skip Connection (ASC) module based on the attention mechanism
was proposed to replace the traditional skip connection to bridge the semantic gap
between point cloud features in the encoder and decoder.

(2) A multi-scale aggregation was introduced to fuse point-cloud features of different
scales not only from the decoder but also from the encoder.

(3) A Channel Attentive Enhancement (CAE) module was introduced to the local spatial
encoding module of RandLA-Net [23] to further increase the representation ability of
local features.

(4) Our MSAAN significantly outperformed state-of-art methods on the CSPC and
Toronto3D datasets with at least 5% on mean intersection over union (mIoU) score.

2. Methods

The proposed Multi-Scale Attentive Aggregation Network (MSAAN) accessed the
large-scale point clouds as a single input and predicted a segmentation map that assigns
each point to a category. MSAAN was developed on top of the recent RandLA-Net [23].
Several key adjustments are made for improvements. The framework, an encoder-decoder
style structure, is shown in Figure 1 and detailed in Section 2.1. The input data was firstly
processed by a Point Feature Enrichment (PFE) module, which is detailed in Section 2.2.
Each layer of encoder passes through a Local Attention Enhancement (LAE) module and
the output features were then randomly sampled for learning efficiently the local features of
the point cloud, as detailed in Section 2.3. In Section 2.4, we fused the encoder and decoder
features at the same scale by a proposed Attentive Skip Connection (ASC) module to obtain
more balanced and distinctive semantic information instead of a common skip connection.
We describe our multi-scale output aggregation for fusing features from different scales in
Section 2.5.

Figure 1. The framework of the proposed Multi-Scale Attentive Aggregation Network (MSAAN).
The numbers in and below the blue block are the channel number of features and the point number
of inputs, respectively. RS, US, MLP, and “nclass” are for random sampling, up-sampling, multi-layer
perceptron, and the number of classes, respectively.

2.1. Backbone of the Encoder

We followed the strategy of RandLA-Net [23], which sampled the whole point cloud
probabilistically. At each batch of the learning loop, only one point with the minimum prob-
ability was selected and taken as a center point to query N points from a pre-constructed
K-D tree based on the Euclidean distance; all of them constituted the input data, denoted
as F∈RN×d (Figure 1), where d is the number of observational values of each point, for



Remote Sens. 2021, 13, 691 4 of 12

example, that d equals 6 typically indicates the longitude, latitude, and altitude (x, y, z)
which form the coordinate and three color bands R, G, B. The probability of these selected
N points was then be enlarged to ensure new points would be selected. This way quickly
and evenly samples the point clouds and avoids segmenting an object into many parts,
which has been demonstrated superior to those previous studies [20–22,24], which take
sliced local patches as the network input. The input data F was passed through the PFE
layer to obtain a new richer feature FE∈RN×[(d + 3)*K], where 3 was the number of values
determining the coordinate, and K represented the number of nearest points and indicates
the information of neighbor points was integrated into the features of the current point.
Typically, N is far greater than K, in this work, N = 4096 and K = 16. FE then passed through
a fully connected layer to obtain the input point cloud feature Fin∈RN×8 for the encoder.
The backbone network consisted of layers of four scales. In the encoder, the features passed
through the LAE and the random sampling layer, the latter created the next scale with the
down-sampling rate a quarter.

2.2. PFE (Point Feature Enrichment) Module

We applied a PFE module [33] as the preprocessor of the original input data. The PFE
layer applies a gated fusion strategy to enrich the input data of the segmentation network
by incorporating information of the current point and its neighboring points. The PFE
module is illustrated in Figure 2, (please refer to [33] for a detailed description).

Figure 2. Point feature enrichment module (cited from [33]). The first number in the bracket is the
point number, and the second is the feature number.

2.3. LAE (Local Attention Enhancement) Module

The original LAE module was proposed by [23]. In this paper, we revised the LAE
structure by adding a channel attentive enhancement (CAE) branch into the second branch
of the Local Feature Enhancement (LFE) layer. The original LAE only extracts relative
geographic features to obtain the spatial structure of the point cloud, the introduction
of CAE captures the discrepancies of different channels and re-balances them along the
channel direction. The structure of the revised LAE is illustrated in Figure 3. We mainly
introduced the newly added CAE and referred to [23] for detailed descriptions of the other
parts such as LFE and Relative Geographic Extraction (RGE). CAE was constructed as
follows. Firstly, we obtained the feature map F∈RN×K×d of K neighboring points of N
input points and transposed F as B∈RN×d×K. The third dimension of the multiplication
result of F and B is reduced to 1 with a max pooling operation and restored to d with a
copy operation. The multiplication result of F and B is subtracted from it. Then, we obtain
the attentive weight matrix W∈RN×d×d by the following operation:

W = so f tmax(max(B · F)− B · F) (1)
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Figure 3. The LAE module and the LFE module. The CAE is our newly added module in the second
branch of LFE. N is the number of input points, and K is the number of neighbor points of each point.

The weight W was used to update F:

F′ = F ·W + F (2)

2.4. ASC (Attentive Skip Connection) Module

Inspired by [34], we proposed an ASC module for balancing the encoder and decoder
features. The ASC module bridges the semantic gap between features in encoder and
decoder to achieve a better feature representation with global consistency. The module is
detailed in Figure 4. The low-level features here present features in the encoder stage, and
the high-level features present features of the decoder stage at the same scale. We computed
attentive scores of the high-level features with a squeeze, an MLP, and a softmax operation,
the scores were multiplied with the low-level features that had passed through an MLP and
been squeezed. Finally, we concatenated the attentive low-level features and the squeezed
high-level features as the final output of this module after an expansion operation.

Figure 4. ASC module. N is the number of input points, d1 is the number of high-level features from
the decoder, and d2 is the feature number of corresponding low-level features from the encoder.
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2.5. Multi-Scale Aggregation

The multi-scale feature aggregation of the decoder has been proved effective in image
segmentation but not in point cloud segmentation. We proposed our aggregation method
for point cloud segmentation, which is different from the commonly-used strategies in
image processing, which only utilize the information of the decoder [35,36]. It is worth
noting that the encoder information was introduced into image segmentation very re-
cently [37]. In this work, we first upsampled the features of each scale in the decoder to
the spatial dimension of the input, then concatenated them with the output features of
the first LAE layer in the encoder. The concatenated features passed through an MLP, a
fully connected layer without spatial dimension reduction, to obtain new features with 32
channels. The new features at four scales were concatenated to form a 128-d feature map,
as shown in Figure 5. The map was then compressed with two fully connected layers, a
dropout layer, and a fully connected layer to output the categories, as shown in Figure 1.

Figure 5. Multi-scale aggregation module. The input is the output features of the first LAE layer of the
encoder. Layer1 (decoder) indicates the first layer of the decoder with the lowest spatial resolution.

3. Experiments and Analysis
3.1. Experiment Design

We evaluated the proposed method on two datasets, CSPC [38] and Toronto3D [39].
CSPC (Complex Scene Point Cloud dataset) is the most recent point cloud dataset for

semantic segmentation of large-scale outdoor scenes, covering five urban and rural scenes
where scene-1 shows a simple street, scene-2 shows a busy urban street, scene-3 shows a
busy urban street at night, scene-4 shows a campus, and scene-5 shows a rural street. This
dataset includes 68 million points, including six objects: ground, car, building, vegetation,
bridge, and pole. The point numbers of each category are listed in Table 1. Every point is
attached to six property values, three for positions and three for RGB colors.

Table 1. Number of points in each scene and each category in the CSPC.

Scenes Ground Building Car Bridge Vegetation Pole Total

Scene-1 6,082,987 9,032,520 651,442 0 641,970 24,034 16,433,953
Scene-2 4,358,082 3,992,075 525,815 90,637 257,708 43,930 9,268,247
Scene-3 8,736,662 599,645 469,273 97,712 163,830 46,579 15,510,510
Scene-4 10,282,388 835,169 71,577 0 5,116,352 8285 16,323,771
Scene-5 5,332,925 4,197,404 34,960 0 322,488 49,397 9,937,174
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Toronto3D covers a street of 1000 m length, including four areas, L001, L002, L003,
and L004, and 78.3 million points. Every point possesses the information of 3D position,
RGB color, intensity, GPS time, scan angle rank, and category. There are eight categories
including road, road marking, natural, building, utility line, pole, car, and fence. The point
numbers of each category are listed in Table 2.

Table 2. Point counts of each category in each section of the Toronto3D dataset (thousand).

Section Road Road
Marking Natural Building Utility

Line Pole Car Fence

L001 11,178 433 1408 6037 210 263 1564 83
L002 6353 301 1942 866 84 155 199 24
L003 20,587 786 1908 11,672 332 408 1969 300
L004 3738 281 1310 525 37 71 200 4

We applied three representative metrics, Intersection over Union (IoU) of each class,
mean IoU (mIoU), and Overall Accuracy (OA) to evaluate the performances of our method
and the methods to be compared. The mIoU was considered as the main index.

We set K to 16 in the K nearest searching and N to 4096 in each batch. The training
epochs of CSPC and Toronto3D were both set to 100. The learning rate was set to 0.01.
Our algorithm was implemented with TensorFlow 1.11 and CUDA 9.0 on Ubuntu 16.04
system. An Nvidia 1080 TI 11 G GPU is used. The source code is available at http:
//gpcv.whu.edu.cn/data/, accessed on 8 February 2021.

3.2. Experiments and Analysis

CSPC Dataset. We set scene-1, scene-3, and scene-4 as training sets, while scene-2 and
scene-5 were testing sets. We compared our method with SnapNet [40], 3D-CNN [41],
DeepNet [42], PointNet++ [20], KPConv [25], and RandLA-Net [23]. The results are shown
in Tables 3 and 4. First, our methods sweepingly and significantly outperformed the
baseline and third-best RandLA-Net. The introduction of the attentive skip connection,
the multi-scale aggregation, and the Channel Attentive Enhancement (CAE) branch in
LAE lead to improvements of 15.3% and 5.2% on mIoU with scene-2 and scene-5. Second,
our method outperformed the second-best KPConv 10.2% and 3.0% on mIoU. KPConv
proposed a convolutional operation named KPConv to capture local features whose weights
were defined by a set of convolution kernels. By contrast, our method processes the
complete grid by random sampling and multi-scale feature aggregation, which firmly
grasps the global information at each learning loop. Third, there was a large dissimilarity
in performance between the earlier studies, including SnapNet, 3D CNN, and DeepNet,
PointNet++, and the recent RandLA-Net, and ours (Tables 3 and 4). The earlier ones have
much worse performance, for example, the mIoU scores were at least 20% lower than the
recent scores. SnapNet, which projects 3D point cloud into 2D images of multi-views and
uses deep learning-based methods to segment these images to realize the segmentation
of point cloud performed the worst. PointNet++ applies point-wise MLPs to extract local
features. 3D-CNN transforms point cloud to sparse voxels as the inputs of a 3D CNN for
segmenting. DeepNet transforms 3D point cloud into voxels as well. All of them lack the
ability to grasp the complete and global point cloud structure. In addition, our method
shows strength in identifying sparse points, as indicated by the significant improvement in
performance in classifying poles and bridges.

http://gpcv.whu.edu.cn/data/
http://gpcv.whu.edu.cn/data/
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Table 3. Segmentation results evaluated on IoU of each category, mIoU, and OA in scene-2 of CSPC.

Network Ground Building Car Vegetation Pole Bridge mIoU OA

SnapNet [40] 42.8 43.9 6.0 10.8 0.0 0.0 17.3 54.8
PointNet++ [20] 46.9 47.7 5.9 0.5 0.0 0.0 16.8 56.9

3D CNN [41] 78.2 90.5 1.3 5.4 0.5 0.2 19.2 58.4
DeepNet [42] 79.9 35.3 8.7 8.6 0.3 0.0 22.2 61.2
KPConv [25] 94.1 87.8 66.6 77.5 0.0 0.0 54.3 93.6

RandLA-Net [23] 85.6 84.3 48.6 63.6 11.5 1.4 49.2 87.7

Ours 89.7 88.2 61.0 63.2 20.6 64.0 64.5 91.9

Table 4. The segmentation results evaluated on IoU of each category, mIoU, and OA in scene-5 of
the CSPC.

Network Ground Building Car Vegetation Pole Bridge mIoU OA

SnapNet [40] 40.2 38.4 0.2 8.4 0.0 - 17.5 52.3
PointNet++ [20] 47.2 48.0 5.9 0.6 0.0 - 20.3 57.1

3D CNN [41] 71.0 56.5 1.3 9.1 1.5 - 27.9 69.9
DeepNet [42] 71.3 44.9 0.9 10.6 0.5 - 25.6 63.3
KPConv [25] 87.5 88.7 63.2 54.8 0.0 - 58.8 92.4

RandLA-Net [23] 90.6 89.3 32.9 48.0 22.1 - 56.6 92.7

Ours 92.0 90.9 39.2 52.0 34.7 - 61.8 93.9

We list some predicted samples of local regions in Figure 6, to demonstrate the
difference between our results and the baseline RandLA-Net. The details reveal a better
performance of our method.

Figure 6. The visual examples in CSPC Dataset. (a–d) represent point cloud with RGB, ground truth,
the prediction results of RandLA-Net, and ours.
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Toronto3D Dataset. We used the L001, L003, and L004 as the training set and the L002
as the test set. We compared our method with PointNet++ [20], DGCNN [43], KPConv [25],
MS-PCNN [44], TG-Net [45], and RandLA-Net [23]. DGCNN proposes a dubbed edge
convolution acting on graphs. MS-PCNN uses dynamic point-wise convolutional opera-
tions in multiple scales for point cloud segmentation. TGNet proposes a graph convolution
function named TGConv to extract point features of neighbors. The results are shown in
Table 5. Conclusions like in the CSPC Dataset can be drawn. Our method exceeded the
second-best RandLA-Net 6.6% and the rest methods by at least 15% on mIoU. Compared
with RandLA-Net, our method improved on three evaluation metrics, especially the IoU of
road marking, pole, car, and fence improved over 10 percent.

Table 5. The segmentation results evaluated on IoU of each category, mIoU, and OA of Toronto3D dataset.

Network Road Road
Mark Natural Utility

Line Building Pole Car Fence mIoU OA

PointNet++ [20] 91.4 7.6 89.8 68.6 74.0 59.5 54.0 7.5 56.6 91.2
DGCNN [43] 90.6 0.4 81.3 47.1 64.0 53.9 49.3 7.3 49.6 89.0
KPConv [25] 90.2 0.0 86.8 81.1 86.8 73.1 42.9 21.6 60.3 91.7

MS-PCNN [44] 91.2 3.5 90.5 62.3 77.3 68.5 53.6 17.1 58.0 91.5
TGNet [45] 91.4 10.6 91.0 68.3 76.9 66.3 54.1 8.2 58.3 91.6

RandLA [23] 93.8 49.0 93.4 79.6 83.5 62.7 76.8 8.5 68.4 93.5

Ours 96.1 59.9 94.4 85.8 85.4 77.0 83.7 17.7 75.0 95.9

3.3. Ablation Study

To better understand the effect and influence of each proposed module, the Multi-
Scale Aggregation (MS), the Channel Attention (CA), and the Attentive Skip Connection
(ASC), we conducted an ablation study. Specifically, we gradually added MS, CA, and
ASC to the backbone network, i.e., the second-best RandLA-Net, to evaluate the model
performance. From Table 6, it is observed that the introduction of MS, the combination
of MS and CA, and the combination of MS, CA, and ASC have made the mIoU score
increase 5%, 6.4%, and 11.7%, respectively. This demonstrated the effectiveness of all of
the introduced modules, and MS and ASC are both the main contributors, each of which
contributed to 5% mIoU improvement. The reason behind such significant progress can
be concluded as: a multi-scale aggregation made up for the lack of critical point cloud
information fusion in both of the encoder and decoder of original RandLA-Net, and an
attentive skip connection instead of an arbitrary concatenation reweights and balances
the features from the encoders and the decoders to achieve a global consistency of feature
representation. The multi-scale aggregation for both encoder and decoder and the attention
mechanism for the encoder-decoder fusion provide useful references for the future design
of the point cloud segmentation model.

Table 6. The ablation study results of CSPC dataset. Scene 1, 3, and 4 consisted of the training set and scene 2 and 5
consisted of the testing set. RandLA: RandLA-Net; MS: Multi-Scale Aggregation; CA: Channel Attention; ASC: Attentive
Skip Connection.

Network Ground Building Car Vegetation Pole Bridge mIoU OA

RandLA 85.6 84.3 48.6 63.6 11.5 1.4 49.2 87.7
RandLA + MS (decoder) 88.5 88.5 47.6 59.0 23.6 7.9 52.5 91.2

RandLA + MS (ours) 89.1 88.1 49.6 53.1 19.7 25.8 54.2 91.2
RandLA + MS + CA 91.8 85.2 67.6 38.5 42.1 8.3 55.6 91.0

RandLA + MS + CA + ASC 92.0 90.7 71.0 69.7 33.9 8.4 60.9 94.1

The RandLA-Net+MS (decoder) indicates the multi-scale aggregation is only exe-
cuted at the multi-scale features of the decoder [36], whereas our multi-scale aggregation
utilizes information both from encoder and decoder. Our method gets 1.7% mIoU im-
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provement, showing the effectiveness of integrating low-level features into the global final
feature representation.

4. Conclusions

We proposed an MSAAN (Multi-Scale Attentive Aggregation Network) for large-scale
point cloud semantic segmentation. Three contributions were made. First, we proposed
an attentive skip connection (ASC) module to replace the commonly used concatenation
to balance the encoder and decoder features of the same scales. Second, we introduced a
channel attentive enhancement (CAE) module to boost the local feature discriminability
and aggregate the local channel structure information. Finally, we fused the multi-scale
features of the network to achieve global consistency. The experimental results on the
CSPC dataset and Toronto dataset proved the effectiveness of our method. The attention
mechanism plays an important and even indispensable role in modern CNN-based image
feature representation. Our work further extends the application of the attention modules
in point cloud processing.
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