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Abstract: Endmember estimation plays a key role in hyperspectral image unmixing, often requiring
an estimation of the number of endmembers and extracting endmembers. However, most of the
existing extraction algorithms require prior knowledge regarding the number of endmembers, being a
critical process during unmixing. To bridge this, a new maximum distance analysis (MDA) method is
proposed that simultaneously estimates the number and spectral signatures of endmembers without
any prior information on the experimental data containing pure pixel spectral signatures and no
noise, being based on the assumption that endmembers form a simplex with the greatest volume
over all pixel combinations. The simplex includes the farthest pixel point from the coordinate origin
in the spectral space, which implies that: (1) the farthest pixel point from any other pixel point must
be an endmember, (2) the farthest pixel point from any line must be an endmember, and (3) the
farthest pixel point from any plane (or affine hull) must be an endmember. Under this scenario,
the farthest pixel point from the coordinate origin is the first endmember, being used to create the
aforementioned point, line, plane, and affine hull. The remaining endmembers are extracted by
repetitively searching for the pixel points that satisfy the above three assumptions. In addition to
behaving as an endmember estimation algorithm by itself, the MDA method can co-operate with
existing endmember extraction techniques without the pure pixel assumption via generalizing them
into more effective schemes. The conducted experiments validate the effectiveness and efficiency of
our method on synthetic and real data.

Keywords: hyperspectral image; spectral unmixing; maximum distance analysis; endmember extrac-
tion; endmember estimation

1. Introduction

Remotely sensed hyperspectral imaging (HSI) [1] provides a significant amount of
information regarding different materials on the Earth’s surface, capturing their reflectance
behavior in the presence of solar radiation (which depends on their chemical composition
and physical structure) by measuring the degree of absorption along the wavelengths of
the electromagnetic spectrum (usually focused on the visible, near infrared (NIR), and
shortwave infrared (SWIR) spectrum [2]), in hundreds of narrow and continuous spectral
bands [3]. As a result, each pixel contains the representation of a spectral signature, which
is unique for each observed material. However, one typical problem that is associated with
HSI data is its low spatial resolution [4], which inevitably leads to mixed pixels. A mixed
pixel covers several types of materials, which are usually composed of macroscopic objects,
such as water, soil, vegetation, or buildings [5,6], and the corresponding spectrum being a
mixture of several ground cover spectra.

A challenge of the mixed pixel phenomenon is how to accurately identify the prime
materials that compose it, determining the original spectral signatures and measuring
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the proportions in which they are present [7]. These principal constituent spectra are
known as endmembers, and obtaining them is a hard and ill-posed problem, where the
reflectance pattern is (in general) not known a priori. Additionally, the sensor inaccuracies
and atmospheric/light conditions (which introduce an important amount of noise into the
spectra), and the high spectral-dimensionality hinders the endmember extraction task [8],
due to the high intra-class variability and inter-class similarity of the data [9]. Spectral
unmixing is a significant technique for addressing this challenge [10–14]. In the available
literature, spectral unmixing techniques [15–17] have been comprehensively investigated
for the purpose of extracting endmembers and estimating their corresponding abundances,
allowing for the processing of HSI scenes at the sub-pixel scale [18]. In fact, these techniques
decompose each mixed pixel into a proportional composition of endmembers, where the
constituent proportion with respect to different types of materials [19] for each pixel is
defined as the abundance.

A significant challenge for existing spectral unmixing techniques is how to accurately
extract endmembers [20–24] from remotely sensed HSI data. This is normally achieved
by two seemingly independent, but, in fact, highly correlated procedures: (i) determining
the number of endmembers, and (ii) extracting their spectral signatures. Because the
accuracy of determining the number of endmembers has large influence on the endmember
extraction step, it is natural to consider developing methods to essentially integrate both
of the techniques seamlessly into an overall procedure of endmember estimation. This
observation forms the motivation of our work.

2. Literature Review

In this paper, we propose the maximum distance analysis (MDA) method as a new
unmixing framework that simultaneously counts and extracts endmembers without any
prior knowledge. To introduce the proposed method in a detailed and comprehensive
way, in Sections 2.1 and 2.2, we review the literature regarding counting and extracting
endmembers, respectively. In Section 2.3, we briefly describe the major contributions of our
work in terms of presenting a new endmember estimation framework that simultaneously
counts the number of endmembers and extracts their spectral signatures.

2.1. Endmember Counting

Estimating the number of endmembers is regarded as the first step of the overall end-
member estimation task. The number of endmembers is often unavailable in an arbitrary
HSI scene. In this scenario, most of the existing endmember extraction techniques cannot
properly extract endmembers if the number of endmembers is not accurately determined.
The limitation regarding an unknown number of endmembers hinders most existing end-
member extraction techniques from an operational viewpoint. To address this limitation,
several algorithms have been developed for counting the number of endmembers. Par-
ticularly, information theory-based algorithms, eigenvalue thresholding algorithms, and
geometry characterization algorithms are three main families of techniques for estimat-
ing the number of endmembers [25]. A brief summary of each family of algorithms is
provided below.

• The first family includes some kind of criteria information, such as theoretic criteria
that are based on minimum description length [26,27], Akaike’s information crite-
rion [28], and Bayesian information criterion [29]. Furthermore, different models have
been developed for encoding a negative data log-likelihood term and a penalty term.
An accurate estimation of the number of endmembers is expected to be obtained when
the model achieves a global optimum. These strategies rely on the empirical configu-
ration of specific mixed models or likelihood functions, and improper configurations
will cause estimation errors of the number of endmembers.

• The second family is related to a thresholding scheme, in which a threshold is applied
to the eigen-decomposition results from subspace analysis. Eigenvalue thresholding
algorithms include principal component analysis (PCA) [30], hyperspectral signal
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subspace by minimum error (Hysime) [31], and the so-called Harsanyi-Farrand-Chang
(HFC) method [32], coupled with its noise-whitened implementation (NWHFC) [33].
The PCA-based approaches aim to characterize a cutoff gap between the eigenvalues
that are caused by signals and noise. However, these approaches will provide an
incorrect estimation of the number of endmembers if the variation between the two
eigenvalues is negligible. The Hysime approach conducts spectrum noise characteri-
zation and noise covariance estimation, and it requires high computational complexity.
The HFC approach requires a fixed false alarm probability, which affects the estimated
number of endmembers.

• The third family includes the geometry-based estimation of the number of endmem-
bers (GENE), which includes the convex hull (GENE-CH) algorithm and affine hull
(GENE-AH) algorithm [34]. Both GENE-CH and the GENE-AH utilize data geometry
and exploit the fact that all the observed pixel vectors should lie in the convex hull
(CH) and affine hull (AH) of the endmember signatures, respectively. Specifically,
GENE algorithms operate along with an endmember extraction algorithm (EEA). In
this scenario, a maximum hull volume would stop the EEA from extracting the next
endmember signature. Therefore, the GENE algorithms depend on the effectiveness of
the EEA used, and different endmember extraction algorithms (EEAs) cause different
accuracies for counting endmembers.

2.2. Endmember Extraction

The subsequent step of endmember estimation is to extract endmembers (assuming that
the number of endmembers has been previously determined). Linear unmixing assumes that
all of the pixels are a linear combination of the endmember signatures present in the scene,
weighted by their respective fractional abundances. The related techniques include two
families, i.e., statistical algorithms and geometrical algorithms. Statistical algorithms address
endmember extraction as an inference problem that is formulated under the Bayesian
framework, whereas geometrical algorithms exploit the fact that the spectral vectors (under
the linear mixing model) lie in a simplex whose vertices correspond to the endmembers. In
our work, we focus on the geometrical approach to endmember extraction. Geometrical
algorithms try to find a simplex set whose vertices correspond to the endmembers. As such,
we extract endmembers by identifying the vertices of the aforementioned simplex. The
main ideas that have been presented in recent research under this framework belong to two
different groups. Pure pixel-based algorithms [9] presume that the image scene contains at
least one pure pixel per endmember. Even more recently, some algorithms [35] dropped
this assumption by assuming that no pure pixel points may be present in real image scenes.
In the following, we outline these two types of algorithms.

• If there is at least one pure pixel for per endmember, then EEAs search for the spectral
vectors in the data set that corresponds to the vertices of the data simplex. Typical
algorithms that are based on the pure pixel assumption are pixel purity index (PPI) [36],
N-FINDR [37,38], and vertex component analysis (VCA) [39], among others. The PPI
algorithm projects all of the observed pixels onto randomly generated unit-norm
vectors, and it records the number of times (i.e., scores) that the value of each projected
pixel has an extreme value (either minimum or maximum projection value). Then, the
endmembers are those pixels with the highest scores. The N-FINDR algorithm and its
derivatives search for a simplex with the greatest volume over all pixel combinations,
and the vertices of the simplex correspond to the endmembers. The VCA algorithm
iteratively projects data onto a direction orthogonal to the subspace that is spanned by
the endmembers already determined, and the new endmember is the pixel with the
extreme value of the projected data. It is worth noting that PPI, N-FINDR, and VCA
require the number of endmembers in advances to perform endmember extraction.

• If the pure pixel assumption is not satisfied (this is a more realistic scenario, since
HSI data are often dominated by highly mixed pixel [9]), the endmember extraction
process is a rather intractable task. The difficulty is that the HSI data set may not
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contain any endmembers or at least some of them. Some popular algorithms that
are implemented under this assumption are the minimum volume constrained non-
negative matrix factorization (MVCNMF) [40], minimum-volume enclosing simplex
(MVES) [41], minimum volume simplex analysis (MVSA) [42,43], etc. MVCNMF
adopts constrained nonnegative matrix factorization, together with a volume-based
constraint, to decompose mixed pixels in multispectral and hyperspectral remote sens-
ing images. MVES finds a simplex containing all of the dimensionally-reduced pixels
by minimizing the simplex volume subject to the constraint. MVSA fits a minimum
volume simplex to the hyperspectral data, constraining the abundance fractions to
belong to the probability simplex. Specifically, MVCNMF, MVES, and MVSA also
require the number of endmembers when they implement endmember extraction.

2.3. From the Literature to Our Contributions

As reviewed in Sections 2.1 and 2.2, most of the existing techniques for estimating the
number of endmembers and extracting their signatures are performed as two independent
procedures in the literature. Most existing EEAs require prior knowledge regarding the
number of endmembers, but the algorithms for counting endmembers tend to be char-
acterized by independent methods that may not seamlessly benefit the EEAs. To bridge
these two seemingly independent (but, in fact, highly related) procedures, we establish a
unifying endmember estimation framework. The contributions of our work are two-fold.

• The major contribution of our work is a novel endmember estimation method, referred
to as maximum distance analysis (MDA), which accomplishes the overall endmember
estimation task (that normally comprises of two independent steps, i.e., determining
the number of endmembers and extracting their endmember signatures). Our newly
proposed MDA method sequentially identifies pixel points as endmembers that are
farthest from specific pixel point, line, plane, and affine hulls. The sequential endmem-
ber extraction terminates when the maximum distance between all the pixel points
and the affine hull [41,44] formed by all extracted endmembers is zero. Our proposed
MDA method does not require knowing the number of endmembers. It only involves
straightforward vector-based computations, keeping its computational complexity
very low. Moreover, our proposed MDA method does not use dimension reduction.

• A second major contribution of our work is that the proposed MDA method provides
an effective way for generalizing most existing EEAs that require prior knowledge
of the number of endmembers into more accurate ones without the requirement. We
use the MVSA as a special case to demonstrate the generalization strategy that is
based on the MDA. Specifically, MVSA requires the number of endmembers and uses
the traditional VCA method as an initialization method for extracting endmembers.
Therefore, our proposed MDA framework is not only capable of simultaneously count-
ing and extracting endmembers by itself without any prior knowledge, but it also
provides a general framework for developing new endmember extraction schemes
that are based on arbitrary existing endmember extraction methods without the pure
pixel assumption.

3. Maximum Distance Analysis
3.1. Extracting Endmember Signatures

Let X = [x1, x2, · · · , xi, · · · , xN] ∈ RL×N denote a HSI dataset with L bands and N
pixels, where the ith pixel xi = [x1i, x2i, · · · , xLi]

T ∈ RL×1 represents an L-dimensional
vector. From a geometric point of view, we know that endmembers are supposed to form
a simplex with the greatest volume over all pixel combinations, and they are distributed
at the outermost region of all pixels to enclose them. Therefore, if one pixel point is a
candidate to be an endmember, then it must satisfy two conditions: (1) the pixel point is an
essential component of the simplex with the greatest volume over all pixel combinations
and (2) the pixel point is distributed in the outermost region of all pixels. Some of the EEAs
utilize the idea of a simplex to search for some pixel points far away from each other as
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endmembers, and the operations inevitably render considerable computational overloads
and make EEAs inefficient for tackling large-size remote sensing HSI scenes. To address
this problem, we give some definitions regarding distances to effectively and efficiently
extract endmembers, where the task of extracting endmembers does not require any prior
knowledge regarding the number of endmembers.

Definition 1. We define the farthest pixel point from the coordinate origin in the pixel space as the
first endmember.

The Euclidean distance computes the distance dij between the ith and jth hyperspectral
pixel points in the pixel space

dij = ‖ xi − xj ‖2

=
√
(x1i − x1j)2 + · · ·+ (xLi − xLj)2

(1)

We compute the distance between each pixel point and the coordinate origin by using
Equation (1) to obtain the farthest pixel point from the coordinate origin, computing as a
result of the first endmember. In this sense, this first point easily satisfies the two conditions
to be an endmember. Specifically, the distance calculation in Equation (1) may need to be
adapted if the hyperspectral data are nonlinearly mixed or includes noise.

Definition 2. We define the farthest pixel point from the first extracted endmember as the second
endmember.

We compute the distance between each pixel point and the first extracted endmember
through Equation (1) to obtain the farthest pixel point from the first endmember, getting,
as a result, the second endmember. We observe that the second extracted endmember also
satisfies the two conditions to be considered as endmember.

Definition 3. We define the farthest pixel point from the line that is defined by the first and second
extracted endmembers as the third endmember.

Assuming that we have acquired the first endmember A and the second endmember
B, as shown in Figure 1, we compute the distance di_L{AB} between any pixel point i and
the line L{AB} to obtain the third endmember. Subsequently, the angle α between vectors
−→
Bi and

−→
BA is trigonometrically computed by Equation (2)

α = arccos

−→
Bi ·

−→
BA

||
−→
Bi ||2||

−→
BA ||2

(2)

A
𝛼

B

C

di_L{AB}

Figure 1. Schematic diagram illustrating how to extract an endmember (from two previously
available ones) by using our maximum distance analysis (MDA) method. The farthest pixel point
from the line L{AB} is the third endmember. The red dots represent endmembers that have been
previously extracted, and the blue dots denote the pixel points in the pixel space.
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As shown in Figure 1, the distance di_L{AB} between any pixel point i and the line
L{AB} is computed by

di_L{AB} = ||
−→
Bi ||2 sin α (3)

In this sense, we obtain the index e3 of the third endmember by maximizing the
distance with

e3 = arg max
i∈{1,2,··· ,N}

di_L{AB} (4)

and we use the index e3 to extract the third endmember C. Moreover, the third extracted
endmember also satisfies the two conditions in order to be considered as an endmember.

Definition 4. We define the farthest pixel point from the plane that is formed by the first, second,
and third extracted endmembers as the fourth endmember.

Assuming that the three extracted endmembers A, B, and C form a plane P{ABC}, as
shown in Figure 2, we compute the distance di_P{ABC} between any pixel point i and the
plane P{ABC} to obtain the fourth endmember. O is the coordinate origin in the pixel space
and n is the normal vector of the plane P{ABC}. However, in our work, we get the normal
vector n by a unique strategy. First, we get n by

−→
OA ·n = 0;
−→
OB ·n = 0;
−→
OC ·n = 0;

(5)

In addition, we know

−→
AB=

−→
OB −

−→
OA;

−→
BC=

−→
OC −

−→
OB;

−→
AC=

−→
OC −

−→
OA;

(6)

B

A

C

D

n

𝛽
𝛽

d

Figure 2. Schematic diagram illustrating how to extract an endmember (from three previously
available ones) by using our maximum distance analysis (MDA) method. The farthest pixel point
from the plane P{ABC} is the fourth endmember.

Based on Equations (5) and (6), we have the expressions

(
−→
OB −

−→
OA) · n =

−→
AB ·n = 0;

(
−→
OC −

−→
OB) · n =

−→
BC ·n = 0;

(
−→
OC −

−→
OA) · n =

−→
AC ·n = 0;
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We know that A, B, and C are three different endmembers, which mean that
−→
AB,

−→
BC,

−→
AC are

not collinear with each other. Therefore, n is not only the normal vector of the plane P{ABC},

but also orthogonal to
−→
OA,

−→
OB,

−→
OC. Therefore, we define matrix X3 = [

−→
OA,

−→
OB,

−→
OC] ∈

RN×3, where N is the number of pixels. We obtain the normal vector n by addressing

XT
3 n = 0 (7)

The angle β between vectors
−→
Bi and n is trigonometrically computed by

β = arccos

−→
Bi ·n

||
−→
Bi ||2||n||2

(8)

Therefore, the distance di_P{ABC} is computed by

di_P{ABC} = ||
−→
Bi ||2| cos β| (9)

where symbol | · | denotes the absolute value of cos β. With this, we obtain the index e4 of
the fourth endmember by

e4 = arg max
i∈{1,2,··· ,N}

di_P{ABC} (10)

Finally, the index e4 is used to extract the fourth endmember D, which also satisfies
the two conditions to be considered as an endmember. Figure 3 graphically shows the
process of extracting four endmembers.

Figure 3. (a–d) Step-by-step process illustrating how to extract four endmembers by using our
maximum distance analysis (MDA) method.

Definition 5. We define the farthest pixel point from the affine hull Aff{ABCD · · · } formed by
all of the extracted endmembers {A, B, C, D, · · · } as the next endmember.

Assuming that we have extracted endmembers {ABCD · · · }, and these endmem-

bers form a affine hull Aff{ABCD · · · }. We have the matrix X{ABCD··· } = {
−→
OA,

−→
OB,

−→
OC

,
−→
OD, · · · } ∈ RN×c, where N is the number of pixels and c is the number of endmem-

bers that have been extracted. Assuming that w is the normal vector of the affine hull
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Aff{ABCD · · · } and b is the offset or distance between the coordinate origin and affine
hull, we compute the normal vector w by

XT
{ABCD··· }w = 0 (11)

x is a pixel point of the affine hull Aff{ABCD · · · }, and the affine hull is written as Equa-
tion (12)

wTx + b = 0 (12)

In this context, there is a pixel point xi(~xi), whose distance between it and the affine hull is
denoted as d. Additionally, we consider point xj(~xj) as the projection of xi onto the affine

hull, where γ is the angle between vectors w and
−→
xixj, cos γ = 1, and we have

wT −→xjxi = w1(x1
i − x1

j ) + w2(x2
i − x2

j ) + · · ·+ wN(xN
i − xN

j )

= w1x1
i + w2x2

i + · · ·+ wN xN
i

− (w1x1
j + w2x2

j + · · ·+ wN xN
j )

(13)

and

w· −→xixj = ||w||2||
−→
xixj ||2 cos γ

= ||w||2||
−→
xixj ||2

= ||w||2d

(14)

and also
|w· −→xixj | = ||w||2d (15)

We know that wT~xj = −b from Equations (12) and (13) is represented as

wT −→xjxi= w1x1
i + w2x2

i + · · ·+ wN xN
i − (−b) (16)

Based on Equations (15) and (16), we have

||w||2d = |w1x1
i + w2x2

i + · · ·+ wN xN
i + b|

= |wT~xi + b|
(17)

Therefore, the distance between any pixel point ~xi and the considered affine hull is com-
puted by

d =
|wT~xi + b|
||w||2

(18)

Specifically, support vector machines (SVMs) [45] provide the distance calculation that is
given by Equation (18) between any pixel point ~xi and the affine hull. We obtain the index
of the next endmember by

ê = arg max
i∈{1,2,··· ,N}

|wT~xi + b|
||w||2

(19)

We then use the index ê to extract the next endmember, which also satisfies the afore-
mentioned two conditions that any pixel point must meet in order to be considered an
endmember.

3.2. Estimating the number of endmembers

From the mathematical discussions in the previous subsection, we know that: (1) if
one pixel point belongs to one affine hull, the distance between it and the affine hull is
zero, and (2) if one point does not belong to one affine hull, the distance between it and
the affine hull is greater than zero. Based on the aforementioned concepts, we give the
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following definition as the stopping criterion of endmember extraction, also obtaining the
final number of endmembers by counting those pixel points that have been extracted as
endmembers.

Definition 6. The stopping criterion of endmember extraction is that the maximum distance
between all of the pixel points and affine hull formed by the extracted endmember is zero. Simultane-
ously, the number of endmembers is determined by counting the number of pixel points that have
been extracted.

To conclude this section, we emphasize that our MDA method extracts endmembers
without any previous knowledge regarding the number of endmembers, since it performs
both endmember extraction and the estimation of the number of endmembers. It is worth
noting that the maximum distance of the stopping criterion in Definition 6 is zero when
the experimental data are linearly mixed and do not include noise; otherwise, the max-
imum distance is greater than zero. In addition, there is a clear difference between the
distance between the non-endmember and endmember to the affine hull that formed by
all extracted endmembers when the experimental data are non-linearly mixed and include
noise. Therefore, we can observe the difference to obtain the maximum distance when
the experimental data are non-linearly mixed and include noise, and then determine the
number of endmembers.

4. Experiments

We use both synthetic and real hyperspectral data in order to evaluate the performance
of our proposed MDA method in the tasks of estimating the number of endmembers and
extracting their signatures. We perform the comparison tests using Matlab 2018b on an
i5-8300 CPU (2.3 G). We conduct a series of experiments to demonstrate the effectiveness
and efficiency of our newly proposed MDA method in counting and extracting endmembers.
The endmember extraction capacity of our method is assessed with three endmember extrac-
tion algorithms, i.e., minimum-volume enclosing simplex (MVES) [41], vertex component
analysis (VCA) [39], and minimum volume constrained nonnegative matrix factorization
(MVCNMF) [40]. Additionally, the accuracy of our method in the task of estimating the
number of endmembers is assessed with two endmember counting algorithms, i.e., hyper-
spectral signal subspace by minimum error (Hysime) [31] and Harsanyi–Farrand–Chang
(HFC) [32]. We compare the estimated endmembers and abundances with the ground-truth
ones that were used in our experiments by the following formulas

φM =

∥∥M− M̂
∥∥

F
‖M‖ (20)

and

φA =

∥∥A− Â
∥∥

F
‖A‖ (21)

where ‖·‖F stands for the Frobenius norm, ‖·‖ is Euclidean norm, M̂ and Â are the esti-
mated endmember signatures and abundances, and M and A denote the actual endmember
signatures and abundances. The reconstruction error is another metric that is considered in
our experiments, which is computed as

φX =

∥∥X− X̂
∥∥

F
‖X‖

=

∥∥X− M̂Â
∥∥

F
‖X‖

(22)
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where X̂ and X are the estimated and actual spectral signatures, respectively. Additionally,
we also use the spectral angle distance (SAD) to evaluate our method by

SAD =

√√√√1
c

c

∑
i=1

[
arccos

(
m̂T

i mi

‖m̂i‖‖mi‖

)]2

(23)

where c is the number of endmembers, and m̂i and mi are the ith estimated and actual
spectral signatures, respectively.

EEAs get the most accurate results when the values of the above four metrics φM, φA, φX
and SAD are zero.

4.1. Synthetic Data

The synthetic data are created based on the United States Geological Survey (USGS)
library. The mineral signatures in USGS library both have 224 spectral bands. We generate
synthetic data that are based on the linear mixture method [39,40]. Specifically, to improve
the unmixing performance, we have removed the low SNR bands as well as the water
vapor absorption bands (including bands 1-2, 104-113, 148-167, and 221-224) from the
original 224-band data cube, and keep 188 spectral bands in our experiments. We consider
four families of synthetic data to evaluate the effectiveness and efficiency of our proposed
MDA method in counting and extracting endmembers: (1) synthetic data containing pure
mineral signatures and no noise under different number of endmembers; (2) synthetic
data containing pure mineral signatures and 2000 pixel points and five endmembers under
different noise levles; (3) synthetic data containing nonpure mineral signatures and 2000
pixel points and five endmembers under different noise levels; and, (4) synthetic data,
including nonpure spectral signatures with different number of endmembers and different
sizes under specific noise (70 dB). We utilize Definitions 1 to 6 to extract the signatures and
estimate the number of endmembers. For simplicity, we summarize the steps that were
conducted for extracting and counting endmembers with our MDA method:

1. We calculate the distance between every pixel point and coordinate origin in the pixel
space and extract the pixel point with the maximum distance as the first endmember.

2. We calculate the distance between every pixel point and the first extracted endmember
in the pixel space and extract the pixel point with the maximum distance as the second
endmember.

3. We calculate the distance between every pixel point and the line defined by the first
and second extracted endmembers, extracting the pixel point with the maximum
distance as the third endmember.

4. We calculate the distance between every pixel point and the plane formed by the
first, second, and third extracted endmembers, extracting the pixel point with the
maximum distance as the fourth endmember.

5. We calculate the distance between every pixel point and the affine hull formed by all
the previously extracted endmembers, extracting the pixel point with the maximum
distance as the next endmember.

6. We finish the overall endmember extraction procedure when the maximum distance
between all pixel points and the affine hull formed by all the previously extracted
endmembers is zero. Simultaneously, we determine the number of endmembers by
counting the number of pixel points that have been extracted. In the following, we
describe the conducted experiments.

4.1.1. Straightforward MDA Algorithm

This experiment uses the first family type of synthetic data to evaluate the proposed
MDA algorithm in counting and extracting endmembers. The synthetic data are created
by the procedure that was described in [40]. The synthetic data, with 3364 pixel points,
have pure spectral signatures and no noise. We use the metrics φM and SAD to evaluate
the endmember extraction performance of our proposed MDA method on synthetic data
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containing pure pixels and no noise under different number of endmembers. In addition,
due to the fact that MDA can complete the two tasks of extracting endmembers and
determining the number of endmembers, we employ VCA as one comparison method of
extracting endmember, and Hysime and HFC as the two comparison methods of counting
endmembers to evaluate the performance of our proposed MDA method. Table 1 illustrates
the performance and efficiency of different methods in extracting their spectral signatures
and determining the number of endmembers. Firstly, in terms of extracting endmembers,
we observe φM and SAD from Table 1, and find that both VCA and our proposed MDA
method acquire accurate results and they have high efficiency under different number
of endmembers. Specifically, our method is slightly faster than VCA. Secondly, in terms
of determining the number of endmembers, we find that both HFC and our proposed
MDA method obtain accurate results, and Hysime has an error when the number of
endmembers 20. In addition, we also observe that Hysime and HFC are faster than our
proposed MDA method. However, VCA can only extract endmembers, Hysime and
HFC can only determine the number of endmembers, but our proposed MDA method
can simultaneously complete the two tasks (extracting endmembers and determining the
number of endmembers). Specifically, due to the fact that MDA is faster than VCA, our
proposed MDA method extracts endmembers more accurately and quickly as compared
to Hysime (or HFC) +VCA. Therefore, our proposed MDA method is an effective and
effcienet method in completing the overall endmember estimation task, i.e., determining
the number of endmembers and extracting endmembers.

Table 1. Performance and processing time (seconds) for our proposed MDA algorithm on synthetic data containing pure
mineral signatures and no noise under different number of endmembers. c and ĉ are the actual and estimated number of
endmembers, respectively. d denotes the maximum distance between all pixel points and the affine hull formed by all of the
extracted endmembers.

VCA MDA Hysime HFC

c φM SAD Time φM SAD Time ĉ + d ĉ Time ĉ Time

5 0 0 0.252 0 0 0.204 5 + 0.1066 6 + 0 5 0.161 5 0.089

10 0 0 0.246 0 0 0.216 10 + 0.0844 11 + 0 10 0.142 10 0.063

15 0 0 0.245 0 0 0.233 15 + 0.0015 16 + 0 15 0.143 15 0.064

20 0 0 0.259 0 0 0.251 20 + 0.0020 21 + 0 19 0.157 20 0.065

4.1.2. MDA for Improving MVSA

As reviewed in Section 2.2, the original MVSA algorithm requires the number of
endmembers before performing endmember extraction. Additionally, the original MVSA
algorithm needs to utilize the VCA algorithm as an initialization method to extract endmem-
bers. To this end, we embed our method into MVSA, which possibly extracts endmembers
from nonpure pixels. Such composition (e.g., combining the MDA and MVSA) forms a new,
overall unmixing framework that simultaneously and efficiently determines the number of
endmembers and extracts their spectral signatures without any prior knowledge. We refer
to this strategy as MDA-MVSA.

We conduct our experiments on synthetic data containing pure and nonpure spectral
signatures with different noise levels, respectively. The two types of synthetic data both
have 2000 pixel points and five endmembers. The two types of synthetic data are con-
structed according to the linear model that is given using the procedure described in [39].
Zero-mean white Gaussian noise has been added to the two types of synthetic data, and it
is defined by

SNR = 10 log10(E‖X‖
2
F/E‖N‖2

F) (24)

where X and N are the matrices of pixel points and noise, respectively. We continue to
employ the metrics φM, φA, φX, and SAD to evaluate the performance of our proposed
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MDA-MVSA method in unmixing. Tables 2 and 3 show the results that were obtained
by different methods on synthetic data containing pure and non-pure spectral signatures
under different noise levels. Specifically, VCA and sparse unmixing by variable splitting
and augmented Lagrangian (Sunsal) [46] are the most typical endmember extraction
method and abundance estimation method, respectively. Therefore, we combine VCA and
Sunsal as VCA-Sunsal in order to evaluate the performance of different methods. From
Tables 2 and 3, we see that: (1) VCA-Sunsal is the fastest method when compared with
other methods, but the time gap between it and our proposed MDA-MVSA method is
very small. In addition, VCA-Sunsal requires the number of endmembers in endmember
extraction compared to our proposed MDA-MVSA method. In this scenario, although
VCA-Sunsal is faster than our proposed MDA-MVSA method, the processing of time
regarding our proposed MDA-MVSA includes the processing time of determining the
number of endmembers and VCA-Sunsal does not include; (2) our proposed MDA-MVSA
method obtains better results than VCA-Sunsal, MVCNMF, and MVES in terms of the
metrics φM, φA, and φX ; and, (3) our proposed MDA-MVSA method and original MVSA
acquire almost same results in terms of the metrics φM, φA, and φX, but our proposed
MDA-MVSA method completes endmember extraction without requiring the number of
endmembers. In addition, the original MVSA uses VCA as initialization to obtain the
final results of endmember extraction, and VCA may provide slightly different results in
different runs due to its initialization. In this scenario, our proposed MDA-MVSA method
is more stable than the original MVSA, and it extracts endmembers without requiring
the number of endmembers. Therefore, our proposed MDA-MVSA method improves the
performance of original MVSA method, and it is very effective and efficient in extracting
endmembers. Figure 4 shows the results of SAD for different methods at various noise
levels on the two considered synthetic data scenes. From Figure 4, we see that that our
proposed MDA-MVSA method obtains more better results in terms of SAD compared
to VCA-Sunsal, MVCNMF, and MVES. We also observe that our proposed MDA-MVSA
method and original MVSA acquire the same results. Similarly, due to the fact that original
MVSA uses VCA as initialization to complete endmember extraction and requires the
number of endmembers when it extracts endmembers, our proposed MDA-MVSA method
still improves theoriginal MVSA.

Table 2. Performance and processing time (seconds) for different endmember extraction algorithms on synthetic data with
2000 pixel points and five endmembers and containing pure mineral signatures for the United States Geological Survey
(USGS) library under different noise levels.

VCA-Sunsal MVCNMF MVES MVSA MDA-MVSA

dB φM φA φX Time φM φA φX Time φM φA φX Time φM φA φX Time φM φA φX Time

30 0.091 0.281 0.012 0.338 0.053 0.171 0.004 10.362 0.051 0.157 0 2.409 0.054 0.127 0 0.530 0.047 0.122 0 0.588

50 0.095 0.322 0.013 0.346 0.056 0.195 0.005 9.443 0.009 0.024 0 2.562 0.005 0.016 0 0.684 0.005 0.016 0 0.582

70 0.188 0.472 0.047 0.350 0.066 0.191 0.005 9.439 0.019 0.038 0 3.385 0.002 0.006 0 0.561 0.002 0.006 0 0.571

90 0.131 0.307 0.014 0.352 0.069 0.178 0.004 10.169 0.009 0.017 0 3.865 0.002 0.005 0 0.562 0.002 0.005 0 0.570

∞ 0.186 0.555 0.040 0.346 0.055 0.164 0.003 10.448 0.004 0.009 0 3.714 0.002 0.004 0 0.554 0.002 0.004 0 0.569

Table 3. Performance and processing time (seconds) for different endmember extraction algorithms on synthetic data with
2000 pixel points and five endmembers and containing nonpure mineral signatures (maximum purity of 0.8) for the USGS
library under different noise levels.

VCA-Sunsal MVCNMF MVES MVSA MDA-MVSA

dB φM φA φX Time φM φA φX Time φM φA φX Time φM φA φX Time φM φA φX Time

30 0.164 0.496 0.035 0.345 0.057 0.187 0.005 10.200 0.059 0.153 0 2.427 0.056 0.142 0 0.662 0.051 0.140 0 0.696

50 0.206 0.489 0.045 0.355 0.192 0.305 0.004 10.370 0.007 0.022 0 2.528 0.003 0.011 0 0.671 0.003 0.011 0 0.563

70 0.285 0.497 0.111 0.362 0.078 0.190 0.005 9.853 0.010 0.023 0 3.006 0.003 0.005 0 0.568 0.003 0.005 0 0.567

90 0.134 0.351 0.018 0.364 0.084 0.215 0.005 10.306 0.011 0.025 0 3.461 0.003 0.005 0 0.568 0.003 0.005 0 0.571

∞ 0.109 0.409 0.017 0.335 0.057 0.180 0.002 10.299 0.002 0.009 0 3.555 0.002 0.005 0 0.551 0.002 0.005 0 0.678
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Figure 4. Spectral angle distance (SAD) performance for different endmember extraction algorithms
on (a) synthetic data with pure pixels under different noise levels and (b) synthetic data with nonpure
pixels under different noise levels. The two types of synthetic data both have 3364 pixel points and
five endmembers under different noise levels.

Table 4 reports the performance of our proposed MDA-MVSA method in counting
the endmembers on synthetic data containing pure and non-pure spectral signatures under
different noise levels. Specifically, the two types of synthetic data both have 2000 pixel
points and five endmembers. From Table 4, we see that the gap between the maximum
distance is very obvious when the estimated number of endmembers exceeds the actual
number of endmembers. Therefore, our proposed MDA-MVSA method can accurately
determine the number of endmembers. Table 5 shows the results (estimated number of
endmembers + processing time) of different methods in the task of counting endmembers
on the above two types of synthetic data, i.e., containing pure and non-pure spectral
signatures under different noise levels. From Table 5, we see that Hysime and our proposed
MDA-MVSA method obtain accurate results on synthetic data containing pure and non-
pure spectral signatures with different noise levels, and HFC has errors when the actual
number of endmembers is fibe on synthetic data containing pure and non-pure spectral
signatures with different noise levels. Additionally, HFC is the most effective method in
counting endmembers, but the time gap between it and our proposed MDA-MVSA method
is very small. In addition, Hysime and HFC can only determine the number of endmembers
and our proposed MDA-MVSA method can complete two tasks, i.e., determining the
number of endmembers and extracting endmembers. In this scenario, the processing
time of Hysime and HFC is the running time of determining the number of endmembers,
while the processing time of our proposed MDA-MVSA method is the running time of
determining the number of endmembers and extracting endmembers. Therefore, our
proposed MDA-MVSA method is also very effective and efficient in determining the
number of endmembers.

Table 4. The relationship between the number of endmembers and the maximum distance on synthetic data containing
pure and nonpure mineral signatures under different noise levels. The two types of synthetic data both have 2000 pixel
points and five endmembers.

dB
The Estimated Number of Endmembers + The Maximum Distance

SD with Pure Pixel Points SD with Nonpure Pixel Points

30 5 + 0.094 6 + 0.068 5 + 0.086 6 + 0.06

50 5 + 0.048 6 + 0.008 5 + 0.021 6 + 0.007

70 5 + 0.029 6 + 0.001 5 + 0.02 6 + 0.001

90 5 + 0.014 6 + 0 5 + 0.017 6 + 0

∞ 5 + 0.014 6 + 0 5 + 0.007 6 + 0
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Table 5. The results of estimated number of endmembers + the processing time by different methods on synthetic data
containing pure and nonpure mineral signatures under different noise levels. The two types of synthetic data both have
2000 pixel points and five endmembers.

dB
Synthetic Data with Pure Pixel Points Synthetic Data with Nonpure Pixel Points

Hysime HFC MDA-MVSA Hysime HFC MDA-MVSA

30 5 + 0.13 188 + 0.068 5 + 0.588 5 + 0.133 188 + 0.067 5 + 0.696

50 5 + 0.128 5 + 0.067 5 + 0.582 5 + 0.127 5 + 0.067 5 + 0.563

70 5 + 0.13 5 + 0.067 5 + 0.571 5 + 0.126 5 + 0.067 5 + 0.567

90 5 + 0.132 5 + 0.066 5 + 0.57 5 + 0.126 5 + 0.067 5 + 0.571

∞ 5 + 0.126 5 + 0.068 5 + 0.569 5 + 0.127 5 + 0.066 5 + 0.678

To take the experimental validation one step further, we conduct some experiments
on synthetic data containing non-pure spectral signatures with different numbers of end-
members and sizes under a specific noise level (70 dB) to evaluate the performance of our
proposed MDA-MVSA method in extracting and counting endmembers. Table 6 reports
the performance and processing time for problems with N = 4000, 8000, and 12,000 pixel
points while using different numbers of endmembers (c = 5, 10, 15 and 20) on synthetic data
with non-pure spectral signatures. From Table 6, we see that our proposed MDA-MVSA
method has good results in terms of the values of φM, φA, φX , SAD, and time over MVES.
Specifically, this is a very difficult problem when the number of endmembers is 20. For
instance, from Table 6, we see that our method takes about 12 s to perform the computation
and in comparison MVES takes around 3.7 h on synthetic data with 12,000 pixel points and
20 endmembers. This fact reflects that our proposed MDA-MVSA method is very efficient
for large-scale problems. From Table 6, we also observe that the gap of the maximum
distance d is very obvious when the estimated number of endmembers exceeds the actual
number of endmembers. Therefore, as compared to MVES, our algorithm is not only a
high-speed algorithm, but it also does not require the number of endmembers when it
implements endmember extraction.

Table 6. Performance and processing time (seconds) obtained with our method and minimum-volume enclosing simplex
(MVES) on synthetic data with N = 4000, 8000, 12,000, SNR = 70 dB, c = 5, 10, 15, and 20, and maximum purity of 0.8. ĉ is the
estimated number of endmembers, and d is the maximum distance between all pixel points and the affine hull formed by all
extracted endmembers.

MVES MDA-MVSA

N c φM φA φX SAD Time φM φA φX SAD Time ĉ + d

4000

5 0.0034 0.0147 0 0.1264 5.4033 0.0005 0.0025 0 0.0286 0.7657 5 + 0.0206 6 + 0.0009

10 0.0046 0.0146 0 0.1981 158.3557 0.0018 0.0067 0 0.1034 1.4707 10 + 0.0040 11 + 0.0008

15 0.0335 0.0927 0 4.2413 478.3535 0.0228 0.0755 0 1.6291 2.8269 15 + 0.0012 16 + 0.0008

20 0.0152 0.0700 0 0.6945 1572.6336 0.0072 0.0316 0 0.2972 3.9038 20 + 0.0017 21 + 0.0008

8000

5 0.0032 0.0061 0 0.2002 3.2270 0.0007 0.0014 0 0.0349 1.0759 5 + 0.0369 6 + 0.0007

10 0.0086 0.0267 0 0.6264 365.4279 0.0036 0.0068 0 0.0939 1.7829 10 + 0.0037 11 + 0.0006

15 0.0099 0.0286 0 1.1329 1233.9985 0.0046 0.0124 0 0.3029 4.1594 15 + 0.0008 16 + 0.0012

20 0.0300 0.0950 0 18.8659 3319.7858 0.0155 0.0515 0 0.7091 7.1124 20 + 0.0012 21 + 0.0010

12,000

5 0.0024 0.0048 0 0.0423 6.2190 0.0004 0.0011 0 0.0257 1.4246 5 + 0.0023 6 + 0.0009

10 0.0047 0.0110 0 0.3527 534.3258 0.0017 0.0051 0 0.0359 9.5453 10 + 0.0105 11 + 0.0008

15 0.0314 0.0808 0 1.7409 2651.6650 0.0222 0.0603 0 1.2631 5.9396 15 + 0.0012 16 + 0.0009

20 0.0278 0.0832 0 1.6324 13,125.5823 0.0178 0.0458 0 0.7527 11.1843 20 + 0.0014 21 + 0.0010
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4.2. Real Data
4.2.1. Cuprite Data

We first use the well-known AVIRIS Cuprite data (http://aviris.jpl.nasa.gov/html/
aviris.freedata.html (accessed on 15 February 2021).) in order to evaluate the performance
of the proposed approach in extracting endmembers. The scene has been widely used
to evaluate the performance of endmember extraction algorithms. The portion used in
experiments corresponds to a 250 × 191 pixel subset of the scene, with 224 spectral bands
in the range 0.4–2.5 µm and nominal spectral resolution of 10 nm. We remove the bands
1–6, 105–115, 150–170, and 222–224 (due to water absorption and low SNR), and retain
183 spectral bands in our experiments. Figure 5 presents the subimage of Cuprite data
(displaying only the 30th band) for this experiment.

Figure 5. 30th band of the considered airborne visible/infrared imaging spectrometer (AVIRIS)
Cuprite subimage.

We employ the metrics φM, φX and SAD to evaluate the endmember extraction
performance of our method and MVCNMF on the Cuptite subimage. Table 7 shows
the processing time and values of φM, φX and SAD for our method and MVCNMF. From
Table 7, we see that our method gets more accurate results when compared with MVCNMF
in terms of the values of the metrics φM, φX and SAD. This fact reflects that our method
extracts endmembers effectively. From Table 7, we also find that our method takes less than
1 min. to perform the computation, while MVES spends around 20 min. in the considered
environment. As a result, we conclude that our proposed method is very efficient for
endmember extraction.

Table 7. Performance and processing time (in seconds) obtained by our proposed MDA-minimum
volume simplex analysis (MDA-MVSA) method and minimum volume constrained nonnegative
matrix factorization (MVCNMF) on the considered Cuprite subimage.

Methods φM φX SAD Time

MDA-MVSA 0.0747 0.4919 4.4705 34.6597

MVCNMF 0.0927 0.5519 5.4707 1230.8838

Figure 6 shows the abundance maps obtained by our MDA-MVSA method. The
abundance maps that are obtained by MDA-MVSA are identified as mineral maps of Chlo-
rapatite WS423, Jarosite WS368 Pb, Montmorillonite SCa-2.a, Kaolin/Smect KLF511 12%K
#1, Kaolin/Smect KLF508 85%K, Nontronite NG-1.a, Montmorillonite SCa-2.b, Nontronite

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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SWa-1.a, Kaolin/Smect KLF511 12%K #2, Kaolin/Smect H89-FR-5 30K, Buddingtonite
GDS85 D-206, Kaolin/Smect KLF511 12%K #3, as shown in Figure 6a–n, respectively. In
addition, Figure 7 presents the spectral signatures of the estimated endmembers. From
Figure 7, we observe that the endmember signatures that are estimated by our method are
in good agreement with the real spectral signatures. The results that are shown in Figure 7
reflect the high accuracy of our method in endmember extraction on the Cuprite subimage.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Abundance fraction maps estimated by our MDA-MVSA method from the Cuprite subimage: (a) Chlorapatite
WS423; (b) Jarosite WS368 Pb; (c) Montmorillonite SCa-2.a; (d) Kaolin/Smect KLF511 12%K #1; (e) Kaolin/Smect KLF508
85%K; (f) Nontronite NG-1.a; (g) Montmorillonite SCa-2.b; (h) Nontronite SWa-1.a; (i) Kaolin/Smect KLF511 12%K #2; (j)
Kaolin/Smect H89-FR-5 30K; (k) Buddingtonite GDS85 D-206; and, (l) Kaolin/Smect KLF511 12%K #3.

4.2.2. Samson Data

We also utilize the Samson real hyperspectral image (http://lesun.weebly.com/
hyperspectral-data-set.html (accessed on 15 February 2021).) to evaluate the performance
of our method in extracting endmembers. The Samson image comprises 952 × 952 pixels,
each of which has 156 bands that cover the wavelength range from 401 to 889 nm. The
original image is quite large, leading to high computational cost for several of the consid-
ered algorithms. In this experiment, a subimage with 95 × 95 pixels is used. The spatial
coordinate of the first pixel of the subimage in the full Samson image is (252,332). The
Samson data contain three endmembers, i.e., tree, water, and soil (Figure 8a shows the false
color composite of the considered subimage).

We employ the metrics φM, φA, φX to evaluate the performance of our method and
MVCNMF in extracting endmembers on the considered Samson data. Table 8 shows
the performance metrics of different methods that are applied to the Samson subimage,
together with the processing time (in seconds) for each method. From Table 8, we conclude
that our method exhibits very low values of φM, φA, φX, while our method is faster than
MVCNMF. In summary, this reveals that our method effectively and efficiently extracts
endmembers from the considered Samson data.

http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
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Figure 7. Endmember signatures in the USGS library and the endmember estimates obtained by our MDA-MVSA method
from the Cuprite subimage. The corresponding signatures are the following. (a) Chlorapatite WS423; (b) Jarosite WS368 Pb;
(c) Montmorillonite SCa-2.a; (d) Kaolin/Smect KLF511 12%K #1; (e) Kaolin/Smect KLF508 85%K; (f) Nontronite NG-1.a; (g)
Montmorillonite SCa-2.b; (h) Nontronite SWa-1.a; (i) Kaolin/Smect KLF511 12%K #2; (j) Kaolin/Smect H89-FR-5 30K; (k)
Buddingtonite GDS85 D-206; and, (l) Kaolin/Smect KLF511 12%K #3.

Figure 8. False color composition of the considered Samson subimage.

Table 8. Performance and processing time (seconds) obtained by our proposed MDA-MVSA method
and MVCNMF on the considered Samson subimage.

Methods φM φA φX SAD Time

MDA-MVSA 0.0833 0.2026 1.3961 4.3788 1.1834

MVCNMF 0.3007 0.8321 1.5881 11.7210 23.7691

Figure 9 presents the estimated abundance maps by our method. Figure 10 shows a
qualitative comparison between the endmembers that are extracted by our method from
the Samson subimage and their corresponding reference (ground-truth) signatures. From
Figure 10, we conclude that the endmember signatures estimated by our method are in
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very good spectral agreement with the reference signatures. The results that are shown in
Figures 9 and 10 suggest the high accuracy of our method in extracting endmembers from
real data.

(a) (b) (c)

Figure 9. Abundance fraction maps estimated by our MDA-MVSA method from the Samson subim-
age: (a) tree; (b) water and (c) soil.
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Figure 10. Reference signatures and estimated endmember signatures by our MDA-MVSA method
from the Samson subimage: (a) tree; (b) water; and, (c) soil.

5. Conclusions and Future Work

We have developed a new algorithm for estimating the number of endmembers and the
corresponding endmember signatures, which is referred to as maximum distance analysis
(MDA). Our proposed MDA method extracts endmember signatures without any prior
knowledge about the number of endmembers. Moreover, our method cannot obtain the
most accurate results of endmember estimation when the experimental data have noise due
to the fact that the distance calculation that is shown in Equation (18) is given in the scenario
of linear mixing. To address the issue, we embed our proposed MDA algorithm into the
original MVSA algorithm to form a new and overall endmember estimation framework. The
operation avoids the limitation that the original MVSA algorithm requires prior knowledge
on the number of endmembers, and it has high efficiency for the overall endmember
estimation task. We refer to this novel strategy as MDA-MVSA. The strategy has been
validated while using synthetic data and real data, and it has shown to accurately perform
both counting and extracting endmembers, exhibiting very high efficiency in comparison
with other traditional endmember extraction methods. Specifically, MDA is usually used on
simple scenes (i.e., experimental data containing pure pixels and no noise), and MDA-MVSA
combines MDA and MVSA to form a new and effective unmixing framework for complex
scenes (i.e., experimental data containing non-pure pixels and noise).

As with any new approach, there are still some unresolved issues that may present
challenges over time. Specifically, the distance calculation in our proposed method may need
to be adapted if the hyperspectral data are nonlinearly mixed or include noise. In our future
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work, we will investigate how to simultaneously determine the number of endmembers
and extract their signatures from hyperspectral images when they are nonlinearly mixed.
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