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Abstract: Detailed information regarding land utilization/cover is a valuable resource in various
fields. In recent years, remote sensing images, especially aerial images, have become higher in
resolution and larger span in time and space, and the phenomenon that the objects in an identical
category may yield a different spectrum would lead to the fact that relying on spectral features
only is often insufficient to accurately segment the target objects. In convolutional neural networks,
down-sampling operations are usually used to extract abstract semantic features, which leads to
loss of details and fuzzy edges. To solve these problems, the paper proposes a Multi-level Feature
Aggregation Network (MFANet), which is improved in two aspects: deep feature extraction and
up-sampling feature fusion. Firstly, the proposed Channel Feature Compression module extracts
the deep features and filters the redundant channel information from the backbone to optimize the
learned context. Secondly, the proposed Multi-level Feature Aggregation Upsample module nestedly
uses the idea that high-level features provide guidance information for low-level features, which is of
great significance for positioning the restoration of high-resolution remote sensing images. Finally, the
proposed Channel Ladder Refinement module is used to refine the restored high-resolution feature
maps. Experimental results show that the proposed method achieves state-of-the-art performance
86.45% mean IOU on LandCover dataset.

Keywords: land cover; high-resolution; remote sensing images; semantic segmentation; deep learn-
ing

1. Introduction

Remote sensing images and image processing technology have been widely used in
land description and change detection in urban and rural areas. Detailed information about
land utilization/cover is a valuable resource in many fields [1]. Semantic segmentation in
aerial orthophotos is vitally important for the detection of buildings, forests, water and
their variations, such as research on urbanization speed [2], deforestation [3] and other
man-made changes [4].

There were still some defects in existing land cover classification models. Among the
traditional remote sensing image classification methods, the maximum likelihood (ML)
method [5] was widely used. This method obtained the mean value and variance of each
category through the statistics and calculation of the region of interest, thereby determining
the corresponding classification functions. Then each pixel in the image was substituted
into the classification function of each category, and the category with the largest return
value was regarded as the attribution category of the scanned pixel. Other similar methods
relied on the ability of trainers to perform spectral discrimination on the image feature
space. However, with the development of remote sensing technology, image resolution
continued to be improved, and spectral features were becoming more abundant, which
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led to the problems that spectral classes may have small difference and the same classes
may present big difference. It was often insufficient to accurately extract target objects by
spectral features. The classification algorithms based on machine learning such as support
vector machine [6], artificial shallow neural network [7], decision tree [8] and random
forest [9] were not suitable for massive data. When they were used for classification, the
input features only underwent a few linear or non-linear transformations, and the rich
structural information and complex regular information were often not well described
by above methods. Especially for the high-resolution remote sensing images with large
difference in features and complex spectral texture information, the above classification
results were unsatisfactory.

For the land cover analysis [10], aerial orthophotos are used widely. There are various
ways of land occupation, among which the size of the land covered by the buildings varies
greatly, and the buildings are easily confused with greenhouses in terms of appearance
in orthographic projection. Woodland is the land covered with trees standing in close
proximity, and the area covered with single trees and orchards is difficult to be distinguished
from the woodland. Moreover, there are many types of planted trees, which are different
in irrigation methods and soil types. Water is divided into flowing water and stagnant
water, and ponds and pools are included and ditches and riverbeds are excluded. These
characteristics make it very difficult to extract features from remote sensing images when
feature extraction is the basis of classification. Besides, the above traditional methods [5–9]
usually required manual participation in parameter selection and feature selection, which
further increased the difficulty of feature extraction. In addition, remote sensing images,
especially aerial images, are developing in the direction of higher resolution and larger
time and space span, and problem that the same objects may have different spectrum
whereas different objects may share the same spectrum becomes more often. In summary,
traditional remote sensing image classification methods had limited capabilities of feature
extraction and poor generalization, and could not achieve accurate pixel-level classification
of remote sensing images.

In the field of deep learning, since Long et al. [11] proposed a fully convolutional
neural network (FCN) in 2015, many subsequent FCN-based deep convolutional neural
networks have achieved end-to-end pixel-level classification. For example, Ronneberger et
al. [12] proposed a U-shaped network (U-Net) that could simultaneously obtain context
information and location information. The pyramid pooling module proposed by Zhao et
al. [13] could aggregate the contextual information of different regions, thereby improving
the ability to obtain global information. Chen et al. [14] used cascaded or parallel atrous
convolutions to capture multi-scale context by using different atrous rates. Yu et al. [15]
proposed a Discriminative Feature Network (DFN) to solve the problems of intra-class
inconsistency and inter-class indistinction. In Huan et al.’s work [16], the features of
different levels from the main network and the semantic features from the auxiliary network
were dimensionally reduced by principal component analysis (PCA), respectively. And
then these features were fused to output the classification results. In Yakui et al.’s work
[17], the efficiency of information dissemination was improved by adding the nonlinear
combination of the same level features, and the fusion of different layer features was used
to achieve the goal of accurate target location. Compared with traditional remote sensing
image classification methods such as ML and SVM based on the single source data, deep
learning methods learn to extract the main features rather than designed by experts, which
is more robust in complex and changeable situations. In addition, deep learning methods
greatly enhance the capabilities of feature extraction and generalization, and could achieve
more accurate pixel-level classification; therefore, they are more suitable for high-resolution
remote sensing image classification.

With the use of unmanned aerial vehicles, aerial image datasets become more and
more popular, and they are developing in the direction of high resolution, multi-temporal,
and wide coverage. Traditional methods based on hand-made feature extractors and rules
have low efficiency and poor scalability when the amount and the variance of data are
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large. In recent years, convolutional neural networks (CNNs) have played a key role in
automatic detection of changes in aerial images [18] [19]. However, the low-level features
learned by CNNs are biased toward positioning information, and the high-level features
are biased toward semantic information. In the land cover classification model, the model
needs to know not only the category, but also the location of the category, so as to complete
the land cover classification task, which is actually a semantic segmentation task. There
are two common neural network architectures used for semantic segmentation. One is
the spatial pyramid pooling style networks, such as Pyramid Scene Parsing Network
(PSPNet) [13], ParseNet [20] and Deeplabv2 [21], and the other is the encoder-decoder
style networks, such as SegNet [22], Multi-Path Refinement Networks (RefineNet) [23],
U-Net [12] and Deeplabv3+ [24]. The former networks could detect incoming features at
multiple scales and multiple effective receptive fields by using filters or performing pooling
operations, thereby encoding multi-scale context information. The latter networks could
capture clearer object boundaries by gradually recovering spatial information. In the land
cover classification problem, objects of the same classes vary widely in time and space, but
the requirement for multi-scale information of each class is not high.

Since down-sampling operations are usually used in convolutional neural networks to
extract abstract semantic features, high-resolution details are easily lost, and some problems
e.g. inaccurate details and blurred edges emerge in the segmentation results. There are two
mainstream solutions to solve the detail loss of high-resolution image. The first solution is
that high-resolution feature maps are used and kept throughout the network. This method
requires higher hardware performance, which results in low popularity. The representative
networks include convolutional neural fabrics [25] and High Resolution Network (HRNet)
[26]. The second solution is that high-resolution detail information are learnt and restored
from low-resolution feature maps. This method is used by most semantic segmentation
networks such as PSPNet [13], Deeplabv3+ [24] and Densely connected Atrous Spatial
Pyramid Pooling (DenseASPP) [27]. However, this scheme needs to recover the lost
information and the result is unsatisfactory. Therefore, the land cover classification models
based on semantic segmentation still need to be improved in both deep feature extraction
and up-sampling feature fusion. In order to solve the above problems, a multi-level feature
aggregation network (MFANet) is proposed for land cover segmentation in this work.
In terms of deep feature extraction, a Channel Feature Compression (CFC) module is
proposed. Although the structure of CFC module is similar to Squeeze-and-Excitation (SE)
module [28], their functions are different. The SE module is embedded in the building block
unit of the original network structure, aiming to improve the network’s presentation ability
by enabling it to perform dynamic channel feature recalibration. While the proposed CFC
module placed in the middle of the encoder and the decoder, compresses and extracts the
deep global features of high-resolution remote sensing images in the channel direction, and
provides more accurate global and semantic information for the subsequent up-sampling
process. This alleviates the phenomenon of the same thing with different spectrum to a
certain extent. In terms of up-sampling feature fusion, we propose another two modules,
Multi-level Feature Attention Upsample (MFAU) and Channel Ladder Refinement (CLR).
The MFAU module is used to restore high-resolution details. The MFAU module uses multi-
level features, rather than only two levels of features are used in traditional up-sampling
modules like Global Attention Upsample (GAU) [29] and traditional networks like U-
Net [12]. At the same time, each MFAU module also generates a twice-weighted feature
combination by performing different convolution and global pooling operations. These
two innovations give the MFAU module a powerful ability to recover detailed information
for high-resolution remote sensing images. To achieve the purpose of smooth transition
to a specific land cover classification task, the proposed Channel Ladder Refinement
(CLR) module is placed at the end of the network and gradually refines the restored
high-resolution feature maps by decreasing progressively the number of channels.

In general, there are four contributions in our work:
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• A channel feature compression module placed at the end of the feature extraction
network is proposed to extract the deep global features of high-resolution remote
sensing images by compressing or filtering redundant information, and therefore to
optimize the learned context.

• A multi-level feature attention upsample module is proposed, and it uses higher-level
features to provide guidance information for low-level features, which generates new
features. The high-level features further provide guidance information for newly
obtained features, and are re-weighted to obtain the latest features. This is of great
significance for restoring the positioning of high-resolution remote sensing images.

• This work also proposes a channel ladder refinement module, which is placed before
the last up-sampling, with the purpose of gradually refining the restored higher
resolution features for any specific land cover classification task.

• A network combines the three modules with the feature extraction network is pro-
posed to achieve the purpose of segmenting high-resolution remote sensing images.

2. Methodology

As the resolution of remote sensing images increases, the detailed information and
spatial information of remote sensing images also increases dramatically. As the key to
describing land cover, the loss of contextual information means the failure and decline of the
models. How to effectively represent contextual information has become an effective means
to improve the classification results of the models. At present, the existing models are not
very good at recovering the lost spatial details. Therefore, the land cover classification
models based on semantic segmentation still need to be improved in deep feature extraction
and up-sampling feature fusion.

In this part, the architecture of MFANet is introduced firstly, and then three modules
CFC, MFAU, and CLR are described in detail.

2.1. Network Architecture

This paper proposes a new semantic segmentation network, and the network structure
is shown in Figure 1. Firstly, the proposed CFC is regarded as the central block between
the encoder and the decoder. Its function is to extract the deep global features of high-
resolution remote sensing images in the channel direction. To a certain extent, it alleviates
the phenomena of the same objects with different spectrum and different objects with
same spectrum. Secondly, the proposed MFAU module is an improvement of the GAU
module proposed in Pyramid Attention Network (PNA) [29]. The GAU module adds a
global pooling operator as an accessory to the decoder branch to choose the distinctive
multi-resolution feature representations, which is proved to be effective. The features of
adjacent stages are not a simple combination, and their different representations and global
context information jointly generate a twice-weighted feature combination by performing
different operations such as convolution and global pooling. The experimental results
show that this operation can better restore the detailed information of the high-resolution
remote sensing images. Thirdly, the proposed CLR module is used in the last step of the
network to refine the final feature maps.

Combined the proposed CFC, MFAU and CLR, the multi-level feature aggregation
network for land cover segmentation is proposed, as shown in Figure 1. ResNet-50 [30]
is used as the backbone. Table 1 gives a detailed description of the division of five Blocks
from ResNet-50. The Block-1 to Block-4 remain unchanged, and the Block-5 is modified.
That is, the last three 3× 3 plain convolutions are replaced with the atrous convolutions
with stride = 1, so the size of final output feature maps of ResNet-50 is 1/16 of the
input images. The CFC module is used to collect compressed global context information
from the output of the backbone ResNet. In the up-sampling process, combined with the
global context, three MFAU modules gradually fuse features from high-level to low-level
to recover high-resolution details. The CLR module is utilized to gradually refine the
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recovered high-resolution feature maps, and generate the final prediction maps after the
last up-sampling.

Bolck-1

DGAUDGAU DGAUCLR

Bolck-2 Bolck-3 Bolck-4

Block-5

CCF

Figure 1. The architecture of Multi-level Feature Aggregation Network (MFANet). The modified ResNet-50 is used to extract features
of different levels. Then the deep semantic features are further extracted by Channel Feature Compression (CFC), the feature fusion
and location recovery are completed by Multi-level Feature Attention Upsample (MFAU), and the recovered high-resolution details are
further refined by Channel Ladder Refinement (CLR). The blue and red lines represent down sampling and up sampling operations
respectively.

Table 1. An explanation of five Blocks from the extraction network ResNet-50 . Note that the stride of
Block-5 is reset to 1.

Layer name Output size 50-layer

Block-1 256× 256 7× 7, 64, stride2

Block-2 128× 128

3× 3 max pool, 64, stride2 1× 1, 64
3× 3, 64

1× 1, 256

 ×3

Block-3 64× 64

 1× 1, 128
3× 3, 128
1× 1, 512

 ×4

Block-4 32× 32

 1× 1, 256
3× 3, 256

1× 1, 1024

 ×6

Block-5 32× 32

 1× 1, 512
3× 3, 512

1× 1, 2048

 ×3

2.2. Channel Feature Compression

In the land cover classification problem, the objects of the same classes vary widely
in different time and space. Therefore, this work mainly considers how to effectively
extract deep global features in the channel direction. In this work, the CFC module is
regarded as the central block between the encoder and decoder. Its function is to optimize
the learned context by compressing or filtering redundant information, and to better
extract the deep global features of high-resolution remote sensing images. Hu et al. [28]
proposed a SE module, which enhances the learning of convolutional features by explicitly
modeling channel interdependence. While the CFC module, as shown in Figure 2, uses
a convolutional layer followed by a Batch Normalization (BN) layer to replace a fully
connected layer. This operation has two benefits. Firstly, the fully connected layer destroy
the spatial structure of images, while the convolutional layer will not. For a semantic
segmentation task, we obviously do not want to destroy the spatial structure of the images,
so the convolutional layer is first choice. Secondly, the computational process of the
1× 1 convolution is equivalent to the process of the fully connected layer, and the batch
normalization layer is followed, so that the update of model parameters during the training
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is not likely to cause drastic change of the output near the output layer, and the learning of
network is more stable.
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Figure 2. The structure of Channel Feature Compression module. ‘GAP’ represents the global average pooling operation. ‘r’ is the
reduction ratio. ‘ H×W×C’ represents the shape of the features.

In this work, ResNet is a feature extraction backbone after removing average the
pooling layer, the fully connected layer and the softmax layer. The high-level features
X ∈ RH×W×C, X = [x1, x2, · · · , xC] learned from the backbone are further processed by a
global average pooling to learn global information, so that a weight vector whose length is
C is obtained. The vector trains the model to achieve better performance in such a way that
the effective feature maps’ weight values become large and the less effective feature maps’
weight values become small, which can be expressed by Equation (1).

gc =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j), (1)

where gc represents the c-th component of the weight vector, which can also be understood
as the global average information of the c-th channel of the feature maps.

Through the above operation, the spatial correlation has been decoupled. In order
to capture the correlation between channels, the bottleneck formed by two convolutional
layers (that is, the dimensionality reduction layer with reduction ratio r) is used to process
the entire channel information. This process can be described as the followings:

v1
c = G ∗ K1

c + b1
c =

C

∑
i=1

gi × k1
c i + b1

c , c = 1, 2, · · · ,
C
r

, (2)

U1 = ReLU(BN(V1)), (3)

v2
c = V1 ∗ K2

c + b2
c =

C
r

∑
i=1

u1
c × k2

c i + b2
c , c = 1, 2, · · · ,

C
2

, (4)

U2 = Sigmoid(BN(V2)), (5)

where the first 1× 1 convolution has C
r convolution kernels, K1

c represents the c-th con-
volution kernel, v1

c represents the c-th feature generated after the first 1× 1 convolution,
and ReLU(BN(·)) represents further batch normalization and ReLU nonlinear activation;
the second 1× 1 convolution has C

2 convolution kernels, K2
c represents the c-th convolu-
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tion kernel, v2
c represents the c-th feature generated after the second 1× 1 convolution,

and Sigmoid(BN(·)) represents the further batch normalization and Sigmoid nonlinear
activation. It should also be noted that r ≥ 2.

It can be seen from the Equations (2)–(5) that there is another difference from SE
module, Double Attention Module [31] and Attention Fusion Block [32] that the CFC
module has achieved the goal of the halved number of channels. The reason for this is
that as networks become deeper, the number of channels gradually doubles, but there is
actually channel redundancy for most tasks. For the land cover classification task, we use
ResNet-50 [33,34] as the backbone, but the number of channels in the last convolutional
layer has reached 2048. For the semantic segmentation task with four classes, the number
of channels is far larger than what is actually needed. The proposed method has two
additional benefits. Firstly, the original channel number of the backbone is not changed,
so the official pre-trained weights can be easily loaded, which shortens the training time.
Secondly, for the subsequent up-sampling feature fusion to restore high-resolution details,
it reduces the amounts of calculations and parameters, and reduces hardware requirement.

In order to match the number of channels, the features X followed a 1× 1 convolution
are multiplied by the normalized weight U2 channel by channel to complete the recalibra-
tion of the original features in the channel dimension. The process can be described by
Equations (6) and (7).

v3
c = X ∗ K3

c + b3
c =

C

∑
i=1

xi ∗ k3
c i + b3

c , c = 1, 2, · · · ,
C
2

, (6)

Yc = u2
c × v3

c , c = 1, 2, · · · ,
C
2

, (7)

where Yc represents the c-th channel component of the final output features of the module.
We can add a CFC module at the end of the backbone. In addition to the common

ResNet, we can also use MobileNetv2 [35] as a lightweight backbone. With a little modifi-
cation to different backbones, we can extract the features of different levels that we need to
prepare for the up-sampling process [36].

2.3. Multi-Level Feature Attention Upsample

This work proposes an encoder-decoder style network, which gradually completes the
up-sampling feature fusion and restoration through three MFAU modules. The main idea of
the MFAU module is to use higher-level features to provide guidance information for low-
level features to generate new features, and high-level features further provide guidance
information for newly obtained features to obtain the latest features. Compared with the
GAU module [29], although the amounts of parameters and calculations of the module
have increased, the segmentation effect is significantly improved and the high-resolution
details of remote sensing images are better restored.

Up-sampling is used to restore the resolution or fix the pixel positioning. This process
is very important, and MFAU module is a good implementation for up-sampling. High-
level features with rich semantic information can be used to weight low-level features to
select precise resolution details, this idea is used twice in the module. The MFAU module
is different from general up-sampling modules. It has three inputs (multi-level), two of
which are derived from the adjacent levels of the backbone called low-level features and
high-level features, respectively. Another is generated by the CFC module or the last MFAU
module, and named the latest features. We design that number of channels and the size of
the latest features are the same as those of the high-level features. The number of channels
of low-level features is 1/2 of that of high-level features, and the length and width are
twice the size of high-level features. The module structure is shown in Figure 3.
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ReLu

3×3 Conv

Batch Norm

Global Pooling

1×1 Conv

Sigmoid

Global Pooling

1×1 Conv

Sigmoid

Latest featuresHigh-level featuresLow-level features

Figure 3. The structure of Multi-level Feature Attention Upsample module.

Most methods try to combine features from adjacent stages to enhance low-level
features, regardless of their different representations and global context information. In
Li et al.’s work [29], the global pooling operator was added as an accessory module to
the decoder branch to select a distinctive multi-resolution feature representation. The
idea is adopted and expanded. The features of adjacent stages are not simply combined
in this work. Instead, their different representations and global context information are
considered by performing different operations such as convolution and global pooling to
jointly generate a twice-weighted feature combination. In detail, this operation is divided
into two stages. The first stage is shown in the part surrounded by the black dashed
line. First, a 3× 3 convolution with batch normalization and ReLU nonlinear activation is
performed on the low-level features while keeping the number of channels and the size
of the feature maps unchanged. Then, it is then multiplied by a global context vector,
which is generated by performing a 1× 1 convolution with Sigmoid nonlinear activation
on adjacent high-level features. Finally, the up-sampled high-level features are added to
the weighted low-level features. In the second stage, the features generated in the first
stage are multiplied by the global context vector generated by the latest features. Finally,
the latest features after up sampling are added with the weighted features to get the final
output of the module, that is, the next features we want, whose size and channel number
are consistent with the low-level features.

If the output of the first stage is regarded as the low-level features, combined with the
remaining part, this will become a first stage. In our proposed networks, we use the module
three times in the up-sampling process, and the corresponding relationships between input
and output in these three modules can be described by Equation (8).

Newi+1 = MFAU(Newi, L4−i, L(4−i)−1), i = 0, 1, 2, (8)
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where New0 represents the output of the CFC module. Newi(i = 1, 2, 3) is the output of
the i-th MFAU module, that is, the latest features. Li represents the feature maps generated
from the Block-i of the backbone. MFAU(·) represents the entire calculation process of the
MFAU module.

With this design, the feature maps outputted by Block-3 and the Block-2 are reused.
The resolution of the two blocks is respectively 1/8 and 1/4 of the original images, which is
a good compromise for both positioning information and semantic information. It is found
that this is of great significance for restoring the positioning of high-resolution images.

2.4. Channel Ladder Refinement

Before the last up-sampling, a Channel Ladder Refinement module is added to gradu-
ally refine the restored higher-resolution features. The structure of the module is shown
in Figure 4. The first layer of the module is a 1× 1 convolution, we use it to reduce the
number of channels to b times as many as the output channels. At the same time, it can
also combine information from all channels. Next is a basic residual block from ResNetv2
[37], which can better refine the feature maps. Finally, a 1× 1 convolutional layer is used to
further reduce the number of channels. In this way, the number of channels is reduced in
two times to achieve the goal of gradually refining the feature map. Compared with the
similar Refinement Residual Block (RRB) proposed by DFN [15], the accuracy is improved.

2

3 3BN - ReLU - Conv 1 1Conv

H
H

H

W
W

C N b W

N

Figure 4. The structure of Channel Ladder Refinement module. ‘×2’ denotes ‘BN - ReLU - 3× 3Conv’ is repeated twice.

3. Experiment
3.1. Datasets
3.1.1. LandCover Dataset

In order to verify the ability of the proposed model in land cover segmentation task,
the LandCover dataset [10] is used. The dataset consists of images selected from aerial
photos covering 216.27 square kilometers of land in Poland, a central European country. It
is manually labeled with four types of objects: buildings (red), woodland (green), water
(grey), and background (black), which are called ground truth, as shown in Figure 5b. The
dataset has 33 images with a resolution of 25cm (about 9000× 9500 px) and 8 images with
a resolution of 50cm (about 4200× 4700 px).

There is difficult in semantic segmentation on this dataset. In addition to the two
points of high resolution and multiple time and space mentioned above, there are also strict
definitions of four types of objects. Buildings are objects that stand permanently in one
place, excluding greenhouses, etc. Wood-land refers to land covered by trees, excluding
single trees and orchards. Water include flowing water and stagnant water, but does
not include ditches and dry riverbeds. These remote sensing images with orthographic
projection are likely to cause indistinguishability in appearance. There is an example
is shown in Figure 5. In Figure 5a, the object encircled by a yellow circle is easy to be
misclassified as a building in appearance, but it is actually greenhouse and should be
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classified as the background. The object surrounded by an orange triangle appears to be
wood-land, but it is actually a bush and should be classified as the background. The objects
encircled by blue ellipses are single trees, and they should be classified as the background.
In summary, it is difficult to satisfactorily classify land cover accurately on this dataset.

(a) image (b) label

Figure 5. An example for LandCover dataset. (a) The original image; (b) Manually annotated label. The parts shown by the dotted line
belong to the background class while they are easy to be misclassified. The objects circled by the solid line are the target classes while
they are easy to recognize as background.

For the processing of this dataset, all images were cut from left to right and top to
bottom without overlapping to the images with 512× 512 px. The images with only one
class are eliminated, and then randomly are divided into training set, validation set and
test set according to the ratio of 0.7:0.15:0.15.

3.1.2. Aerial Image Segmentation Dataset

The dataset is an aerial image segmentation dataset (AISD) [38] covering six cities,
all images are high-resolution RGB orthophotos from Google Maps. The ground truth of
Tokyo comes from fine manual annotation, annotated three types of objects: building (red),
road (blue), and background (white). The ground truths of Berlin, Chicago, Paris, Potsdam
and Zurich are automatically exported from OpenStreetMap (OSM). Affected by factors
such as OSM polygons and Google images being independently geo-referenced, the way
of annotation is not so detailed compared to manual annotation. For the processing of this
dataset, we follow the approach adopted for LandCover.

3.2. Implementation Details

Our implementation is based on the public platform PyTorch. The ‘ploy’ learning rate
strategy is used in this work, that is, the current learning rate is equal to the basic learning
rate multiplied by (1− iter

max iter )
power . The base learning rate is set to 0.01 and power is

set to 0.9. It has been observed that most experiments have almost converged after 200
iterations, so the maximum number of iterations is set to 300. Momentum and weight
decay are set to 0.9 and 0.0005, respectively.

Due to limited physical memory on our GPU card, the batch size is set to 4 during
training. Considering that the sample imbalance problem may cause some classes to
be easily trained, which will dominate the update direction of the gradients, so that the
network cannot learn more useful information, and cannot accurately classify each class.
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Therefore, in this paper we use focal loss [21] to supervise the output of the network,
as shown in Equation 9. We adjust the parameters α and γ of focal loss to obtain better
performance. That is α= 0.5,γ = 2.

FL(pk) = −α(1− pk)
r log pk, (9)

where pk is the estimated probability of the class k , k ∈ {1, 2, · · · , K}. K is the maximum
value of the class label.

3.3. Ablation Study on LandCover Dataset

In this part, the ablation experiments are organized step by step to reveal the effect
of each module on LandCover dataset. For evaluation, we mainly use the mean Pixel
Accuracy (mPA) and mean Intersection-over-Union (mIoU) indexes, and show the amounts
of parameters and calculations of each network.

3.3.1. Channel Feature Compression

It is suggested that reduction ratio r must be greater than or equal to 2 so as to better
filter redundant channel information. Observing the experimental results, as shown in Table
2, it is found that when r=4, the performance is the best, and the amounts of parameters
and calculations are also relatively compromised. At the same time, the first row of Table
3 indicates that using the CFC module instead of the SE module increases the mIoU by
up to 0.36% but not increases the amounts of parameters and calculations. These results
indicate that when the CFC module is regarded as the central block between the encoder
and decoder, it can effectively extract the deep global features of high-resolution remote
sensing images, optimize the learned context information, and alleviate the phenomenon
of different spectra of the same object and the same spectrum of foreign objects to a
certain extent. The performance can be attributed to the fact that CFC module enhance the
learning of convolution features by explicitly modeling channel interdependence, while
compressing redundant features in channel dimension.

Table 2. It is important to set the appropriate reduction ratio in the Channel Feature Compression
(CFC) (bold represents the best result).

Reduction Ratio r mIoU(%) mPA(%) Parameter(M) Parameter(G)

2 84.80 90.78 36.149 42.833
4 84.93 90.91 34.575 42.832
8 84.71 90.56 33.788 42.831

16 84.75 90.61 33.395 42.830

Table 3. The performance comparison of the networks using the proposed modules in turn.
‘ResNet50-Baseline’ means the segmentation network with three types of modules: SE, GAU, and
RRB, and it uses ResNet50 as the backbone. ‘CFC’ means using CFC module to replace the SE module.
‘MFAU’ means using MFAU module to replace the GAU module. ‘CLR’ means using CLR module to
replace the RRB module (bold represents the best result).

Method mIoU(%) mPA(%) Parameter(M) Parameter(G)

ResNet50-Baseline 84.57 89.82 35.090 44.478
ResNet50+CFC 84.93 90.91 34.575 42.832

ResNet50+MFAU 85.66 91.37 39.431 82.398
ResNet50+CLR 84.93 91.10 34.580 42.837

ResNet50+CFC+MFAU+CLR(MFANet) 86.45 92.09 38.969 84.161

3.3.2. Multi-level Feature Attention Upsample

In the up-sampling process, the MFAU modules are used instead of the GAU modules.
From the results in the first and third rows of Table 3, the performance is enhanced from
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84.59% to 85.66%, an increase of 1.07%. This shows that the MFAU modules can perform
up-sampling feature fusion more effectively and better restore high-resolution details than
the GAU modules. MFAU takes into account the different representations and global
context information of the features of adjacent stages, and generates a twice-weighted
feature combination by performing different operations such as convolution and global
pooling. This process can be described as two steps. At first, higher-level features provide
guidance information for low-level features to generate new features, and then the highest-
level features further provide guidance information for the new features. It is of great
significance to restore the location of high-resolution remote sensing images.

3.3.3. Channel Ladder Refinement

For the dataset with 4 classes, the output feature maps from the last MFAU module
have 64 channels. There are two extreme cases with buffer factors b of 1 and 16. The results
are shown in Table 4. It is observed that when b=16, that is, when the number of channels is
reduced in the last convolutional layer, the performance is the best. However, considering
the amounts of parameters and calculation, a buffer factor of 4 is chosen. At the same time,
compared with the first row of Table 3, any of these four results is better than using the
RRB module. This is due to a residual block [37] contained in the module, which is used to
gradually refine the recovered higher resolution features.

Table 4. It is important to set the appropriate buffer factor in Channel Ladder Refinement (CLR)
(bold represents the best result).

Buffer Factor b mIoU(%) mPA(%) Parameter(M) Parameter(G)

1 84.78 90.72 35.097 44.982
4 84.84 90.78 35.102 44.987
9 84.67 90.71 35.123 45.007

16 84.93 91.10 35.175 45.061

3.3.4. Dilation Ratio of Block-5

Based on reduction ratio r=4 and buffer factor b=16, we conduct further experiments
on our networks. In DeepLabv1 [39], the concept of hole convolution was first proposed.
The dilated convolution can expand the receptive field without introducing additional
parameters. When dilated convolutions at different rates are used continuously, these net-
works can capture multi-scale context information, which is quite important in many visual
tasks [40,41]. However, whether this approach is suitable for feature extraction of remote
sensing images is a problem worthy of exploration. Through the experiments, the three
3× 3 convolutions of Block-5 from ResNet-50 use different dilation ratio combinations, and
the results are shown in Table 5. When ratios are all 1, that is, without dilated convolutions,
the performance is relatively better. This indicates that the dilated convolution is unlikely
to be suitable for extracting features from remote sensing images.

Table 5. Influence of using different ratio combinations for the three 3× 3 convolutions of the Conv-5
block from ResNet-50 on algorithm performance (bold represents the best result).

Dilation Ratios mIoU(%) PA(%) mPA(%)

1-1-1 86.44 95.00 92.39
1-2-3 86.32 94.64 92.24
2-2-2 86.40 94.68 91.97
1-2-5 86.32 94.64 92.09

Finally, using the configuration obtained from the above experiments, the Mean IoU of
our proposed network reaches 86.45%, as shown in Table 3, which is 1.88% higher than the
baseline network.
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3.4. Comparative Experiment with Other Networks
3.4.1. Comparative Experiment on LandCover

In this part, the proposed method is compared with other semantic segmentation
networks. As the experimental results show in Table 6, the performance of the proposed
MFANet based on Resnet50 is best. Without pre-training, the performance of MFANet
based on MobileNetv2 is better than that of most networks, and the amounts of parameters
and calculations are greatly reduced. The performance of MFANet based on ResNet-50
is better than PSPNet and U-Net. In contrast, our network has the least computation and
the second largest parameter. In the case of pre-training, MFANet based on ResNet-50 or
MobileNetv2 has better performance than other networks such as DeeplabV3, BiSeNet and
DenseASPP. Table 7 shows the detailed results for each class of the test set in which all
methods’ backbones are loaded with pre-trained weights. By comparison, IoU for each
class of our proposed network whether it is based on Resnet50 or MobileNetv2 is better
than that of other networks. All of these results show the effectiveness of our proposed
network. Moreover, it can be seen from the amounts of parameters and calculation in Table
6 that the performance promotion of our network is not simply at the cost of increasing
parameters and computing.

Table 6. Results on LandCover testing set. Methods pre-trained are marked with ‘†’ (bold represents
the best result).

Method Parameters(M) FLOP(G) MPA(%) fwIoU(%) mIoU(%)

DFANet [42] 2.024 0.913 76.96 81.27 68.52
SegNet [22] 29.445 178.342 77.19 81.78 71.85
DANet [43] 49.612 206.121 83.75 85.36 75.2

ESPNetv2 [44] 2.159 0.754 84.72 86.28 77.67
ICNet [45] 28.293 10.087 85.04 86.03 78.82
CGNet [46] 0.492 3.37 88.74 87.38 80.96
HRNet [47] 1.537 5.074 88.03 87.03 81.27

Ours-MobileNetv2 2.156 8.601 88.97 87.55 81.53
PSPNet [13] 48.757 184.128 87.87 88.68 82.37
U-Net [12] 17.268 177.805 87.96 87.66 82.52

Ours- ResNet50 38.969 84.161 89.63 88.73 82.78
FCN-16s [11] † 15.318 89.261 89.54 89.12 82.71

DeeplabV3+ [24] † 54.701 82.665 90.39 88.95 84.17
BiSeNet [48] † 12.796 12.963 90.42 89.1 84.45

DenseASPP [27] † 10.201 48.677 91.35 89.35 85.04
Ours- MobileNetv2 † 2.156 8.601 91.4 89.45 85.49

Ours-ResNet50 † 38.969 84.161 92.09 89.89 86.45

Table 7. Per-class results on LandCover testing set. Methods that are pre-trained are marked with ‘†’
(bold represents the best result).

Class Buildings Woodlands Water Backgroud Overall

FCN-16s † 62.59 87.15 90.46 90.64 82.71
DeeplabV3+ † 68.95 86.67 90.51 90.53 84.17

BiSeNet † 69.41 86.87 90.87 90.63 84.45
DenseASPP † 72.03 87.14 90.05 90.93 85.04

Ours-MobileNetv2 † 72.78 87.36 90.94 90.86 85.49
Ours-ResNet † 75.09 87.78 91.66 91.25 86.45

Figures 6–8 show several example effects of remote sensing images within different
number of classes. Figure 6 shows the prediction results of several images within two
classes. It can be seen that whether for woodlands, water or buildings, our result in Figure
6g is closest to ground truth Figure 6b. Figure 7 shows the results of several images
within three classes. In the first row, the proposed network removes the distractors. The
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result shows that our network has an advantage in the identification of distractors. This is
due to CCF module enhancing the learning of convolution features by modeling channel
interdependence, which alleviates the phenomenon of the same objects with different
spectrum and different objects with the same spectrum in remote sensing images to a certain
extent. In the second line, our network segments more complete buildings and water at the
same time. This MFAU module takes into account the different representations and global
context information of the features of adjacent stages to generate a twice-weighted feature
combination (a cascade of higher-level features guiding lower-level features), which has
important guiding significance for the restoration of high-resolution remote sensing image
positioning. In the third line, the edges of our results prediction are the most realistic,
because the CLR module added before the last up-sampling gradually reduces the number
of channels twice, so as to achieve the purpose of refining the edges. Compared with the
results of the other four graphs, our results are better. In particular, the edges of buildings
are more refined. The results indicate that our network also has advantages for small object
recognition. Figure 8 shows the results of several images within four classes. Compared
with other networks, our segmentation results are more complete, which verifies the above
conclusion again.

(a) Image (b) Ground Truth (c) FCN (d) DeepLabv3+ (e) BiSeNet (f) DenseASPP (g) Proposed MFANet

Figure 6. Prediction results of images with two classifications. (a) The original images; (b) Corresponding labels; (c) The predicted
maps of FCN, (d) The predicted maps of DeepLabv3+; (e) The predicted maps ofBiSeNet; (f) The predicted maps of DenseASPP; (g)
The predicted maps of proposed MFANet.

More example results of the proposed MFANet on testing set are shown in Figure 9. The above results prove that our
network has a strong feature extraction ability and a high-resolution detail recovery ability for high-resolution remote
sensing images. Specifically, this is due to the CFC module’s further deep-level feature extraction, the MFAU module’s
positioning guidance for the recovery of high-resolution remote sensing images, and the final CLR module’s refinement
of the recovered features.
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(a) Image (b) Ground Truth (c) FCN (d) DeepLabv3+ (e) BiSeNet (f) DenseASPP (g) Proposed MFANet

Figure 7. Prediction results of images with three classifications.(a) The original images; (b) Corresponding labels; (c) The predicted
maps of FCN; (d) The predicted maps of DeepLabv3+; (e) The predicted maps of BiSeNet; (f) The predicted maps of DenseASPP; (g)
The predicted maps of proposed MFANet.

(a) Image (b) Ground Truth (c) FCN (d) DeepLabv3+ (e) BiSeNet (f) DenseASPP (g) Proposed MFANet

Figure 8. Prediction results of images with four classifications. (a) The original images; (b) Corresponding labels; (c) The predicted
maps of FCN; (d) The predicted maps of DeepLabv3+; (e) The predicted maps of BiSeNet; (f) The predicted maps of DenseASPP; (g)
The predicted maps of proposed MFANet.
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Figure 9. Results of MFANet on LandCover testing set. (a) The original images; (b) Corresponding labels; (c) The predicted maps of
proposed MFANet.

3.4.2. Comparative Experiment on AISD

In order to further demonstrate the effectiveness of the proposed MFANet, we also
conduct comparative experiments on AISD. The experimental results are shown in Table 8,
and MFANet achieves the best performance on the testing set. The visualization results
on the testing set are shown in Figure 10. The results in the first row show that MFANet
removes distractors, the results in the second row show the fine segmentation for buildings
using MFANet, and the results in the third row show the relatively complete prediction for
roads compared with baseline network FCN. These results coincide with the prediction
results on LandCover dataset. In addition, it is noted that the prediction results shown in
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the last row are closer to the original images than the ground truths, because the annotation
of the dataset is not so fine. These results once again prove the proposed network’s
powerful feature extraction capability and high-resolution detail recovery capability for
high-resolution remote sensing images.

Table 8. Results on aerial image segmentation dataset (AISD) testing set (bold represents the best
result).

Method MPA(%) fwIoU(%) mIoU(%)

FCN-16s 83.22 71.96 71.78
U-Net 84.03 73.16 72.89

BiSeNet 84.88 74.18 74.05
MFANet 85.89 75.67 75.61

(a) Image (b) Ground Truth (c) FCN (d) Proposed MFANet (a) Image (b) Ground Truth (c) FCN (d) Proposed MFANet

Figure 10. Results of MFANet on AISD testing set. (a) The original images; (b) Corresponding labels; (c) The predicted maps of FCN;
(d) The predicted maps of proposed MFANet.

4. Discussion

Compared with other semantic segmentation methods, our proposed MFANet has
three advantages for land cover classification results. First, our network has an advantage
in identifying distractors. This is due to the added CFC module enhancing the extraction
of deep convolution features by modeling channel interdependence, which alleviates the
phenomenon of the same objects with different spectrum and different objects with the
same spectrum in remote sensing images to a certain extent. Second, our network may
segment more complete targets at the same time, because the used MFAU modules take
into account the different representations of features of adjacent stages and global context
information to generate a twice-weighted combination of features. This is of great guiding
significance for restoring the positioning of high-resolution remote sensing images. Third,
the predicted edges of our network are more realistic, because the CLR module added
before the last up-sampling gradually reduces the number of channels in two steps to
achieve the purpose of refining the restored high-resolution features. In short, the proposed
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MFANet has a powerful feature extraction capability and a high-resolution detail recovery
capability for high-resolution remote sensing images. However, there is still room for
further improvement. In the future, we will do further work on recovering high-resolution
detailed information.

5. Conclusions

In this work, a new semantic segmentation network MFANet is proposed to solve the
land cover classification problem of high-resolution remote sensing images. The MFANet
is improved in two aspects: deep feature extraction and up-sampling feature fusion. The
proposed CFC module extracts deeper features and filters redundant channel information
at the end of a backbone network, which optimizes the learned context. The main idea of the
improved MFAU module is to use higher-level features to provide guidance information
for low-level features, and high-level features further provide guidance information for
newly obtained features, which is of great significance for restoring the positioning of
high-resolution remote sensing images. The CLR module is used to gradually refine
restored high-resolution feature maps. Experimental results show that the proposed
method achieves state-of-the-art performance of 86.45% mean IOU on LandCover dataset.

Author Contributions: Conceptualization, B.C., M.X., and J.H.; methodology, B.C. and M.X.; soft-
ware, B.C.; validation, B.C. and M.X.; formal analysis, B.C., M.X., and J.H.; investigation, B.C. and
M.X.; resources, M.X.; data curation, M.X.; writing–original draft preparation, B.C.; writing–review
and editing, M.X.; visualization, B.C.; supervision, M.X.; project administration, M.X.; funding
acquisition, M.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of PR China of grant
number 42075130, 61773219.

Data Availability Statement: The data and the code of this study are available from the correspond-
ing author upon request. (xiamin@nuist.edu.cn)

Conflicts of Interest: The authors declare no conflict of interest.

References
1. I. Grinias; C. Panagiotakis; G. Tziritas. MRF-based Segmentation and Unsupervised Classification for Building and Road

Detection in Peri-urban Areas of High-resolution. ISPRS J. Photogramm. Remote. Sens. 2016, 122, 145–166. [CrossRef]. [CrossRef]
2. Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban Plan.

2000, 52, 1–20. [CrossRef]. [CrossRef]
3. Potapov, P.V.; Turubanova, S.; Tyukavina, A.; Krylov, A.; McCarty, J.; Radeloff, V.; Hansen, M. Eastern Europe’s forest cover

dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote. Sens. Environ. 2015, 159, 28–43. [CrossRef].
[CrossRef]

4. Gerard, F.; Petit, S.; Smith, G.; Thomson, A.; Brown, N.; Manchester, S.; Wadsworth, R.; Bugar, G.; Halada, L.; Bezak, P. Land
cover change in Europe between 1950 and 2000 determined employing aerial photography. Prog. Phys. Geogr. 2010, 34, 183–205.
[CrossRef]. [CrossRef]

5. Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood
classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [CrossRef]. [CrossRef]

6. Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci.
Remote. Sens. 2004, 42, 1335–1343. [CrossRef]. [CrossRef]

7. Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote. Sens. 2008,
29, 617–663. [CrossRef]. [CrossRef]

8. Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote. Sens. Environ. 1997,
61, 399–409. [CrossRef]. [CrossRef]

9. Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major
information needs. Remote. Sens. 2013, 5, 949–981. [CrossRef]. [CrossRef]

10. Boguszewski, A.; Batorski, D.; Ziemba-Jankowska, N.; Zambrzycka, A.; Dziedzic, T. LandCover. ai: Dataset for Automatic
Mapping of Buildings, Woodlands and Water from Aerial Imagery. arXiv 2020, arXiv:2005.02264.

11. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [CrossRef].

https://doi.org/10.1016/j.isprsjprs.2016.10.010
http://dx.doi.org/10.1016/j.isprsjprs.2016.10.010
https://doi.org/10.1016/S0169-2046(00)00109-2
http://dx.doi.org/10.1016/S0169-2046(00)00109-2
https://doi.org/10.1016/j.rse.2014.11.027
http://dx.doi.org/10.1016/j.rse.2014.11.027
https://doi.org/10.1177/0309133309360141
http://dx.doi.org/10.1177/0309133309360141
https://doi.org/10.1016/j.jag.2009.11.002
http://dx.doi.org/10.1016/j.jag.2009.11.002
https://doi.org/10.1109/TGRS.2004.827257
http://dx.doi.org/10.1109/TGRS.2004.827257
https://doi.org/10.1080/01431160701352154
http://dx.doi.org/10.1080/01431160701352154
https://doi.org/10.1016/S0034-4257(97)00049-7
http://dx.doi.org/10.1016/S0034-4257(97)00049-7
https://doi.org/10.3390/rs5020949
http://dx.doi.org/10.3390/rs5020949
https://doi.org/10.1109/CVPR.2015.7298965


Remote Sens. 2021, 13, 731 19 of 20

12. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International
Conference On Medical Image Computing And Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp.
234–241.

13. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [CrossRef].

14. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

15. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a discriminative feature network for semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
1857–1866.

16. Huan, E.Y.; Wen, G.H. Multilevel and multiscale feature aggregation in deep networks for facial constitution classification.
Comput. Math. Methods Med. 2019, 2019, 1258782. [CrossRef]. [CrossRef] [PubMed]

17. Chu, Y.; Yang, X.; Li, H.; Ai, D.; Ding, Y.; Fan, J.; Song, H.; Yang, J. Multi-level feature aggregation network for instrument
identification of endoscopic images. Phys. Med. Biol. 2020, 65, 165004. [CrossRef]. [CrossRef]

18. Fu, J.; Liu, J.; Wang, Y.; Zhou, J.; Wang, C.; Lu, H. Stacked deconvolutional network for semantic segmentation. IEEE Trans. Image
Process. 2019, 1. [CrossRef]. [CrossRef] [PubMed]

19. Qian, J.; Xia, M.; Zhang, Y.; Liu, J.; Xu, Y. TCDNet: Trilateral Change Detection Network for Google Earth Image. Remote. Sens.
2020, 12, 2669. [CrossRef]. [CrossRef]

20. Liu, W.; Rabinovich, A.; Berg, A.C. Parsenet: Looking wider to see better. arXiv 2015, arXiv:1506.04579.
21. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]. [CrossRef]
[PubMed]

22. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]. [CrossRef]

23. Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp.
1925–1934. [CrossRef].

24. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 801–818. [CrossRef].

25. Saxena, S.; Verbeek, J. Convolutional neural fabrics. Adv. Neural Inf. Process. Syst. 2016, 29, 4053–4061.
26. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703.
[CrossRef].

27. Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. Denseaspp for semantic segmentation in street scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3684–3692.

28. Hu, J.; Shen, L.; Sun, G.; Albanie, S. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 99. [CrossRef].
29. Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180.
30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 26 June – 1 July 2016; pp. 770–778. [CrossRef].
31. Ni, Z.L.; Bian, G.B.; Wang, G.A.; Zhou, X.H.; Hou, Z.G.; Chen, H.B.; Xie, X.L. Pyramid attention aggregation network for semantic

segmentation of surgical instruments. In Proceedings of the AAAI Conference on Artificial Intelligence, Hilton Midtown, New
York, USA, 7–12 February 2020; Volume 34, pp. 11782–11790. [CrossRef].

32. Ni, Z.L.; Bian, G.B.; Hou, Z.G.; Zhou, X.H.; Xie, X.L.; Li, Z. Attention-guided lightweight network for real-time segmentation of
robotic surgical instruments. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA),
Paris, France, 17–21 May 2020; pp. 9939–9945. [CrossRef].

33. Xia, M.; Wang, K.; Song, W.; Chen, C.; Li, Y. Non-intrusive load disaggregation based on composite deep long short-term memory
network. Expert Syst. Appl. 2020, 160, 113669. [CrossRef]. [CrossRef]

34. Xia, M.; Wang, T.; Zhang, Y.; Liu, J.; Xu, Y. Cloud/shadow segmentation based on global attention feature fusion residual network
for remote sensing imagery. Int. J. Remote. Sens. 2021, 42, 2022–2045. [CrossRef]. [CrossRef]

35. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
4510–4520.

36. Xia, M.; Zhang, X.; Weng, L.; Xu, Y. Multi-Stage Feature Constraints Learning for Age Estimation. IEEE Trans. Inf. Forensics Secur.
2020, 15, 2417–2428. [CrossRef]. [CrossRef]

37. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on
Computer Vision, Amsterdam, Netherlands, 11–14 October 2016; pp. 630–645. [CrossRef].

38. Kaiser, P.; Wegner, J.D.; Lucchi, A.; Jaggi, M.; Hofmann, T.; Schindler, K. Learning aerial image segmentation from online maps.
IEEE Trans. Geosci. Remote. Sens. 2017, 55, 6054–6068. [CrossRef]. [CrossRef]

https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1155/2019/1258782
http://dx.doi.org/10.1155/2019/1258782
http://www.ncbi.nlm.nih.gov/pubmed/31933675
https://doi.org/10.1088/1361-6560/ab8dda2
http://dx.doi.org/10.1088/1361-6560/ab8dda
https://doi.org/10.1109/TIP.2019.2895460
http://dx.doi.org/10.1109/TIP.2019.2895460
http://www.ncbi.nlm.nih.gov/pubmed/30703024
https://doi.org/10.3390/rs12172669
http://dx.doi.org/10.3390/rs12172669
https://doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
https://doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/cvpr.2017.549
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1109/CVPR.2019.00584
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1609/aaai.v34i07.6850
https://doi.org/10.1109/ICRA40945.2020.9197425
https://doi.org/10.1016/j.eswa.2020.113669
http://dx.doi.org/10.1016/j.eswa.2020.113669
https://doi.org/10.1080/01431161.2020.1849852
http://dx.doi.org/10.1080/01431161.2020.1849852
https://doi.org/10.1109/TIFS.2020.2969552
http://dx.doi.org/10.1109/TIFS.2020.2969552
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1109/TGRS.2017.2719738
http://dx.doi.org/10.1109/TGRS.2017.2719738


Remote Sens. 2021, 13, 731 20 of 20

39. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062. [CrossRef].

40. Xia, M.; Tian, N.; Zhang, Y.; Xu, Y.; Zhang, X. Dilated multi-scale cascade forest for satellite image classification. Int. J. Remote.
Sens. 2020, 41, 7779–7800. [CrossRef]. [CrossRef]

41. Xia, M.; Cui, Y.; Zhang, Y.; Liu, J.; Xu, Y. DAU-Net: A Novel Water Areas Segmentation Structure for Remote Sensing Image. Int.
J. Remote. Sens. 2021, 42, 2594–2621. [CrossRef]. [CrossRef]

42. Li, H.; Xiong, P.; Fan, H.; Sun, J. Dfanet: Deep feature aggregation for real-time semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9522–9531.

43. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, California, USA, 15–20 June 2019; pp. 3146–3154.

44. Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. Espnetv2: A light-weight, power efficient, and general purpose convolutional
neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 9190–9200.

45. Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. Icnet for real-time semantic segmentation on high-resolution images. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 405–420.

46. Wu, T.; Tang, S.; Zhang, R.; Zhang, Y. Cgnet: A light-weight context guided network for semantic segmentation. arXiv 2018,
arXiv:1811.08201. [CrossRef].

47. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X. Deep high-resolution representation
learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 9, 1. [CrossRef]. [CrossRef] [PubMed]

48. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341.
[CrossRef].

https://doi.org/10.1080/17476938708814211
https://doi.org/10.1080/01431161.2020.1763511
http://dx.doi.org/10.1080/01431161.2020.1763511
https://doi.org/10.1080/01431161.2020.1856964
http://dx.doi.org/10.1080/01431161.2020.1856964
https://doi.org/10.1109/TIP.2020.3042065
https://doi.org/10.1109/TPAMI.2020.2983686
http://dx.doi.org/10.1109/TPAMI.2020.2983686
http://www.ncbi.nlm.nih.gov/pubmed/32248092
https://doi.org/10.1007/978-3-030-01261-8_20

	Introduction
	Methodology
	Network Architecture
	Channel Feature Compression
	Multi-Level Feature Attention Upsample
	Channel Ladder Refinement

	Experiment
	Datasets
	LandCover Dataset
	Aerial Image Segmentation Dataset

	Implementation Details
	Ablation Study on LandCover Dataset
	Channel Feature Compression
	Multi-level Feature Attention Upsample
	Channel Ladder Refinement
	Dilation Ratio of Block-5

	Comparative Experiment with Other Networks
	Comparative Experiment on LandCover
	Comparative Experiment on AISD


	Discussion
	Conclusions
	References

