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Abstract: We performed an out-of-distribution (OOD) analysis of ∼12,000,000 semi-independent
128x128 pixel2 sea surface temperature (SST) regions, which we define as cutouts, from all nighttime
granules in the MODIS R2019 Level-2 public dataset to discover the most complex or extreme phe-
nomena at the ocean’s surface. Our algorithm (ULMO) is a probabilistic autoencoder (PAE), which
combines two deep learning modules: (1) an autoencoder, trained on ∼150,000 random cutouts
from 2010, to represent any input cutout with a 512-dimensional latent vector akin to a (non-linear)
Empirical Orthogonal Function (EOF) analysis; and (2) a normalizing flow, which maps the autoen-
coder’s latent space distribution onto an isotropic Gaussian manifold. From the latter, we calculated
a log-likelihood (LL) value for each cutout and defined outlier cutouts to be those in the lowest 0.1%
of the distribution. These exhibit large gradients and patterns characteristic of a highly dynamic
ocean surface, and many are located within larger complexes whose unique dynamics warrant future
analysis. Without guidance, ULMO consistently locates the outliers where the major western boundary
currents separate from the continental margin. Prompted by these results, we began the process of ex-
ploring the fundamental patterns learned by ULMO thereby identifying several compelling examples.
Future work may find that algorithms such as ULMO hold significant potential/promise to learn and
derive other, not-yet-identified behaviors in the ocean from the many archives of satellite-derived
SST fields. We see no impediment to applying them to other large remote-sensing datasets for ocean
science (e.g., SSH and ocean color).

Keywords: sea surface temperature; ocean surface anomalies; machine learning; ocean dynamics

1. Introduction

Satellite-borne sensors have for many years been collecting data used to estimate
a broad range of meteorological, oceanographic, terrestrial and cryospheric properties.
Of significance with regard to the fields associated with these properties is their global
coverage and relatively high spatial (meters to tens of kilometers) and temporal (hours
to tens of days) resolutions. These datasets tend to be very large, well documented and
readily accessible, making them ideal targets for analyses using modern machine learning
techniques. Based on our knowledge of, interest in and access to global sea surface temper-
ature (SST) datasets, we have chosen one of these to explore the possibilities. Specifically,
inspired by the question of "what lurks within" and also the desire to identify complex
and/or extreme phenomena of the upper ocean, we have developed an unsupervised ma-
chine learning algorithm named ULMO [1] to analyze the nighttime MODerate-resolution
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Imaging Spectroradiometer (MODIS) Level-2 (L2) [2] seat surface temperature (SST) dataset
obtained from the NASA spacecraft Aqua, spanning years 2003–2019. The former (the
unknown unknowns) could reveal previously unanticipated physical processes at or near
the ocean’s surface. Such surprises are, by definition, rare and require massive datasets
and semi-automated approaches to examine them. The latter type (extrema) affords an ex-
ploration of the incidence and spatial distribution of complex phenomena across the entire
ocean. Similar "fishing" expeditions have been performed in other fields on large imaging
datasets [e.g., astronomy 3]. However, to our knowledge, this is the first application of
machine learning for open-ended exploration of a large oceanographic dataset, although
there is a rapidly growing body of literature on applying machine learning techniques to
the specifics of SST retrieval algorithms [4], cloud detection [5], eddy location [6], prediction
[7–9], etc., and more generally, to remote sensing [10].

Previous analyses of SST on local or global scales have emphasized standard statistics
(e.g., mean and RMS) and/or linear methods for pattern assessment (e.g., FFT and EOF).
While these metrics and techniques offer fundamental measures of the SST fields, they
may not fully capture the complexity inherent in the most dynamic regions of the ocean.
Motivated by advances in the analysis of natural images in computer vision, we employ
a probabilistic autoencoder (PAE) which utilizes a Convolutional Neural Network (CNN)
to learn the diversity of SST patterns. By design, the CNN learns the features most salient
to the dataset, with built-in methodology to examine the image on a wide range of scales.
Further, its non-linearity and invariance to translation offer additional advantages over the
Empirical Orthogonal Function (EOF) and like applications.

The ULMO algorithm is a PAE, a deep learning tool designed for density estimation.
By combining an autoencoder with a normalizing flow, the PAE is able to approximate
the likelihood function for arbitrary data while also avoiding a common downfall of flow
models: their sensitivity to noisy or otherwise uninformative background features in the
input [11]. By first reducing our raw data (an SST field) to a compact set of the most
pertinent learned features via the non-linear compression of an autoencoder, the PAE then
provides an estimate of its probability by transforming the latent vector into a sample from
an equal-dimension isotropic Gaussian distribution where computing the probability is
trivial. We can then select the lowest probability fields as outliers or anomalous.

The secondary goal of this manuscript is to pioneer the process for like studies on
other large earth science datasets in general and oceanographic datasets in particular,
including those associated with the outputs of numerical models. A similar analysis of
SST fields output by ocean circulation models is of particular interest as an adjunct to the
work presented herein. As will become clear, we understand some of the segmentation
suggested by ULMO, but not all of it. The method has also identified some anomalous
events for which the basic physics is not clear. Assuming that the analysis of model-derived
SST fields yields similar results, the additional output available from the model, the vector
velocity field and salinity and a time series of fields, will allow for a dynamic investigation
of the processes involved.

This manuscript is organized as follows: Section 2 describes the data analyzed here,
Section 3 details the methodology, Section 4 presents the primary results and Section 5
provides a brief set of conclusions. All of the software and final data products generated by
this study are available online https://github.com/AI-for-Ocean-Science/ulmo.

2. Data

With a primary goal of identifying regions of the ocean exhibiting rare yet physical phe-
nomena, we chose to focus on the L2 SST Aqua MODIS dataset (https://oceancolor.gsfc.nasa.
gov/data/aqua/). The associated five minute segments, each covering ≈ 2000× 1350 km
of the Earth’s surface and referred to as granules, have ≈ 1 km spatial resolution and
span the entire ocean, clouds permitting, twice daily. For this study, we examined all
nighttime granules from 2003–2019. The SST fields, the primary element of these gran-
ules, were processed by the Ocean Biology Processing Group (OBPG) at NASA’s Goddard
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Space Flight Center, Ocean Ecology Laboratory from the MODIS radiometric data using
the R2019 retrieval algorithm [12] and were uploaded from the OBPG’s public server (
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=amod) to the University of Rhode
Island (URI).

The method developed here requires a set of same-sized images. When exploring
complex physical phenomena in the ocean, one is often interested in one of two spatial
scales determined by the relative importance of rotation to inertia in the associated pro-
cesses. The separation between these scales is generally taken to be the Rossby radius of
deformation, Ro, which, at mid-latitude is ∼ O(30) km. Processes with scales larger than
Ro are referred to as mesoscale processes, in which the importance of rotation dominates.
At smaller scales the processes are referred to as sub-mesoscale. For this study, we chose
to focus on the former and extracted 128× 128 pixel images, which we refer to as cutouts,
from the MODIS granules. Cutouts are approximately 128 km on the side. We are confident,
supported by limited experimentation, that the techniques described here will apply to
other scales as well.

The analysis was further restricted to data within 480 pixels of nadir. This constraint
was added to reduce the influence of pixel size on the selection process for outliers; the
along-scan size of pixels increases away from nadir as does the rate of this increase. To
distances of ∼480 km the change in along-scan pixel size is less than a factor of two; at the
edge of the swath the along-scan pixel size is approximately ∼ 5 times that at nadir.

The L2 MODIS product includes a quality flag—a measure of confidence of the retrieved
SST—with values from 0 (best) to 4 (value not retrieved). The primary reason for assigning
a poor quality to a pixel is due to cloud contamination although there are other issues that
result in a poor quality rating [13]. A quality threshold of 2 was used for this study. As the
incidence, sizes and shapes of clouds are highly variable (both temporally and spatially),
an out-of-distribution (OOD) algorithm trained on images with some cloud contamination
may become more sensitive to cloud patterns than unusual SST patterns. Indeed, our initial
experiments were stymied by clouds with the majority of outlier cutouts showing unusual
cloud patterns, suggesting an application of this approach to the study of clouds as well.
To mitigate this effect, we further restricted the dataset to cutouts with very low cloud
cover (CC), defined as the fraction of the cutout image masked for clouds or other image
defects.

After experimenting with model performance for various choices of CC, we settled on
a conservative limit of CC ≤ 5% as a compromise between dataset size and our ability to
further mitigate clouds (and other masked pixels) with an inpainting algorithm (see next
section).

From each granule, we extracted a set of 128x128 cutouts satisfying CC ≤ 5% and
distance to nadir of the central pixel ≤480 km. To well-sample the granule while limiting
the number of highly overlapping cutouts, we drew at most one cutout from a pre-defined
32x32 pixel grid on the granule. This procedure yielded ≈ 700, 000 cutouts per year and
12,358,049 cutouts for the full analysis.

Of course, by requiring regions largely free of clouds (CC < 5%), we were significantly
restricting the dataset and undoubtedly biasing the regions of ocean analyzed both in time
and space. Figure 1 shows the spatial distribution of the full dataset across the ocean.
The coastal regions show the highest incidence of multiple observations, but nearly all
of the ocean was covered by one or more cutouts. Given this spatial distribution, one
might naively expect the results to be biased against coastal regions because these were
sampled at higher frequency and comprises a greater fraction of the full distribution. This
is mitigated, in part, by the fact that the non-coastal regions cover a much larger area of the
ocean, but in practice, we find that the majority of the outlier cutouts are in fact located
near land.

https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=amod
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=amod
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Figure 1. Mollweide projection depicting the log10 of the spatial distribution of all cutouts analyzed
in this manuscript. Note the higher incidence of data closer to land driven by the lower cloud cover
(CC) in those areas.

3. Methodology

In this section, we describe the preprocessing of the SST cutouts and the architecture of
our ULMO algorithm designed to discover outliers within the dataset.

3.1. Preprocessing

While modern machine learning algorithms are designed with sufficient flexibility
to learn underlying patterns, gradients, etc., of images [14], standard practice is to apply
initial "preprocessing" to each image to boost the performance by accentuating features of
interest, or suppressing uninteresting attributes. For this project, we adopted the following
pre-processing steps prior to the training and evaluation of the cutouts.

First, we mitigated the presence of clouds. As described in Section 2, this was done
primarily by restricting the cutout dataset to regions with CC < 5%. We found, however,
that even a few percent of cloud contamination can significantly affect results of the OOD

algorithm. Therefore, we considered several inpainting algorithms to replace the flagged
pixels with estimated values from nearby, unmasked SST values. After experimentation, we
selected the Navier–Stokes method [15] based on its superior performance at preserving
gradients within the cutout. Figure 2 presents an example that shows masking along
a strong SST gradient (the white pixels between the red (∼ 22◦C) and yellow (∼ 19◦C)
regions). We see that the adopted algorithm has replaced the masked data with values
that preserve the sharp, underlying gradient without producing any obviously spurious
patterns. As inpainting directly modifies the data, however, there is risk that the process
will generate cutouts that are preferentially OOD. However, we have examined the set of
outlier cutouts to find that these do not have preferentially higher CC.

Second we applied a 3x1 pixel median filter in the along-track direction, which reduces
the presence of striping that is manifest in the MODIS L2 data product. Third, we resized
the cutout to 64x64 pixels using the local mean, in anticipation of a future study on ocean
models, which have a spatial resolution of ≈ 2 km [16]. Last, we subtracted the mean
temperature from each cutout to focus the analysis on SST differences and avoid absolute
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temperature being a determining characteristic. We refer to the mean-subtracted SST values
as SSTa.

Figure 2. (left) Cutout which shows masking (white pixels) due primarily to sharp temperature
gradients in this case, which tend to be flagged as low quality by the standard MODIS processing
algorithm. (right) Same image but with masked pixels replaced by estimated values using the
Navier-Stokes in-painting algorithm.

3.2. Architecture

ULMO is a probabilistic autoencoder (PAE), a likelihood-based generative model which
combines an autoencoder with a normalizing flow. In our model, a deep convolutional
autoencoder reduces an input cutout to a latent representation with Nlatent dimensions
which is then transformed via the flow.

Flows [17] are invertible neural networks which map samples from a data distribution
to samples from a simple base distribution, solving the density estimation problem by learn-
ing to represent complicated data as samples from a familiar distribution. The likelihood
of the data can then be computed using the probability of its transformed representation
under the base distribution and the determinant of the Jacobian of the transformation.

Though a flow could be applied directly to image cutouts in our use case, recent
research [11] in the use of normalizing flows for OOD has revealed their sensitivity to
uninformative background features which skew their estimation of the likelihood. To
circumvent this issue, the PAE proposes to first reduce the input to a set of the most
pertinent features via the non-linear compression of an autoencoder. The flow is then fit to
the compressed representations of the image cutouts where its estimates of the likelihood
are robust to the noisy or otherwise uninformative background features of the input image.

An alternative approach is the variational autoencoder (VAE) [18] which provides a
lower bound on the likelihood, though empirically we found PAEs boast faster and more
stable training, and are less sensitive to the user’s choice of hyperparameters.

Therefore, to summarize the advantages of our approach: (1) explicit parameterization
of the likelihood function; (2) robustness of likelihood estimates to noisy and/or unin-
formative pixels in the input; and (3) speed and stability in training for a broad array of
hyperparameter choices.

The key hyperparameters for the results that follow are presented in Table A1. Re-
garding Nlatent, we were guided by a Principal Components Analysis (PCA) decomposition
of the imaging dataset which showed that 512 components captured > 95% of the variance.
The full model with 4096 input values per cutout, is comprised of ∼ 6, 000, 000 parameters
for the auto-encoder and ∼ 22, 000, 000 parameters for the normalizing flow. It was built
with PyTorch and the source code is available on GitHub—https://github.com/AI-for-
Ocean-Science/ulmo.
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3.3. Training

Training of the complete model consists of two, independent phases: one to develop
an autoencoder that maps input cutouts into 512-dimensional latent vectors, and the other
to transform the latent vectors into samples from a 512-dimensional Gaussian probability
distribution function (PDF) to estimate their probability. For the autoencoder, the loss
function is the standard mean squared error reconstruction loss between all pixels in the
input and output cutouts. In practice, the model converged to a small loss in ∼ 10 epochs
of training.

The flow is trained by directly maximizing the likelihood of the autoencoder latent
vectors. This equates to minimizing the Kullback–Leibler divergence between the data
distribution and flow’s approximate distribution. Minimizing this divergence encourages
the flow to fit the data distribution and thereby produce meaningful estimates of probability.

Throughout training, we used a random subset of ≈ 20% of the data from 2010
(135,680 cutouts). These cutouts were only used for training and are not evaluated in any
of the following results.

Figure 3. (left) Input cutout, preprocessed as described in Section 3.1. (right) Image generated by
the trained autoencoder, which passed the cutout through a 512 unit latent space. As designed, the
reproduction captured the gross features but not all of the small-scale detail.

Figure 3 shows an example of a preprocessed input SSTa cutout and the resultant
reconstruction cutout from the autoencoder. As designed, the output is a good reconstruc-
tion albeit at a lower resolution that does not capture all of the finer features due to the
information bottleneck in the autoencoder’s latent space but it does capture the mesoscale
structure of the field. For the normalizing flow, we used a cutout batch size of 64 and
a learning rate of 0.00025. Similarly, we found ≈ 10 epochs were sufficient to achieve
convergence.

We performed training on the Nautilus distributed computing system with a single
GPU. In this training setup, a single epoch for the auto-encoder requires 100 s while a single
epoch for the flow requires ≈ 900 s.

4. Results and Discussion

In this section, we report on the main results of our analysis with primary emphasis
on outlier detection. We also begin an exploration of the ULMO model to better understand
the implications of deep learning for analyzing remote-sensing imaging; these will be
expanded upon in future works.
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Figure 4. Distribution of log-likelihood (LL) values for the full dataset (modulo the training images).
The majority are well described by a Gaussian centered at LL ≈ 240, with a tail toawrd much lower
LL values. The inset shows the lowest 0.1% sample of LL, which we define as outlier cutouts.

4.1. The outlier cutouts Sample

Figure 4 shows the LL distribution for all extracted cutouts modulo the set of training
cutouts from 2010. The distribution peaks at LL ≈ 240 with a tail to very low values. The
latter is presented in the inset which shows the lowest 0.1% of the distribution; these define
the outlier cutouts of the full sample (or outliers for short).

Figure 5. Incidence (counts) of outlier cutouts broken down by month and year. The primary feature
is seasonal, i.e., a higher number of outlier cutouts during boreal winter months than summer. There
was also a weak but plausible increase in the incidence of outliers over the past ∼ 10 years.

The striping apparent in the inset of Figure 4 indicates a non-uniform, temporal
dependence in the outlier cutouts. Figure 5 examines this further, plotting the occurrence
of outliers as a function of year and month. The only significant trend apparent is seasonal,
i.e., a higher incidence of outliers during the boreal winter. We speculate this is due to
the predominance of northern hemisphere cutouts/outliers—approximately 60%/64% of
the total—and the reduced thermal contrast of northern hemisphere surface waters in
the boreal summer. As will be shown, the range of SSTa in a cutout is correlated with the
probability of the cutout being identified as an outlier; the larger the range the more likely
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the cutout will be so flagged. This is especially true in the vicinity of strong currents such as
western boundary currents, which separate relatively warm, poleward moving equatorial
and subtropical waters from cooler water poleward of the currents. In summer months the
cooler water warms substantially faster than the surface water of the current dramatically
reducing the contrast between the two water bodies, often masking the dynamical nature
of the field in these regions rendering them less atypical. We also see variations during the
∼ 20 years of the full dataset, including a possible increase over the past ∼ 10 years. These
modest trends aside, ULMO identifies outliers in all months and years of the dataset.

Figure 6. Depiction of the spatial distribution of the outliers discovered by ULMO. These are primarily
in the well-known western boundary currents off Japan, North and South America and South Africa.
Note that the scaling is logarithmic.

A question that naturally arises is whether there is any structure to the geographic
distribution of outliers. Figure 6 shows the count distribution of the outliers across the
entire ocean. Remarkably, the ULMO algorithm has rediscovered that the rarest phenom-
ena occur primarily in western boundary currents—following the continental boundary
and/or shortly after separation. These regions of the ocean have been studied extensively
because of their highly dynamical nature. In short, the ULMO algorithm identified (or
even rediscovered!) without any predisposition a consistent set of dynamically important
oceanographic regions.

To a lesser extent, one also finds outliers in the vicinity of the connection between large
gulfs or seas and the open ocean—the Gulf of California, the Red Sea and the Mediterranean.
Also of interest are the outliers in the Gulf of Tehuantepec. These result from very strong
winds blowing from the Gulf of Mexico to the Pacific Ocean through the Chivela Pass,
resulting in significant mixing of the near-shore waters.

There are two ways to view the results in Figure 6: (1) as the contrarian, i.e., the ULMO

algorithm has simply reproduced decades-old, basic knowledge in physical oceanography
on where the most dynamical regions of the ocean lie; or (2) as the optimist, i.e., the ULMO

algorithm—without any direction from its developers—has rederived one of the most
fundamental aspects of physical oceanography. It has learned central features of the ocean
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from the patterns of SSTa alone. In this regard, ULMO may hold greater potential/promise
to learn and derive other, not-yet-identified behaviors in the ocean.

4.2. Scrutinizing Examples of the Outliers

Figure 7 shows a gallery of 9 outliers selected to uniformly span time and location in
the ocean. These exhibit extreme SSTa variations and/or complexity and (presumably) mark
significant mesoscale activity. A common characteristic of these cutouts is the presence
of a strong and sharp gradient in SSTa which separates two regions exhibiting a large
temperature difference. Typically, such gradients are associated with strong ocean currents,
often at mid-latitudes on the western edge of ocean basins. We define a simple statistic
of the temperature distribution ∆T ≡ T90 − T10 where TX is the temperature at the Xth
percentile of a given cutout. All of the outliers in Figure 7 exhibit ∆T > 7K, a point we
return to in the following sub-section.

Figure 7. Gallery of outliers drawn from the distribution of cutouts with the lowest 0.1% of LL values.
This representative sample was further selected to uniformly sample the ∼ 20 year interval of the
dataset and the spatial distribution (Figure 6). Note the large and complex temperature gradients
within all cutouts showing ∆T > 7 K. The color bar refers to SSTa in units of Kelvin.

As an example of the anomalous behaviour associated with outlier cutouts, we ex-
amine the evolution of the SST field in the vicinity of the 19 June 2010 cutout (Figure 7)
located in the Gulf Stream region; Figure 8a shows the cutout and (b) its location in the
5-minute granule. We selected this cutout because it is in a region with which we have
significant experience. Figure 9 shows an expanded version of the SST field in the vicinity
of the cutout. The main feature in Figure 9 is the Gulf Stream, the bright red, fading to
orange, band meandering from the bottom left hand corner of the image to the middle
of the right hand side. A portion of the Gulf Stream loops through the lower half of the
cutout and a streamer extends to the north (Figure 8) from the northernmost excursion of
the stream. To aid in the interpretation of this cutout, we make use of the mesoscale eddy
dataset produced by Chelton et al. [19]. It shows an eddy, most probably a Warm Core
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Ring (WCR), moving to the west at approximately 5 km/day to the north of the stream from
17 May (very light gray circle) to 14 June (red circle) when it began to interact with the Gulf
Stream, drawing warm Gulf Stream Water on its western side to the north and cold Slope
Water on its eastern side to the south. The eddy disappears from the altimeter record two
weeks later and is replaced by a very large anticyclone (the dotted black circle) to the west
southwest of the eddy’s last position. This is likely a detaching meander of the Gulf Stream
resulting from the absorption of the eddy into an already chaotic configuration.

Of particular interest is that the Gulf Stream appears to have lost its coherence between
approximately 63◦ and 59◦W. Specifically, note the very thin band of cooler water (∼ 21◦C)
in the middle of the warm band (∼ 24◦C) of, presumably, Gulf Stream Water between 63.5◦

and 62◦W and a second similar band (but moving in the opposite direction) between 61.5◦

and 60.5◦. The western cool band appears to separate one branch of Gulf Stream Water that
has been advected from the southwestern edge of the large meander centered at 65.5◦W,
38.5◦N, and a second branch advected from its southeastern edge. These two branches may
result from a general instability of the Gulf Stream associated with formation, or in this case
the likely aborted formation, of a WCR. In the normal formation process, the initial state is
a large meander of the Gulf Stream and the final state is a relatively straight Gulf Stream
with a WCR to the north. In this case the process appears to have begun but inspection
of subsequent images suggests that a ring was not formed; the the meander reformed
after initially beginning the detachment process. However, this is all quite speculative, the
important point is that the stream appears to have lost its coherence immediately upstream
of the cutout, which we believe to be a very unusual process. Admittedly the cutout only
‘sees’ a very small portion of this but we have found the suggestion of convoluted dynamics
in the immediate vicinity of a large fraction of other outliers as well. Bottom line: Cornillon,
who has been looking at SST fields derived from satellite-borne sensors for over 40 years,
found that more than one-in-ten of the anomalous fields discovered by ULMO suggested
intriguing dynamics that he has not previously encountered; recall that this is one-in-ten of
one-in-a-thousand (the definition of an outlier) or approximately one field in ten thousand.

Figure 8. The 19 June 2010 cutout of Figure 7 with LL = −1234.1, in the lowest 0.1% of the log-
likelihood values for the dataset. (a) The original cutout in satellite-coordinates prior to preprocessing.
(b) The entire granule shown in a plate carrée projection with the continental boundary (dark gray)
and the cutout (black rectangle). Note the change of palettes from (a) to (b) to accommodate the
larger range of sea surface temperature (SST) in (b). Light gray are masked pixels, from clouds, land
or clear pixels improperly flagged as cloud-contaminated (Section 2).
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Figure 9. The SST field in the vicinity of the 19 June 2010 cutout of Figure 7. The cutout (white
rectangle) is centered on 60◦W, 41◦30"N. Solid circles outline all observations of the anticyclonic eddy
identified by Chelton et al. [19], which passed through the cutout on 19 June 2010. Circles are colored
from light gray (1st detection of the eddy on 17 May) to black (last observation on 28 June) with the
exceptions of its location shown in red on 14 June, immediately prior to the satellite overpass, and its
location (magenta) one week later, 21 June, immediately following the overpass. Circles with dotted
black outlines are anticyclonic eddies found in a broader search (±3◦ centered on 60◦W, 41◦30"N) on
5 July, one week after the last observation of the eddy of interest. No cyclonic eddies were found in a
similar search. Clouds are light gray.

4.3. Digging Deeper

It is evident from the preceding sub-sections (e.g., Figure 7) that ULMO has discovered
a set of highly unusual and dynamic regions of the ocean. Scientifically, this is extremely
useful—irrespective of the underlying processes—as it can launch future, deeper inquiry
into the physical processes generating such patterns. On the other hand, as scientists we are
inherently driven to understand—as best as possible—what/how/why ULMO triggered
upon. We begin that process here and defer further exploration to future work.

In Section 4.1, we emphasized that the entire gallery of outliers (Figure 7) exhibits a
large temperature variation ∆T > 7K. Exploring this further, Figure 10 plots LL vs. ∆T
for the full set of cutouts analyzed. Indeed, the two are anti-correlated with the lowest LL
values corresponding to the largest ∆T. This suggests that a simple rules-based algorithm
of selecting all cutouts with ∆T > 10 K would select the most extreme outliers discovered
by ULMO. One may question, therefore, whether a complex and hard-to-penetrate AI
model was even necessary to reproduce our results.

Further analysis suggests that there may be more to the distribution of LLs. Specifically,
note that there is substantial scatter about the mean relation between LL and ∆T; for
example, at LL = −1000 one finds ∆T values ranging from 1− 10 K. Similarly, any cutout
with ∆T < 8 K includes a non-negligible set of images with LL & 0. Figure 10 indicates
that the patterns that ULMO flags as outliers are not solely determined by ∆T.
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Figure 10. Distribution of LL values as a function of ∆T. While there is a strong anti-correlation,
the relationship exhibits substantial scatter such that ∆T is not a precise predictor of LL nor the
underlying SSTa patterns characterized by ULMO. The horizontal line at LL ≈ −1123 corresponds to
the 0.1% threshold; cutouts with log-likelihood values beneath this line are considered to be outliers.

This becomes especially clear in the following exercise. Consider the full set of
cutouts within the small range ∆T = [2− 2.1]K. From Figure 10, we see these exhibit
LL ≈ [−2600, 590] and find that the LL distribution is well described by a Gaussian
(not shown) with < LL >≈ 10 and σ(LL) ≈ 150. Now consider the cutouts with the
lowest/highest 10/90% of the distribution, i.e., the "outlier"/"inlier" sub-samples within
this small range of ∆T. We refer to these as LL10 and LL90 cutouts, respectively. Figure
11 shows the spatial distribution of these cutouts. Remarkably, there are multiple areas
dominated by only one of the sub-samples (e.g., LL90 cutouts along the Pacific equator).
It is evident that ULMO finds large spatial structures in the log-likelihood distribution of
cutouts that are independent of ∆T.

Furthermore, there are several locations in the ocean where LL10 and LL90 cutouts are
adjacent to one another but still separate. One clear example is within the Brazil–Malvinas
Confluence, off the coast of Argentina. Figure 12a shows a zoom-in of that region with the
colors corresponding to the LL values (not strictly the LL10 or LL90 distributions shown in
Figure 11). Figure 12a highlights the clear and striking separation of the LL values in this
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region as do the histograms (Figure 12b) for the LL values of cutouts in the two rectangles
shown in panel a. The dynamics of the ocean in this region is well-studied [20]. Higher LL

regions tend to be found on the Patagonian Shelf where the dynamics are dominated by
tides, buoyancy and wind–forcing the circulation at the local level–and off-shore currents–
forcing the circulation remotely. In contrast, the lower LL regions track more dynamic,
current-driven motions of the main Brazil–Malvinas Confluence. Of particular interest is
the rather abrupt switch at ∼ 40◦S from higher LL values to the south to lower values to
the north. This is consistent with the observation of Combes and Matano [21], based on
numerical simulations, that "there is an abrupt change of the dynamical characteristics of
the shelf circulation at 40◦S." They attribute this change in dynamics to this region being a
sink for Patagonian Shelf waters, which are being advected offshore by the confluence of
the Brazil and Malvinas Currents. Again, ULMO has captured striking detail in regional
dynamics with no directed input. Further analysis of the region (not shown) suggests that
ULMO has also captured seasonal differences in the dynamics, with a region of lower LL

cutouts in waters approximately 100 m deep between 38◦ and 45◦S in austral winter but
not austral summer.

Figure 11. Spatial distribution of the LL10/LL90 cutouts (red/blue) defined as the upper/lower
tenth percentiles of the LL distribution for the set of cutouts with ∆T = [2, 2.1]K. It is evident that
these cutouts occupy distinct regions of the ocean; i.e., the ULMO algorithm has identified patterns
with significant spatial coherence. More remarkably, note several areas (e.g., in the Brazil–Malvinas
current) where one identifies adjacent but separate patches of LL90 and LL10 cutouts.

Intrigued by ULMO’s ability to spatially separate these regions based on SSTa patterns
alone, we inspected a set of 25 randomly selected samples from R1, the eastern rectangle in
Figure 12a and 25 randomly selected samples from R2 to further explore its inner-workings
(see lower panels of Figure 12). The comparison is striking and we easily identify qualitative
differences in the observed patterns despite their nearly identical ∆T values. The higher
LL cutouts show large-scale gradients and features with significant coherence whereas
the lower LL cutouts exhibit gradients and features with a broader range of scales and a
suggested richer distribution of relative vorticity.

Another area, which stands out in Figure 11, is that in the Northwest Atlantic where
a region of LL90 cutouts (red) are surrounded by LL10 cutouts (blue). The structure (not
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shown) of the LL90 cutouts in this region, which are on the Grand Banks of Newfoundland,
resemble the structure of the LL90 cutouts shown in Figure 12 and the structure of the
LL10 cutouts in this region is much closer to that of the LL10 cutouts shown in Figure
12 than to the LL90 cutouts in either region. In fact, a gallery of randomly selected LL90
cutouts from the world ocean are similar to those off of Argentina and Newfoundland and
a gallery of randomly selected LL10 cutouts from the world ocean are more similar to the
LL10 cutouts off of Argentina and Newfoundland than to the LL90 cutouts. Simply put, the
structure of the SST cutouts shown in blue in Figure 11 tend to be similar to one another and
quite different from those shown in red although the cutouts in both cases have virtually
the same dynamic ranges in SST. This observation raises intriguing questions about the
similarities and the differences in upper ocean processes in these regions—questions to be
addressed in further analyses of the fields.

Figure 12. (a) Distribution of the LL values for cutouts near the Brazil–Malvinas Confluence, restricted
to those with ∆T ≈ 2 K. One can identify a clear separation, where the lower LL values lie within the
current and the higher values lie close to the Argentinian coast. Marked are two rectangles (R1 and
R2), one in each region, referred to in the other panels. Marked also is the 200m bathymetry described
in the text. (b) Histograms of the LL values for the cutouts from two regions (R1/R2) chosen to
show lower/higher LL values near the confluence. (lower panels) Representative cutouts from each
subset—the left set was drawn from the R2 rectangle and therefore exhibit higher LL values. The
right set was from R1. These galleries reveal qualitative differences in the SST patterns, i.e., unique
ocean dynamics. The palette for the lower panels ranges linearly from −1 to 1 K.
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We can capture some of the differences between the higher/lower LL sub-samples
of Figure 12 with another simple statistic—the RMS in SSTa, σT . On average, the lower
LL cutouts exhibit ≈ 9% higher σT than those with a higher LL. Furthermore, we find LL
correlates with σT in a fashion similar to ∆T. On the other hand, it is evident from Figure
12 that there is significant structure apparent in the cutouts that is not described solely by
σT . The correlations of LL with ∆T and σT manifest from the underpinnings of ULMO: the
distribution of ocean SSTa patterns reflect the distribution of simple statistics like ∆T or σT ,
which exhibit large and non-uniform variations across the ocean. The complexity of these
patterns, however, belie the information provided by simple statistics alone.

5. Conclusions and Future Work

With the design and application of a machine learning algorithm ULMO, we set
out to identify the rarest sea surface temperature patterns in the ocean through an out-of-
distribution analysis yielding a unique log-likelihood (LL) value for every cutout. Regarding
that goal, we believe we were successful (e.g., Figures 6 and 7). In examining the nature of
the outliers, we found that these exhibited extrema of two simple metrics: the temperature
difference ∆T and standard deviation σT . With the full privilege of hindsight, we expect
that any metric introduced to describe the cutouts which exhibits a broad and non-uniform
distribution would correlate with LL. However, no single metric can capture the inherent
pattern complexity, and therefore none correlates tightly with LL (Figure 10).

Looking to the future, the greatest potential of algorithms such as ULMO may be that
the patterns they learn are more fundamental than measures traditionally implemented
in the scientific community (e.g., Fast Fourier Transform (FFT) and Empirical Orthogonal
Function EOF). We hypothesize that the mathematical nature of the CNN—convolutional
features and max-pooling, which synthesize data across the scene while remaining invariant
to translation—captures aspects of the data that EOF analysis could not (nor any other
simple linear approach). Indeed, referring back to Figure 12, while as humans we trivially
distinguish between the two sets of cutouts marking the ocean dynamics in the Brazil–
Malvinas Confluence and can identify metrics by which they differ, these metrics offer
incomplete descriptions. Going forward, we will determine the extent (e.g., via analysis
of ocean model outputs) to which the patterns mark fundamental, dynamical processes
within the ocean. Potentially, the patterns learned by ULMO (or its successors) hold the
optimal description of any such phenomena.

As emphasized at the onset, this manuscript offers only a first glimpse at the potential
for applying advanced artificial intelligence techniques to the tremendous ocean datasets
obtained from satellite-borne sensors. The techniques introduced here will translate seem-
lessly to sea surface height or ocean color imaging to identify extrema/complexity in
geostrophic currents and biogeochemical processes. These too will be the focus of future
works.
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Acronyms

CC cloud cover

CNN Convolutional Neural Network

EOF Empirical Orthogonal Function

FFT Fast Fourier Transform

GHRSST Group for High Resolution Sea Surface Temperature

GSFC Goddard Space Flight Center

L2 Level-2

LL log-likelihood

MODIS MODerate-resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

OBPG Ocean Biology Processing Group

ONR Office of Naval Research

OOD out-of-distribution

PAE probabilistic autoencoder

PCA Principal Components Analysis

PDF probability distribution function

SSH sea surface height

SST sea surface temperature

SSTa SSTa

URI University of Rhode Island

WCR Warm Core Ring
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Appendix A

Table A1. Model and training hyperparameters, where the leftmost column lists the variable name,
the middle column offers a brief description of the hyperparameter’s function and the rightmost
column lists the value we used in our final model. Note that all autoencoder architecture hyperpa-
rameters refer to the encoder-side only (as the decoder is unused after training).

Hyperparameter Description Value

n_conv_layers Number of convolutional layers in autoencoder 4
kernel_size Size of kernel in convolutional layers 3
stride Stride in convolutional layers 2
out_channels Number of output channels in convolutional layers 32× 2i for i the layer index
n_latent Dimension of the autoencoder latent space 512
n_flow_layers Number of coupling layers in flow 10
hidden_units Number of hidden units in flow layers 256
n_blocks Number of residual blocks per flow layer 2
dropout Dropout probability in flow layers 0.2
use_batch_norm Use batch normalization in flow layers False
conv_lr Autoencoder learning rate 2.5e-03
flow_lr Flow learning rate 2.5e-04
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