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Abstract: The jujube industry plays a very important role in the agricultural industrial structure
of Xinjiang, China. In recent years, the abandonment of jujube fields has gradually emerged. It is
critical to inventory the abandoned land soon after it is generated to adjust agricultural production
better and prevent the negative impacts from the abandonment (such as outbreaks of diseases, insect
pests, and fires). High-resolution multi-temporal satellite remote sensing images can be used to
identify subtle differences among crops and provide a good tool for solving this problem. In this
research, both field-based and pixel-based classification approaches using field boundaries were used
to estimate the percentage of abandoned jujube fields with multi-temporal high spatial resolution
satellite images (Gaofen-1 and Gaofen-6) and the Random Forest algorithm. The results showed
that both approaches produced good classification results and similar distributions of abandoned
fields. The overall accuracy was 91.1% for the field-based classification and 90.0% for the pixel-based
classification, and the Kappa was 0.866 and 0.848 for the respective classifications. The areas of
abandoned land detected in the field-based and pixel-based classification maps were 806.09 ha
and 828.21 ha, respectively, accounting for 8.97% and 9.11% of the study area. In addition, feature
importance evaluations of the two approaches showed that the overall importance of texture features
was higher than that of vegetation indices and that 31 October and 10 November were important
dates for abandoned land detection. The methodology proposed in this study will be useful for
identifying abandoned jujube fields and have the potential for large-scale application.

Keywords: abandoned jujube land; multi-temporal; high spatial resolution; Gaofen-1; Gaofen-6;
Random Forest algorithm; machine learning algorithms

1. Introduction

Jujube (Zizyphus jujuba) is a deciduous tree widely distributed in Europe, southern
and eastern Asia, and Australia [1], especially the inland region of northern China, such as
Shandong, Hebei, Shanxi, Shaanxi, Henan provinces, and Xinjiang Uygur Autonomous
Region [2]. China is the only country known to be exporting jujube fruits and has a
long history of its usage as fruit and remedy, and its cultivation area has reached over
3.25 million hectares [3]. Additionally, Xinjiang, with its unique geographical location
and abundant light and heat, produces one-half of jujube in China. Jujube production
plays a significant role in the food supply and fruit export trade of Xinjiang and China as a
whole [4].
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Most of Xinjiang’s jujube industry is dominated by small-scale operations at present.
In recent years, with the increase of jujube planting area, some common challenges faced
by jujube growers include difficulties in obtaining good technical advice, policy and
market-related information, difficulties in broadening sales channels, difficulties in deep
processing, and difficulty in coping with severe climate disasters and market risks, all of
which will reduce the enthusiasm of growers and even make them give up investment and
management of jujube cultivation.

In practice, once jujube is abandoned without any management activities such as
pruning, irrigation, weeding, pesticide application, and fertilization, jujube will grow
wildly, accompanied by weeds, serious outbreaks of diseases, and insect pests. Jujube will
gradually decline and die after 3–4 years, and other vegetation such as reeds will grow more
vigorously. Land abandonment will reduce local agricultural production, cause serious
waste of land resources, and threaten the production of jujube in the region. Therefore,
the precise identification of abandoned jujube lands is essential for the formulation and
adjustment of jujube industry policies, the reasonable allocation of land, and the accurate
production of jujube.

Traditionally, the identification of abandoned land is often obtained through the in-
vestigation of the land number, land use type, and ownership [5]. This method usually
consumes workforce and material resources and has a long time period, which is not
conducive to timely feedback of abandoned land information to propose countermeasures.
Remote sensing as a powerful tool has been used to identify abandoned farmland glob-
ally [6]. However, to our knowledge, there is no specific research focused on abandoned
jujube land.

Some previous studies about farmland abandonment have focused on the use of
MODIS (Moderate Resolution Imaging Spectroradiometer) imagery to map land aban-
donment in large regions [7–10]. However, current medium and high-resolution satellite
images are popular when drawing small areas of abandoned land due to their better
visual interpretation and richer information. Löw et al. combined Random Forest (RF)
and support vector machine (SVM) algorithms to map the abandoned farmland in Kyzyl-
Orda, Kazakhstan based on Landsat and RapidEye data [11]. Yusoff et al. monitored the
abandoned oil palm lands with multi-temporal Landsat and SPOT-6 satellite imagery [12].
Morell-Monzó et al. compared Sentinel-2 and high-resolution airborne imagery for map-
ping the abandonment of citrus lands in Oliva of the Valencian Region, Spain. Additionally,
they found that many small parcels had been misclassified with the Sentinel-2 images [13].
The planting of jujube trees in Xinjiang is usually based on small plots, and the plots
are separated by shelter forests, and the planting mode of jujube trees is dominated by
dwarfing and dense planting with a row spacing of usually 3–4 m and a plant spacing of
1.5 m, which makes mapping jujube abandoned land somewhat challenging.

Recent advances in remote sensing technologies provide very high spatial resolution
(VHSR) images (e.g., Gaofen-1 (GF1) [14] and Gaofen-6 (GF6) [15]), making it possible
for abandoned land with small parcels to be accurately mapped [16]. However, the rich
information in VHSR images brings high intraclass differences and low interclass diversi-
ties [17]. Abandoned land is a relatively complex and diverse land cover category [18,19],
and land abandonment may cause a decrease in vegetation biomass or may trigger an
increased normalized difference vegetation index (NDVI) due to a succession of weeds or
shrubs [11]. Therefore, the spectral and texture of abandoned land in the VHSR image will
change with time and space, resulting in considerable internal variability. In this case, the
traditional pixel-based classification may result in misclassified land types [20].

Several approaches have been proposed to overcome this problem and increase
the quality of crop classification, such as spatial filter [21], object-based image analysis
(OBIA) [22,23], and using field boundaries for classification [24,25]. In addition, utilization
of field, plot, or parcel boundaries can significantly improve the reliability of crop map-
ping [26–28]. Two approaches can be generally applied when using field boundaries for
classification at present [29]. For the first approach, features (such as average reflectance,
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average vegetation indices (VIs), standard deviation, etc.) are extracted for each field, and
the whole field is assigned to a particular class. This approach is more general; however, the
number of samples is greatly reduced when the conversion from pixel level to field level,
and this may lead to poorer classification accuracy. For the second approach, a pixel-based
classification is performed firstly, and the classification result is used to assign a field to
a particular class following some rules. Nevertheless, this approach may cause lower
computational efficiency, so it is necessary to explore the suitability of both approaches for
the identification of jujube fields.

For different classification targets, the accuracy will be different by using spectral
features, texture features, or a combination of multiple features at different times [30]. More
and more researchers combine multiple features [20,31,32] of multi-temporal images [33–36]
to improve classification accuracy. Zhang et al. [36] found that making full use of the dis-
criminative features between different crops can help to improve classification accuracy
significantly when they mapping the crop types with the temporal and spectral features
of Sentinel-2 imagery. Peña-Barragán et al. [20] combined the temporal VIs and textural
features of ASTER satellite imagery to successfully classify 13 major crops of Yolo County
in California, USA. In the study of abandoned land identification, most scholars use multi-
temporal images to increase the accuracy of results. Yusoff et al. detected the abandoned
paddy and rubber areas using the multi-temporal Landsat imagery [37]. Kussul et al. [24]
obtained the precise crop area using multi-temporal Landsat-8 images. Therefore, the
selection of characteristic variables is a very critical issue in abandoned land classification.
Selecting appropriate classification characteristics can not only improve the calculation
efficiency but also obtain higher classification accuracy.

The selection of classification methods also affects classification accuracy. Commonly
used methods include maximum likelihood (ML), neural network, SVM, decision tree (DT),
and RF. Among them, the RF algorithm proposed by Breiman [38] is a classifier that is
widely used and has higher classification accuracy. It has a good tolerance for outliers
and noise and is not prone to overfitting [39,40]. Fletcher et al. [41] found that RF could
be used as a tool to differentiate soybean from two pigweeds. The study [42] of seed
maize field identification demonstrated that maize with different planting patterns can
be distinguished well using the RF classifier. Zhang et al. [36] analyzed three machine
learning classification methods for crop type mapping and found that RF has the highest
overall accuracy.

The overall goal of this study was to explore the potential of high-resolution satellite
imagery, combined with spectral features and texture features, for the identification of
different types of jujube fields. The specific objectives of this study were to (1) explore the
potential of multi-temporal GF1 and GF6 satellite remote sensing images for identifying
abandoned jujube fields, (2) assess the performance of both field-based and pixel-based
classification approaches, and (3) evaluate the importance of different features and image
dates for the two approaches in estimating the area and percentage of abandoned jujube
fields in the study area.

2. Materials and Methods
2.1. Study Area

The study area is located in Regiment 224, the Xinjiang Production and Construction
Corps 14th Division in Kunyu City, the southern edge of the Taklimakan near Pishan
County and Moyu County, Hotan Prefecture, Xinjiang, China (Figure 1). The study area is
approximately 234.75 km2 with a north-south average length of 24.0 km and an east-west
average width of 9.2km. The study area has abundant solar energy and large temperature
differences between day and night, which is conducive to the accumulation of jujube sugar,
so it is the representative area for jujube cultivation in Xinjiang.
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Figure 1. Location of the study area. (a) Xinjiang Uygur Autonomous; (b) Hotan Prefecture; (c) Regi-
ment 224 and GF6 color-infrared (CIR) composite image; (d) zoomed-in jujube fields.

The regiment started planting jujube in 2003. As of 2019, the area of jujube planted
was about 90 km2, accounting for 72% of the agricultural land and 83% of the orchard
land. However, the jujube industry is greatly affected by market risks and climate change.
With the continuous expansion of jujube planting in the surrounding areas, the production
of jujube exceeds demand. Especially by the end of 2014, the price of jujube began to
drop sharply. In addition, in 2016, when the jujube in the study area was in the sugar-
bearing period, it was affected by excessive rain, causing a substantial reduction in the
production of jujube and serious losses for growers. Up to now, the price of jujube is still
low, which makes growers reduce or even abandon the investment and management of
jujube orchards.

2.2. Land Abandonment Process in Jujube

The ecological succession of an abandoned field consists of the gradual replacement
of the crop by the wild vegetation of the area. During the first to the second years of
abandonment, the jujube branches and leaves grow messy due to no pruning management.
At the same time, wild vegetation such as reeds, suaeda salsa, inula, etc. gradually expands
in the field. During the third to the fourth years of abandonment, jujube trees will gradually
degenerate or even die due to lack of irrigation and increase of wild vegetation height and
cover. Finally, the death of the trees can occur, and the wild vegetation will occupy the
entire field. In addition, the study area has an arid climate and high ground evaporation,
coupled with the sharp increase in water consumption due to the expansion of jujube
cultivation, the phenomenon of secondary soil salinization occurred in some plots in 2006,
with a trend of increasing year by year. To alleviate this problem, alkali draining ditches
between some jujube orchards were built by the local government. Therefore, the alkali
draining ditches were one of the important land types in the study area.

Three different types of fields were classified according to the cover types found in
the study area (Figure 2): (a) In-production—these were fields with jujube productive
cultivation, in which jujube occupied most of the surface; (b) Abandoned—these were
abandoned fields with jujube trees and wild vegetation; (c) Alkali draining ditch—these
were ditches used to drain saline-alkali water, which were surrounded by the same types
of wild vegetation as abandoned fields.
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Figure 2. Three types of jujube fields: (a) in-production field; (b) abandoned field; and (c) alkali draining ditch.

2.3. Data and Processing
2.3.1. Remote Sensing Data

The Gaofen-1 (GF1) satellite, which was successfully launched on 26 April 2013, was
the first satellite of the Chinese “High-Resolution Earth Observation Systems” and can
provide multi-resolution (2, 8, and 16 m) data [14]. Currently, the GF1 satellite, the GF1
B/C/D satellite launched on 31 March 2018, and the Gaofen-6 (GF6) satellite launched on
2 June 2018 have realized on-orbit network operation. Their ability to monitor agriculture,
forestry, grassland, and other resources has been greatly improved, which is of great
significance to the precise management of crops. The data used in this study consisted of a
time series of GF1 panchromatic and multispectral (PMS) imagery and GF6 PMS imagery
from April to November of 2019. The specific image parameters are shown in Table 1.

Table 1. Specifications for GaoFen-1 (GF1) and GaoFen-6 (GF6) satellites.

Global
Observa-

tion
Cycle

Repeat
Observation

Cycle
Wavelength (nm)

Spatial
Resolution

(m)

Image Dates
in 2019

(Day Month)

GF1,
GF1 B/C/D 41 days 4 days

PAN: 450–900
Blue: 450–520

Green: 520–590
Red: 630–690

Infrared: 770–890

PAN: 2
MS: 8

29 May, 13
June, 13 July,

11 September,
10 November

GF6 41 days 4 days

PAN: 450–900
Blue: 450–520

Green: 520–600
Red: 630–690

Infrared:760–900

PAN: 2
MS: 8

05 April, 16
May, 06

August, 31
October

Note: PAN = panchromatic band and MS = multispectral bands.

2.3.2. Image Preprocessing

The flowchart of image processing is shown in Figure 3. Image preprocessing was
based on ENVI 5.3. The Radiometric Calibration tool that can automatically read the
metadata from the sensors listed above for calibration was used to obtain the radiance of
the images, while the atmospheric correction was performed using the Fast Line-of-Site
Atmospheric Analysis of Spectral Hypercube (FLAASH) tool. In addition, the ortho-
rectification was performed based on the rational polynomial coefficient (RPC) files of
the GF satellite image products. Then, the multispectral imagery with 2-m resolution
was obtained by fusing the four multispectral bands with the panchromatic band with
the NNDiffuse (nearest neighbor diffusion) Pan Sharpening method. The multi-temporal
remote sensing images were well geo-referenced with good alignment.
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Figure 3. Flowchart of image processing.

2.3.3. Spectral Feature Extraction

VIs can quantify vegetation attributes by converting the reflectance of two or more
spectral bands. In this study, five VIs were selected to obtain the differences between
in-production fields, abandoned fields, and alkali draining ditches. The formulas for the
VIs are presented in Table 2.

Table 2. Vegetation indices (VIs) were used for the identification of abandoned jujube fields in
this study.

Spectral Index Calculation Formula Related To Reference

Normalized difference
vegetation index (NDVI)

(NIR−R)
(NIR+R)

Vegetation status,
canopy structure [43]

Soil-adjusted vegetation index
(SAVI)

1.5×(NIR−R)
(NIR+R+0.5)

Vegetation status,
soil background [44]

Enhance vegetation index (EVI) 2.5×(NIR−R)
(NIR+6R−7.5B+1)

Vegetation status,
canopy structure [45]

Normalized difference water
index (NDWI)

(G−NIR)
(G+NIR)

Water content [46]

Ratio vegetation index (RVI) NIR/R
Vegetation status,
canopy structure,

leaf pigments
[47]

NDVI is one of the most common vegetation indices, which can reflect the compre-
hensive change in crop growth. However, it is easily disturbed by the soil reflectance
when the canopy density is low, and it is easily saturated with dense vegetation. The
soil-adjusted vegetation index (SAVI) can compensate for the influence of soil background
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while the enhanced vegetation index (EVI) can correct for the saturation effect and the
ratio vegetation index (RVI) is more sensitive to vegetation greenness. In addition, the
normalized difference water index (NDWI), which is sensitive to water content, can capture
the moisture differences that may exist between alkali draining ditch, irrigated fields, and
abandoned fields (non-irrigated).

2.3.4. Texture Feature Extraction

The grey-level co-occurrence matrix (GLCM) was first proposed by Haralick in
1973 [48], and it is one of the most common texture statistical analysis methods. It can
calculate 14 texture features (TFs), and eight of them are commonly used in remote sensing,
including mean, variance, homogeneity, contrast, dissimilarity, entropy, angular second
moment, and correlation [49]. Among them, homogeneity, contrast, and dissimilarity are
contrast-based, entropy and angular second moment are orderliness-based, and angular
second moment represents the opposite of the entropy. In addition, contrast and dissimilar-
ity as well as entropy and angular second moment are the conceptions corresponding to
each other [32,42]. To reduce the correlation between TFs, mean, variance, contrast, entropy
and correlation were chosen as the representative features in this study to distinguish the
abandoned fields, in-production fields, and alkali draining ditches. Finally, the TFs were
extracted based on the panchromatic bands of nine temporal images in ENVI 5.3. The
formulas and descriptions for the TFs are presented in Table 3.

Table 3. Texture Features (TFs) were used for the identification of abandoned jujube fields in
this study.

Texture Calculation Formula Description

Mean G
∑

x,y=1
xP(x, y) The average grey level of all pixels in the matrix.

Variance G
∑

x=1

G
∑

y=1
(x− u)2P(x, y) The rate of change of the pixels’ values.

Contrast G
∑

x=1

G
∑

y=1
(x− y)2P(x, y) The local variations in the matrix.

Entropy −
G
∑

x=1

G
∑

y=1
P(x, y)logP(x, y) The level of disorder in the matrix.

Correlation G
∑

x=1

G
∑

y=1

(x−y)(y−x)P(x,y)√
VARx
√

VARy

The measurement of image linearity among the pixels.

Note: In the equations, x and y represent the row number and column number of the image, respectively; P(x, y)
represents the relative frequency of two neighboring pixels.

2.3.5. Field Sample Data

The ground truth data were collected during the field survey between 16 and 20
September 2019. A total of 227 fields was selected (79 abandoned fields, 63 alkali draining
ditches, and 85 in-production fields). The dataset for each class was randomly divided into
a training set and a validation set at a ratio of 3:2. Finally, 137 fields (48 abandoned fields,
38 alkali draining ditches, and 51 in-production fields) were selected for model training,
and 90 fields (31 abandoned fields, 25 alkali draining ditches, and 34 in-production fields)
were selected for model verification (Figure 4). In addition, we had collected 2019 cadastral
data in vector format of the study area and used the data to obtain the field boundaries.
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Figure 4. Location of ground surveyed fields in September 2019.

2.4. Random Forest Algorithm

RF [41] is an ensemble classifier based on a decision tree and combined with the
Bagging method. It has higher classification accuracy and stronger generalization per-
formance than a single decision tree and could handle well large and high dimensional
data. In this research, nine temporal images were masked using a cadastral layer to define
agricultural fields, and 10 features (5 VIs and 5 TFs) were calculated for the nine images.
The multi-temporal single-band VI and TF images were then compiled into a 90-layer data
cube for further analysis.

In the training stage of the RF classifier, the bootstrap method was used to randomly
select training sample sets. Each training sample set could grow into a decision tree, and
after the above sampling and tree building process was repeated N times, the RF classifier
composed of N decision trees was finally established. In the classification stage, each
decision tree made an independent judgment on the category of the new sample, and
the classification results of all decision trees were summarized and the majority voting
principle was used to output the final result.

The design of a decision tree requires the choice of an attribute selection measure and
a pruning method. In this study, the Gini impurity was employed to find the best split and
the best of the n features to use in that split, and the Mean Decrease in Gini (MDG) [13],
which measures the average gain of purity by splits of a given variable, was used to rank
the importance of the variables. Considering the randomness of the RF feature selection
when establishing the decision trees, the variable importance ranking also has a certain
degree of randomness; therefore, the modeling process was repeated five times and the
average MDG of each variable was used as the basis for the final importance ranking.

The RF algorithm was applied using the RandomForestClassifier from the scikit-learn
in Python (version 3.8.5, 2020). Two models were designed using field boundaries for
classification. Firstly, each field was treated as a whole, and the average VIs and TFs were
calculated as the features for each field, and then the fields were classified according to
the features. This method is referred to as field-based classification (Model 1) in this study.
Secondly, pixel-based classification was performed firstly, and then each field was classified
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following the most frequent pixel value criterion inside the field, which is referred to as
pixel-based classification (Model 2). The mean of all the pixels in each training field was
used for training in Model 1, while all pixels covered by the training fields were used for
training in Model 2. The details of each model are shown in Table 4.

Table 4. Summary of the parameters used in each classification model.

Classification Field Type Input
Variables

Training Samples Validation Samples

Fields Pixels Fields

Model 1
Abandoned

90
48 226,589 31

Alkali Draining Ditch 38 44,315 25
In-production 51 272,685 34

Model 2
Abandoned

90
48 226,589 31

Alkali Draining Ditch 38 44,315 25
In-production 51 272,685 34

In general, the more decision trees there are in the RF classifier, the better the predic-
tion, and accordingly, the longer the calculation time. Therefore, a trade-off between the
classification accuracy and the time efficiency is necessary. Models 1 and 2 were trained
and optimized with an increasing number of decision trees based on the training fields
and pixels (Table 4), respectively. In this study, different numbers of trees from 10 to 200
were tested and the step size was 10 (Figure 5). We selected 50 decision trees for Model 1
and 80 decision trees for the Model to classify the jujube fields when considering both the
classification accuracy and time efficiency.

Figure 5. The convergence of the accuracy of (a) Model 1 and (b) Model 2. The models were trained with an increasing
number of decision trees, and the accuracy of classification was evaluated from the field-based (Model 1) and pixel-based
(Model 2) classification, respectively.

2.5. Accuracy Assessment

In this research, the jujube fields are clearly defined units and the classification results
of the two models are presented in the form of fields. Therefore, field-based accuracy
assessment was carried out using the validation fields shown in Table 4. A confusion
matrix is a commonly used accuracy evaluation method. According to this method, various
accuracy assessment parameters were calculated [50], including overall accuracy (OA),
Kappa coefficient, producer’s accuracy (PA), and user’s accuracy (UA).

3. Results
3.1. Classification Accuracy Assessment and Results Analysis

The accuracy assessment results based on Models 1 and 2 are shown in Table 5. The
overall accuracy of the two models was 91.1% and 90.0%, respectively, and the respective
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Kappa coefficient was 0.866 and 0.848. The in-production class was accurately identified
with a PA of 97.1% for both models, and a UA of 94.3% for Model 1, and 91.7% for Model
2. The PA and UA of the abandoned class of Model 1 were 83.9% and 92.9%, respectively,
while those of Model 2 were 93.6% and 82.9%, respectively. In addition, the PA and UA of
the alkali draining ditch class of Model 1 were 92.0% and 85.2%, respectively, while those
of Model 2 were 76.0% and 100.0%, respectively. These results indicate that both models
accurately identified in-production fields with excellent PA and UA. Model 1 correctly
identified 83.9% of the abandoned fields, but Model 2 identified 93.6% of the class. On the
other hand, 92.9% of the abandoned fields identified on the classification map by Model
1 actually belonged to the class, but only 82.9% of the abandoned fields identified on
the map by Model 2 were actually abandoned fields. Clearly, Model 2 identified more
abandoned fields correctly than Model 1, even though some of the alkali draining ditches
were misclassified as abandoned fields by Model 2. The confusion of abandoned fields and
alkali draining ditch fields occurred in the classification process. This was due to the fact
the same wild vegetation species grew around the ditches and abandoned jujube orchards,
and some of the ditches were in a dry state throughout the growing season. In addition, the
result of the initial pixel-based classification with Model 2 showed that the OA and Kappa
were 84.8% and 0.725, respectively, and the PA and UA of the three different categories
were lower than those of Model 1 and Model 2. The result showed that due to the difference
in vegetation growth within the field, the traditional pixel-based classification resulted in
more misclassified land types than Model 1 and Model 2.

Table 5. Confusion matrices generated by classification Models 1 and 2 for the validation fields.

Classification Field Type

Ground-Truth Class (Field)

Abandoned
Alkali

Draining
Ditch

In-Production Total UA
(%)

Model 1 OA: 91.1% Kappa: 0.866

Abandoned 26 2 0 28 92.9%
Alkali Draining Ditch 3 23 1 27 85.2%

In-production 2 0 33 35 94.3%
Total 31 25 34 90

PA (%) 83.9% 92.0% 97.1%

Model 2 OA: 90.0% Kappa: 0.848

Abandoned 29 5 1 35 82.9%
Alkali Draining Ditch 0 19 0 19 100.0%

In-production 2 1 33 36 91.7%
Total 31 25 34 90

PA (%) 93.6% 76.0% 97.1%

Ground-Truth Class (Pixel)

Traditional Pixel-Based Classification OA: 84.8% Kappa: 0.725

Abandoned 195,714 14,336 33,949 243,999 80.2%
Alkali Draining Ditch 7662 23,050 6346 37,059 62.2%

In-production 23,085 5005 287,150 315,240 91.1%
Total 229,365 42,948 323,985 596,298

PA (%) 85.3% 53.7% 88.6%
Note: OA = overall accuracy, PA = producer’s accuracy, UA = user’s accuracy, and Kappa = Kappa coefficient.

According to the cadastral data in 2019, the study area was divided into 5905 fields,
covering an area of 9090.06 ha. The two classification models were applied to the study area.
Table 6 compares the number of fields and areas classified as abandoned, alkali draining
ditch, and in-production by each model. The classification results of the two models were
largely similar. The estimated abandoned areas were slightly over 800 ha or approximately
9% of the total area, the in-production areas were about 8200 ha, and the alkali draining
ditch fields accounted for less than 1% of the total area for both methods. Meanwhile, the
number of abandoned fields detected by Model 1 was more than that detected by Model 2,
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but the corresponding areas were just opposite. More alkali draining ditch fields and areas
were detected by Model 1 than Model 2.

Table 6. Estimated number of fields and areas from the classification results of Models 1 and 2.

Classification Field Type

Model 1 Model 2

Number of
Fields Area Number of Fields Area

/ ha % / ha %

Abandoned 609 806.09 8.87 587 828.21 9.11
Alkali Draining Ditch 226 78.61 0.86 145 47.92 0.53

In-production 5070 8205.36 90.27 5173 8213.93 90.36
Total 5905 9090.06 100 5905 9090.06 100.00

Figure 6 shows the distributions of the abandoned fields based on Models 1 and 2. It
can be seen that the spatial distributions of the abandoned fields detected by both models
(such as Figure 6(a3,b3)) were similar, which illustrates that there are more abandoned
fields in the south and fewer in the central and northern of the study area. The mixes of
abandoned fields and alkali draining ditch fields were also reflected in the classification
results of the whole study area. As shown in Figure 6(a1,b1), some fields that were classified
as alkali draining ditches by Model 1 were classified as abandoned fields by Model 2. In
addition, some of the small fields near the roads were classified as the abandoned category
(Figure 6(a1)) by Model 1, while these fields were classified as the in-production category
(Figure 6(b1)) by Model 2. Therefore, the abandoned fields detected by Model 1 are greater
in number and less in area than those detected by Model 2.

Figure 6. Land abandonment maps generated by (a) Model 1 and (b) Model 2 for the study area and the zoomed-in rectangle
scenes (a1)–(a3) and (b1)–(b3) for the areas marked on the maps are shown at the right.
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3.2. Classification Feature Importance Evaluation

In this study, MDG was used as the evaluation criterion of the importance of clas-
sification features. Figure 7 shows the ranking results of the top 20 important features
based on the two classification models. Figure 7a illustrates that the TFs of the images of
10 November, 31 October, 29 May, and 5 April had higher importance, and the VIs were
not included in the top 20 important features. Figure 7b illustrates that the texture feature
Mean of the images of 31 October, 10 November, and 5 April were particularly important,
followed by VIs such as EVI, SAVI, NDVI, NDWI, and RVI.

Figure 7. The top 20 important features according to Mean Decrease in Gini. (a) Model 1 and (b) Model 2.

Figure 8 shows the comprehensive ranking results of the importance of each feature
of the nine temporal images based on the two models. The results illustrate that the
importance of TFs was significantly higher than that of VIs, and all VIs were less important
in the field-based classification, while Mean was the most important, followed by EVI,
SAVI, NDWI, NDVI, RVI, and other TFs in the pixel-based classification.

Figure 8. Comprehensive importance of each feature of nine temporal images. (a) Model 1 and (b) Model 2.
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3.3. Image Date Importance Evaluation

Figure 9 shows the results of image date importance evaluation based on the two
models. The results indicate that 31 October and 10 November were the two most important
dates for distinguishing abandoned, alkali draining ditch, and in-production fields in both
models, followed by 5 April, 29 May, and 13 June, and the importance of 13 July, 6 August,
and 11 September was the lowest.

Figure 9. Importance of image dates. (a) Model 1 and (b) Model 2.

To further analyze the impact of the image date importance on the classification results,
the images were gradually added according to the ranking of the image date importance
from low to high and from high to low, respectively, and were then classified using the two
models as the image from each addition date was added. The changes in OA and Kappa
with the additional images are shown in Figure 10.

It can be seen from Figure 10a,b that when the images were gradually added from
low to high according to the date importance, the OA and Kappa coefficients for both
models showed an overall upward trend. In addition, the OA and Kappa increased when
the images of 29 May, 13 June, 6 August, and 31 October were added, while the OA and
Kappa had no change when the images of May 16 and July 13 were added. According to
the classification results of Model 1, OA and Kappa decreased slightly when the 5 April
image was added, OA and Kappa reached the highest values when the image of 31 October
was added, and the image of 10 November had no effect on OA and Kappa. For Model 2,
OA and Kappa reached the highest values when all images were used for classification.
Figure 10c,d, respectively show the changes of OA and Kappa when an image with the
highest importance was added based on Model 1 and Model 2. A good classification result
was achieved using the 10 November image alone based on Model 1. OA and Kappa
increased slightly when the 13 June image was added, while these values decreased slightly
when the 13th July image was added. The classification results were not affected by adding
the other temporal images. For Model 2, the results were best when the images of 31
October, 10 November, 5 April, and 13 June were used together for classification. The
addition of the 13 July image slightly lowered OA and Kappa, but adding the 6 August
image improved these values. The addition of the images from the other dates had no
obvious impact on the classification results.

The result showed that the OA and Kappa were low with only the 31 October and 10
November images for Model 2. To analyze the reason for this, Table 7 lists the classification
accuracies generated by Model 2 as the images were gradually added from high to low
based on their date importance. According to Table 7, the UA of abandoned fields and the
PA of alkali draining ditch fields were very low with only the 31 October and 10 November
images, because some of the alkali draining ditches were misclassified as abandoned fields
by Model 2. Although the low UA for abandoned fields and low PA for the ditch fields
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significantly reduced the OA and Kappa for the 31 October and 10 November images, we
found that Model 2 could correctly identify over 90% of the abandonment. 5 April and
13 June were in the sprouting period and the flowering period, respectively, for jujube,
and the amount of irrigation increased greatly, therefore, the water surface area in the
alkali draining ditch fields increased, which greatly improved the probability of the alkali
draining ditches being correctly classified. In short, later October to early November can
be an important period for abandoned jujube land detection, and using images from July
to September alone will have certain challenges for identifying jujube abandoned fields.

Figure 10. The changes in overall accuracy (OA) and Kappa coefficient (Kappa) as the images were added. (a) Model 1, the
images were gradually added from low to high of date importance; (b) Model 2, the images were gradually added from low
to high of date importance; (c) Model 1, the image were gradually added from high to low of date importance; (d) Model 2,
the image were gradually added from high to low of date importance.
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Table 7. Classification accuracies were generated by Model 2 as images were gradually added from
high to low based on their date importance.

Image Date
Abandoned Alkali Draining

Ditch In-Production
OA
(%) Kappa

PA
(%)

UA
(%) PA (%) UA (%) PA

(%)
UA
(%)

31 October 93.6 60.4 32.0 100.0 91.2 91.2 75.6 62.329
10 November 90.3 63.6 40.0 100.0 94.1 88.9 77.8 65.792

05 April 93.6 78.4 68.0 100.0 97.1 91.7 87.8 81.335
13 June 93.6 82.9 76.0 100.0 97.1 91.7 90.0 84.763
29 May 93.6 82.9 76.0 100.0 97.1 91.7 90.0 84.763
16 May 93.6 82.9 76.0 100.0 97.1 91.7 90.0 84.763
13 July 93.6 80.6 72.0 100.0 97.1 91.7 88.9 83.051

06 August 93.6 82.9 76.0 100.0 97.1 91.7 90.0 84.763
11 September 93.6 82.9 76.0 100.0 97.1 91.7 90.0 84.763

Note: OA = overall accuracy, PA = producer’s accuracy, UA = user’s accuracy, and Kappa = Kappa coefficient.

4. Discussion

In this research, we demonstrated the feasibility of identifying abandoned jujube
fields with high-resolution multi-temporal images combined with spectral features, texture
features, and the RF algorithm. At present, the mainstream of the abandoned land re-
search is concentrated on change detection in land-use types over large areas with MODIS
images [8–10,51]. There is also some research on the mapping of small areas of abandoned
farmland using high-resolution and/or medium-resolution satellite images [52,53]. The
objects of this research are usually farmland in a broad sense, and there are still few studies
on the abandonment of specific crops. Additionally, most of these studies focused on an-
nual crops rather than perennial crops. The jujube abandoned land identification proposed
in this study is different from the above research, and it is more similar to the identification
of abandoned citrus lands [13]. Abandoned land identification of the study is based on
the detection of its own physiological state changes and the detection of the succession
vegetation of invading abandoned fields [54]. In addition, jujube trees have obvious pheno-
logical characteristics during the growing season [3]. Therefore, multi-temporal images
were used as a strategy in this research to detect the jujube abandoned fields to achieve the
best classification accuracy.

The technical scheme adopted in this study (a combination of image and cadastral
data, spectral features, texture features, and classification methods) achieved good results
in the detection of abandoned jujube fields. Firstly, this study employed high-resolution
remote sensing images, which can improve the limitations of mapping small abandoned
land to a certain extent [13]. Secondly, the method proposed in the study combined spectral
and texture information to distinguish abandoned jujube fields, alkali draining ditches,
and in-production fields, which made better use of the apparent differences among the
cover types. Third, this study combined the cadastral vector data of the study area in the
current year to obtain the boundaries of the fields and to ensure that these fields were
independent units, which can alleviate to a certain extent the misclassification and the
salt-and-pepper noise with the traditional pixel-based classification. In addition, both
field-based and pixel-based classification methods according to field boundaries were
used to identify the abandoned land in the research, and both methods achieved a high
OA of 91.11% and 90.00%, respectively. The field-based classification method can greatly
reduce the number of training samples and significantly improve computational efficiency.
However, some studies have shown that classification based on plots may reduce the
classification accuracy due to the reduction of training samples [23]. The reason for the
better classification accuracy in this study may be partly related to the sufficient sample.
Whether this method can achieve good results in other abandoned land or agricultural
land classification needs to be determined based on specific conditions. In addition, the
possibility that field area and field boundaries may change every year should also be
considered for image classification based on field boundaries. It is usually effective to
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update the parcel or field boundaries with image segmentation and other methods [24],
which need to be further explored in the research of abandoned land detection.

The omission and commission errors should be considered with both classification
approaches. For the field-based classification, the omission error of abandoned fields was
16.1%, and the commission error of alkali draining ditches was 14.8%, while the commission
error of abandoned fields was 17.1%, and the omission error of alkali draining ditches was
24% in the pixel-based classification result. These relatively large errors were mainly due to
the similarity of the wild vegetation growing in the alkali draining ditches and abandoned
fields. The alkali draining ditch fields were mainly composed of water surface, bare soil,
and wild vegetation similar to those in abandoned fields (Figure 2c). Moreover, some alkali
draining ditches were in a dry state, making the phenological and apparent differences of
the two types of land smaller. Therefore, in future research, it is necessary to consider the
subtle differences between the two types of land and explore the features that are more
suitable for distinguishing them.

The RF algorithm can handle a large amount of high-dimensional data and is widely
used for variable importance ranking [41,55]. In this research, the algorithm was used
to process the multi-layer data cube and evaluate the importance of the 90 variables.
The results showed that there were differences in the importance of features for the two
classification approaches, but overall, TFs were more important than VIs. The importance
of all TFs was greatly higher than that of VIs in the field-based classification, while the
texture feature Mean was considered the most important variable followed by VIs in the
pixel-based classification. This was because the differences in TFs were obvious in all the
images across the growing season partly due to the spatial patterns of the trees, while the
differences in VIs during a certain vegetation growth period may be small.

In addition, the result of the image date importance evaluation shows that 31 October
and 10 November were the best dates for image classification. Using images only from
July to September may pose a challenge to the identification of abandoned jujube fields.
This is because the jujube trees have obvious phenological phenomena within one year [2].
Generally speaking, April is the germination period, while May and June are the flowering
periods. July and August are the periods of rapid fruit growth, September and October
are the fruit maturity period, and the deciduous period is in early November. The leaves
of the jujube trees in the in-production plots gradually fall off from later October to early
November, leaving the fruit on the trees, while the trees and wild vegetation on the
abandoned fields enter the deciduous period earlier. Therefore, their TFs and VIs at this
stage are quite different. However, during the period from July to September, jujube trees
and other wild vegetation are in a period of vigorous growth. The NDVI and other VIs
of abandoned fields are even higher than those of jujube trees of in-production fields.
Therefore, it is difficult to separate the abandoned from the in-production fields during
this period.

This study found that the jujube abandoned fields were mainly distributed in the
southern part of the study area, showing a certain aggregation phenomenon. Most of these
fields were close to alkali draining ditches, and the salinization was more serious. It can
be inferred that the jujube abandonment was related to land salinization to some extent.
During the field investigation, we learned that Regiment 224 was also actively investigating
the abandoned land and the improvement of land salinization. The results of our research
will provide a useful data source for their work. In addition, jujube trees are one of the
most important economic crops in Xinjiang, and there are great similarities in the planting
patterns and field divisions [3,4]. Several satellite imaging systems, such as Gaofen-1 wide
field of view (WFV), Gaofen-6 WFV [56], and Sentinel-2 [57] with fine spatial, spectral, and
temporal resolutions, have become freely available. Therefore, the next step of the research
will be to evaluate these satellite images and different machine learning and deep learning
methods to detect the abandoned jujube land over large areas, such as the jujube planting
area in Hotan Prefecture.
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5. Conclusions

In this study, we studied the jujube abandonment based on multi-temporal high-
resolution images (GF1 and GF6 PMS) and RF algorithms. Both field-based and pixel-based
classification approaches using field boundaries allowed the successful mapping of the
abandonment of jujube fields. Field-based accuracy assessment confirmed the feasibility of
the two classification methods. The overall OA (91.1%) and Kappa (0.866) of the field-based
classification were slightly higher than those of the pixel-based classification (90.0% and
0.848), and the two methods produced similar spatial distributions of abandoned jujube
fields. In addition, we evaluated the importance of multi-temporal VIs and TFs, and the
results showed that the overall importance of TFs was higher than that of VIs. Furthermore,
we assessed the importance of the multi-temporal images, and the results showed that 31
October and 10 November were the best dates for abandoned land detection, while the
use of July, August, and September images presented certain challenges in the extraction
of abandoned land. Our results suggested that when the field sample data is sufficient, a
field-based classification can be selected for the extraction of the abandonment because
that will greatly improve the calculation efficiency. At the same time, the methodology we
used to identify abandoned land in this study can help us to have a deeper understanding
of the management and land use of jujube orchards, and it will be beneficial for the local
government to make timely adjustments to the abandonment and have the potential to
be applied to other areas. Evaluating different satellite images and different classification
methods to detect the abandonment of jujube fields is a work that needs further research.
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