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Abstract: As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI)
has always attracted attention. To explore a potential method to estimate forest LAI from 3D point
cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0◦), T15
(15◦), T30 (30◦), OT15 (0◦ and 15◦) and OT30 (0◦ and 30◦)), which were used to reconstruct 3D point
cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area
distribution in the vertical direction derived from five schemes were calculated based on the voxelized
model. Our results show that the serious lack of leaf area in the middle and lower layers determines
that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30◦ photos
always provided better LAI estimates than schemes with 15◦ photos (T30 better than T15, OT30 better
than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI
areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but
the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes
(OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2;
OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a
sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] =
0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be
an effective solution to estimate forest LAI.

Keywords: Leaf Area Index (LAI); 3D point clouds; photogrammetry; oblique photography; structure
from motion (SFM); voxelized model

1. Introduction

Leaf area index (LAI) is defined as half of the total leaf area per unit ground surface
area [1–3] and is a critical parameter in many forest process models. As a key canopy
structure feature, LAI controls the biophysical processes of the forest (photosynthesis,
respiration, transpiration, carbon cycle and precipitation interception, etc.) [4]. Therefore, it
is important to estimate LAI quickly and accurately.

Many field-based methods have been developed for LAI distribution estimation, but
they are still time-consuming and labor-intensive work, cause permanent damage to the
forest [5,6] or are affected by many factors (such as leaf distribution, canopy shape and
sampling scale) [7]. Multispectral data from satellite or unmanned aerial vehicle (UAV)
have been widely used in the inversion of forest LAI in the past. However, two-dimensional
images based on optical passive remote sensing often ignore the leaf area of the middle
and lower canopy, which will cause inaccurate estimation of LAI [8,9]. Point clouds data
can directly reflect the three-dimensional structure of the canopy, which is widely used in
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the distribution of forest LAI. However, the point clouds from high-resolution terrestrial
LiDAR (TLS) require extensive data collection [10], which is inconvenient to apply on a
large scale. Compared with TLS, airborne laser scanning (ALS) point clouds require less
labor, but its expensive price is unreasonable in continuous large-scale forest parameter
monitoring [11].

Recently, various photogrammetry technologies of generating 3D scenes from 2D
images (shape from texture (SFT) [12,13], shape from shading (SFS) [14–16], structure-from-
motion and multi-view stereo (SFM-MVS) workflow ([17]; etc.) have been developed in
the field of computer vision to obtain three-dimensional point clouds of object surfaces at
very low cost. Among these methods, the SFM–MVS workflow is the most efficient for
reconstructing 3D structure of a scene by analyzing the geometric constraints between the
image sequences captured by cameras in different positions [18]. The SFM–MVS workflow
has been successfully applied to single-wood level 3D reconstructions based on ground
photography [19]. However, large-scale ground surface 3D reconstruction based on drone
photography still faces various challenges like positioning accuracy, camera and lens posture
correction. Traditional photogrammetry generally only uses drone orthophotos as raw
materials for the SFM-MVS workflow [20–22] because of the excellent homology point
matching results, but which will result in incomplete three-dimensional canopy structures
in forest scenes. The point cloud information derived from SFM-MVS is closely related to
the content contained in the pixels of the original photo. Due to the canopy occlusion effect,
the canopy information obtained by nadir photos is generally missing, mainly in the middle
and lower part of the canopy, which will seriously underestimate the leaf area estimation.
Recently, oblique photography has attracted great attention as photos from tilt angles and
can obtain more side structure of target scenarios than nadiral photography [23–25], which
overcomes the limitation of traditional photogrammetry. Hence, coupling photos from
different lens angles based on the SFM-MVS workflow should result in a relatively complete
forest canopy structure.

In this study, we focused on using the photogrammetry (SFM-MVS) to reconstruct
forest canopy structure and further estimate the forest LAI. To avoid serious loss of the
middle and lower canopy structure, we used unmanned aerial vehicle (UAV) photos taken
from different angles as raw materials to reconstruct the point clouds of the Masson pine.
We set up five angle combinations (0◦, 15◦, 30◦, 0◦ and 15◦, 0◦ and 30◦) to further explore the
impact of different angle-image combinations on the accuracy of forest leaf area estimation.
Meanwhile, voxelized models of different sizes were constructed to explore the impact of
subvoxel size on LAI estimation accuracy, as the size of sub-voxels is an important factor
that affects the accuracy of forest leaf area estimation. By coupling oblique photos and
nadir photos from UAV, we propose a potential solution to improve the LAI estimation
based on drone point clouds.

2. Materials and Methods
2.1. Overview of Study Region

Our research site was approximately 85 acres located in Hetian, Changting County,
Fujian Province, China (25◦33′–25◦48′N, 116◦72′–116◦31′E). The dominant tree species in
this area is the Masson pine (Pinus massoniana), which accounts for about 80% of the study
area; other trees included Schima superba, Cyclobalanopsis gracilis and Lespedeza bicolor, which
are scarce in the study area. The undergrowth vegetation was dominated by Dicranopteris
linearis. Here, we set up 72 sample plots of pure masson pine forests, each 10 × 10 m
(Figure 1).
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Figure 1. Distribution of sample plots.

2.2. UAV Parameters and Flight-Scheme Design

DJI Phantom 4 drone equipped with multispectral sensors (Phantom 4, DJ-Innovations,
Shenzhen, China) was used to collect aerial images. The DJI Phantom 4 multispectral
version is a vertical-lift quadrotor drone with real-time kinematics (RTK). The network RTK
produced an average accuracy of 1.5 cm horizontally and 1 cm vertically. The maximum
photo resolution was 1600 × 1300 px (4:3.25); the ground sampling distance was (H/18.9)
cm/pixel (H is flying height). The effective lens field of vision was 62.7◦, and focal length
was 5.74 mm. The rotation angle of the PTZ was pitch: −90◦ to + 30◦.

To obtain more detailed forest canopy information, we used a visible light camera
on a UAV to take photos in the same route with different lens angles. Considering that
an excessively large lens tilt angle would result in a lower homology point-matching
relationship, we acquired two oblique image sets (15◦, 30◦) and one nadir photo set (0◦).
The overlap rate of the UAV flight course heading and side direction was 85% at a flying
height of 120 m. Taking into account the particularity of the view of oblique photography,
we used an orthogonal flight to obtain oblique photos (Figure 2), which was implemented
in two phases (N–S and E–W). Despite the field of view of the nadir photo being the same
in all directions, orthogonal flight plans are also used to obtain nadir photos to ensure that
the results are comparable. RTK was used to accurately locate the pre-arranged ground
control points (GCP) around the 72 sample plots to determine the coordinate accuracy of
the derived point cloud and the point cloud coordinate registration (Figure 1).
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2.3. Methods

The specific methods followed in this study are summarized in Figure 3, which
is mainly divided into three parts: (1) 3D-reconstruction process; (2) point-cloud data
processing; (3) LAI estimation. The code for voxelization model and LAI fast extraction is
detailed in the attachment.
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2.3.1. Three-Dimensional Reconstruction Process

SFM-MVS workflow can couple photos well from different angles to restore 3D struc-
ture and consists of two steps: (1) structure-from-motion (SFM) and (2) multi-view stereo
(MVS). The SFM algorithm is a motion photogrammetric technique used to reconstruct
3D point clouds from high-overlapping images [26], the derived point clouds of which
are sparse. In the second step, multi-view stereo (MVS) reconstructs dense point clouds
based on sparse point clouds and image-feature-matching results, camera position, attitude
and internal parameters calculated by SFM [27]. To explore the influence of UAV images
taken from different angles on the 3D reconstruction of Masson pine forest, we set up five
solutions for point-cloud reconstruction through the forms of single angle and multiple
angles: (1) O (0◦), (2) T15 (15◦), (3) T30 (30◦), (4) OT15 (0◦ and 15◦) and (5) OT30 (0◦ and 30◦).
The images were processed on Pix4 D (version 4.3, Pix4 D, Prilly, Switzerland), which can
automatically construct 3D structure based on the SFM-MVS algorithm. The SFM process
of Pix4 D starts with image-feature detection. In this critical step, homology-matching
points are obtained, which are later used for generating image correspondence. Next, a
sparse point cloud is generated based on iterative bundle adjustment (BA) [28]. The image
matching result is the decisive factor to decide whether the surface model is complete or
not. After using different parameters for image matching, we found that when the number
of adjacent images is set to 4 or more and the self-calibration scheme is set to “precise
geolocation and direction”, an effective homologous point matching result is derived
(Figure 4). Meanwhile, geometric verification matching can provide accurate and effective
image matching. In the phase of generating point cloud and encrypting point cloud, we set
the density of point cloud and image scale to the highest to ensure the integrity of canopy
structure.
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2.3.2. Point-Cloud Data Processing

To compare the LAI estimates of different schemes (O, OT15, OT30, T15, T30) with
comparability, we used GCP coordinates pre-arranged around the sample site [29] for point-
cloud registration, which was performed in CloudCompare (http://cloudcompare.org/
(accessed on 17 July 2020)). Redundant ground point clouds overestimate the final LAI
estimation result, so all ground point clouds and noise should be eliminated before con-
structing the voxel model. Even though the automatic point cloud classification function of
the Pix4 d software is very convenient, the classification results often have wrong estimates
and cause the separated ground points to be too sparse. Therefore, we chose another
method (Cloth Simulation Filter) to extract ground point clusters. Cloth Simulation Filter
(CSF) is a tool that can extract ground points by simply setting a few parameters [30,31].

http://cloudcompare.org/
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The cloth resolution refers to the size of cloth used to cover the terrain. Excessive cloth
resolution will result in rough ground point clouds. The CSF process was executed in
Cloudcompare using the following parameters: the general parameter was set to a steep
slope, the cloth resolution was 0.5 m, the maximum iteration was 500 and the classification
threshold was 0.1 m. Then, we used the simple kriging method in the geostatistical module
of ArcGIS (version 10.2, ESRI, Redlands, CA, USA) to interpolate the ground point clouds
to obtain the DEM data. Finally, the Z-value of each point coordinate was subtracted from
the height value of the corresponding position in the DEM to obtain the height value of the
point clouds relative to the ground. The derived point clouds collection also included forest
canopy, ground vegetation, soil, etc. Notably, the collection of non-canopy point clouds
can lead to the overestimation of leaf area in the lower part of the stand. Therefore, it was
necessary to eliminate the non-canopy point-cloud collections. The height of the Masson
pine branches in the study area was generally about 2 m, so we used 2 m as a dividing limit
to delete the non-canopy point-cloud collection. The elimination of noise was performed
in MATLAB software (version 2018 a, MathWorks, Natick, MA, USA) according to the
following specific steps: 1. Use KNNSearch to retrieve the 30 nearest points of each point.
2. Calculate the average distance between each point and the 30 nearest neighbors and
the mean and standard deviation of these average distances. If the difference between the
average distance from a point to the 30 nearest neighbors and the mean is not within 1
times the standard deviation, it is considered a noise point and deleted.

2.3.3. LAI Calculation Method

Point-cloud data derived from UAV images do not reflect details at a single-tree level
well. Thus, we followed the method developed by Hosoi and Omasa [32] to construct a
voxel model. Using the voxel model to calculate LAI can avoid recalculating the unilateral
leaf area of the same leaf. The point-cloud coordinates was converted in MATLAB into
voxelized array, which contained both a 0.5 × 0.5 × 0.5 m voxelized model and a sub-
voxelized model. To compare the leaf area estimation capabilities of point clouds derived
from different schemes at different heights of the canopy, we extracted the leaf area density
(LAD) distribution, defined as the sum of the unilateral leaf area per unit volume [33], at
different heights of the canopy from the ground from the voxel model. Then, the derived
LAI was calculated based on the principle that the integral of LAD in the vertical direction
is equal to the LAI. Clearings in the forest that did not contain point clouds could not be
retrieved with the voxelized array, which would cause leaf-area overestimation. The sub-
voxel size was the most critical factor in determining the estimated value of leaf area. To
explore the appropriate sub-voxel size of the derived point clouds for leaf area estimation,
we set up ten 0.06 to 0.15 m side-length sub-voxels in steps of 0.01 m, according to the
point-cloud density in the report from Pix4 D. For these areas, we added the coordinates
of the blank voxels in the voxelized array and set the LAD value of these blank voxels to
0. Then, the forest stands were stratified according to the height, and the forest LAD was
calculated using a stratification interval of 0.5 m. We used the average LAD values of all
voxels in each 0.5 m layer within each plot range as the LAD value of the layer.

2.3.4. LAI Field Measurement

To obtain the optimal sub-voxel size interval for leaf area calculation, we adopted
the leaf area index LAI of each plot. The LAI-2200 canopy analyzer—equipped with 90◦

covering cap—was used to measure the LAI values of 72 plots on a cloudy day without rain.
For each sample plot, we took the center and four corners as measurement sites (Figure 5).
When measuring at the corner of the sample plot, the probe of LAI-2200 points to the center,
and when measuring at the center of the sample plot, the probe of LAI-2200 points to the
corner (Figure 5), and finally, the average value of eight measurement results is taken as
the LAI value of sample plot. The measurement was repeated three times on each sample
plot according to the same method. The outliers were removed, and the average of the
remaining data were taken as the final LAI value of each plot.
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Figure 5. Schematic diagram of Leaf Area Index (LAI) field measurement scheme. The red line is the
boundary of the sample plot, the black spot is the measuring station and the fan-shaped area is the
orientation of LAI-2200 canopy analyzer probe rod.

Although the LAI obtained by the LAI-2200 is actually the effective leaf area index
(LAIe), many studies use it to replace LAI because it is difficult to remove the influence of
non-leaf components [34]. The LAI values derived from the voxelized models of different
sub-voxel sizes and the LAI values measured on-site using the LAI 2200 canopy analyzer
were used for linear fitting. Then, the interval of the sub-voxel size most suitable for LAI
estimation for each scheme was judged by comparing the slope (a), intercept (b), correlation
coefficient (R2) of the fitted linearity and the root mean square error (RMSE) between the
two sets of data. Generally speaking, the derived LAI is closer to LAIe when the R2 and
slope (a) are closer to 1 and the intercept (b) and RMSE are closer to 0.

3. Results
3.1. Point Clouds Coordinates Accuracy Assessments

All the point clouds collections of the five schemes were generated from photos
combining of different angles without using GCP. The coordinates of GCP collected from
derived point clouds were compared with the coordinates collected by RTK (Figure 6).
On the premise that GCP coordinates are not incorporated in the bundle adjustment (BA),
OT30 gave the lowest horizontal and vertical checkpoint coordinate error. O gave the
highest checkpoint coordinate error (O: RMSE [H] = 1.2410 m, RMSE [V] = 10.8862 m),
and the vertical error was even more than 10 m (Figure 6(a2)). The checkpoint accuracy
of the surface models obtained by coupling the nadir photo and the oblique photo (OT15,
OT30) was higher than that of the single-angle schemes (O, T15, T30). The addition of 30◦

photos improved the coordinate accuracy better than that of 15◦ photos (OT30: RMSE (H) =
0.2917 m, RMSE (V) = 0.1797 m; OT15: RMSE (H) = 0.4696 m, RMSE (V) = 0.3953 m). After
point-clouds registration, the coordinate errors of the five schemes all fluctuate between
0.1 m and 0.14 m (Figure 6(b1,b2)), which is sufficient for a sample plot with a side length
of 10 m.
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point clouds registration (b1: horizontal direction; b2: vertical direction).

3.2. LAI Retrieval from Five Schemes

The derived LAI values were obtained from the 10-voxel models generated by each
of the five schemes (Figure 7). Overall, the LAI derived from the five schemes increased
with the increase in the sub-voxel size. For different voxelization models, OT30 always
provided LAI estimates higher than O, OT15, T15 and T30. The LAI estimates provided by
T15 and T30 were very close, and O always provided the lowest LAI estimate among the
five schemes.
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(6 cm–15 cm, step is 1 cm).

For the five schemes, the sub-voxel sizes corresponding to the slope a, intercept b, the
highest R2 and the lowest RMSE of the linear fitting were explored. O, T15 and T30 give the
best LAI estimates at the sub-voxel size of 0.12 m, while OT30 gives the best LAI estimates
at the sub-voxel size of 0.09 m and OT15 gives the best LAI estimates at the sub-voxel size
of 0.10 m (Table 1). This result is consistent with the RMSE result (sub-voxel size is 0.12 m:
RMSE (O) = 0.2538 m2/m2, RMSE (T15) = 0.2824 m2/m2, RMSE (T30) = 0.2609 m2/m2;
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sub-voxel size is 0.10 m: RMSE (OT15) = 0.3333 m2/m2; sub-voxel size is 0.09 m: RMSE
(OT30) = 0.1790 m2/m2) (Figure 8 and Table 2). Although the three single-angle schemes
also provide good LAI estimation accuracy, the most suitable sub-voxel size is larger than
that of OT15 and OT30. This shows that the completeness of O, T15 and T30 canopy
information is lower than that of OT15 and OT30 (Figure 8).

Table 1. Linear fitting results between the LAI derived from five schemes under different sub-voxel sizes and LAIe (a is
slope, b is intercept and R2 is the square of correlation coefficient).

O OT15 OT30 T15 T30

Sub-Voxel
Size (m) a b R2 a b R2 a b R2 a b R2 a b R2

0.06 0.25 −0.06 0.87 0.34 −0.05 0.82 0.37 −0.01 0.91 0.19 0.00 0.83 0.23 −0.02 0.87
0.07 0.36 −0.09 0.87 0.51 −0.07 0.82 0.55 −0.01 0.91 0.29 0.00 0.82 0.34 −0.03 0.87
0.08 0.49 −0.11 0.87 0.70 −0.08 0.82 0.75 0.00 0.91 0.40 0.01 0.82 0.46 −0.03 0.87
0.09 0.63 −0.14 0.88 0.90 −0.09 0.82 0.97 0.02 0.91 0.53 0.02 0.82 0.60 −0.02 0.87
0.10 0.79 −0.17 0.88 1.13 −0.09 0.82 1.21 0.05 0.91 0.68 0.04 0.82 0.75 −0.02 0.87
0.11 0.94 −0.19 0.88 1.35 −0.08 0.82 1.43 0.10 0.91 0.83 0.06 0.82 0.90 0.00 0.87
0.12 1.09 −0.21 0.88 1.58 −0.06 0.82 1.67 0.17 0.90 0.98 0.09 0.82 1.05 0.02 0.87
0.13 1.25 −0.23 0.88 1.81 −0.02 0.82 1.89 0.24 0.90 1.14 0.14 0.81 1.20 0.05 0.87
0.14 1.40 −0.25 0.88 2.02 0.03 0.81 2.11 0.33 0.90 1.31 0.18 0.81 1.35 0.09 0.86
0.15 1.54 −0.26 0.88 2.22 0.09 0.81 2.31 0.43 0.89 1.47 0.24 0.81 1.49 0.13 0.86
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Figure 8. Root-mean-square error (RMSE) between the LAI derived from five schemes and effective
leaf area index (LAIe) under different sub-voxel sizes.

Each of the five schemes had a good linear fitting relationship with the LAI value
measured on the field under the sub-voxel size that is most suitable for estimating LAI. The
results of OT30 were stably distributed around Y = X, and its accuracy verification results
are the best among all the schemes (Figure 9). The LAI values derived from the other four
schemes had a relatively high degree of dispersion with the LAI values measured on field.
Generally speaking, between the same kind of schemes, the LAI estimation provided by
the multi-angle scheme was better than with the single-angle scheme (OT30 better than
T30), and the LAI derived from adding the 30◦ photo was better than the one with the
15◦ photo (OT30 better than OT15; T30 better than T15) (Figure 9). However, the best LAI
estimation accuracy of OT15 was worse than the other four schemes, which may be related
to the poor image matching between the oblique photos of OT15.
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Table 2. Root-mean-square error (RMSE) (m2/m2) between the LAI derived from five schemes and
LAIe under different sub-voxel sizes.

Sub-Voxel Size (m) RMSE (m2/m2)

O OT15 OT30 T15 T30

0.06 1.3009 1.1429 1.0558 1.3437 1.2954
0.07 1.1370 0.8897 0.7603 1.1786 1.1176
0.08 0.9529 0.6093 0.4334 0.9844 0.9168
0.09 0.7531 0.3480 0.1790 0.7671 0.6967
0.10 0.5386 0.3333 0.4471 0.5323 0.4617
0.11 0.3558 0.6249 0.8542 0.3243 0.2677
0.12 0.2538 1.0027 1.2946 0.2824 0.2609
0.13 0.3410 1.3995 1.7398 0.4890 0.4691
0.14 0.5309 1.8011 2.1802 0.7770 0.7286
0.15 0.7443 2.1943 2.6115 1.0836 0.9948

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 8. Root-mean-square error (RMSE) between the LAI derived from five schemes and effec-

tive leaf area index (LAIe) under different sub-voxel sizes. 

Each of the five schemes had a good linear fitting relationship with the LAI value 

measured on the field under the sub-voxel size that is most suitable for estimating LAI. 

The results of OT30 were stably distributed around Y = X, and its accuracy verification 

results are the best among all the schemes (Figure 9). The LAI values derived from the 

other four schemes had a relatively high degree of dispersion with the LAI values meas-

ured on field. Generally speaking, between the same kind of schemes, the LAI estimation 

provided by the multi-angle scheme was better than with the single-angle scheme (OT30 

better than T30), and the LAI derived from adding the 30° photo was better than the one 

with the 15° photo (OT30 better than OT15; T30 better than T15) (Figure 9). However, the 

best LAI estimation accuracy of OT15 was worse than the other four schemes, which may 

be related to the poor image matching between the oblique photos of OT15. 

 

Figure 9. The best LAI estimation scheme for each of the five schemes, under different sub-voxel sizes. Sub-voxel size 

when the LAI of the five schemes was the best: O (0.12 m); OT15 (0.10 m); OT30 (0.09 m); T15 (0.12 m); T30 (0.12 m). 

Figure 9. The best LAI estimation scheme for each of the five schemes, under different sub-voxel sizes. Sub-voxel size when
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3.3. Leaf Area Distribution in Vertical Directions under the Same Sub-Voxel Size

To explore the structural integrity of the point cloud of five schemes at different heights
and its influence on the overall LAI estimation of the canopy, the leaf area distribution
at different heights of the canopy, namely the leaf area density (LAD), was compared
under a same sub-voxel size. Then, scheme O was taken as a reference to further compare
the LAD increments of the remaining four schemes at different heights. The vertical
LAD distribution trends of the five schemes were very consistent with the morphological
characteristics of the masson pine forest, but there was a large difference between the
LAD values of the five schemes (Figure 10). The LAD estimate provided by the single
tilt angle schemes (T15, T30) was always lower than the multiple angle schemes (OT15,
OT30). In the middle and lower part of the canopy, T15, T30, OT15 and OT30 all gave leaf
area estimates higher than O, but the LAD increments of these four schemes relative to O
were not consistent in stands with different LAI values. Here, we divide the sample plots
into four groups according to the value of LAI and calculate the LAD values and LAD
increments of these four plans at different heights of the canopy relative to the O schemes
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(Figure 10). For the middle and lower part of the canopy, the LAD increment of the four
schemes relative to O in the area where the LAI of 0.5–1.5 was more significant than that in
the area with a LAI of 1.5–2.5. In the area where the LAI was 0.5–1.5, the LAD increment of
the scheme with 30◦ photos was higher than that of the scheme with 15◦ photos, was not
significant in the area where the LAI interval was 1.5–2. This shows that the acquisition for
the lower part of the canopy from UAV gradually weakened with the increase of LAI and
the decrease in the UAV lens angle. It is worth noting that T15 and T30 all showed a large
decrease in LAD relative to O at the upper part of the canopy. This suggests that the point
cloud density of O in the upper part of the canopy was higher than T15 and T30 and close
to OT15 and OT30 (Figure 10).
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Figure 10. In areas with different LAI levels, the leaf area density (LAD) distribution and the LAD increment relative to O
of five schemes at different heights from ground (sub-voxel size is 0.09 m). a is the area with LAI interval 0.5–1, b is the area
with LAI interval 1–1.5, c is the area with LAI interval 1.5–2, d is the area with LAI interval 2–2.5.

4. Discussion
4.1. Three-Dimensional Reconstruction

Our research result was that coupling oblique photos and nadir photos can effectively
improve the vertical coordinate accuracy of the point cloud. However, it is worth noting
that under the premise of not using GCP, the height coordinate error provided by the
scheme with nadir-photos-only reached 10.8 m (Figure 11), which is quite different from
the results of other researchers [35–37]. The specific reason for this result is not clear, but
it may be related to the camera calibration result or ground type, which can be further
explored in future research. Even if there is still a coordinate error higher than the image
resolution after point clouds registration, this degree of checkpoint error will not have
much impact on the calculation of the canopy leaf area index on the plot scale. A large
number of GCP can significantly improve the accuracy of point cloud coordinates [38].
However, setting a large number of GCPs in a complex forest scene is very difficult, and
the low-cost advantages of the SFM–MVS process decrease as the GCP deployment points
increase. Many studies have pointed out that coupling oblique photographs and nadiral
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photographs with RTK (without GCP) can also restore the surface model well in some
complex scenes, which is consistent with the results of this study [39,40]. Restricted by the
terrain and the coverage of the base station, RTK will produce large errors when applied to
the coordinate acquisition of GCP under a forest that is heavily shaded by trees. Hence,
based on our research results, in forest scenes, we recommend combining the nadir photo
and the 30◦ tilted photo of the drone to obtain the canopy 3D point cloud.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

4. Discussion 

4.1. Three-Dimensional Reconstruction 

Our research result was that coupling oblique photos and nadir photos can effec-

tively improve the vertical coordinate accuracy of the point cloud. However, it is worth 

noting that under the premise of not using GCP, the height coordinate error provided by 

the scheme with nadir-photos-only reached 10.8 m (Figure 11), which is quite different 

from the results of other researchers [35–37]. The specific reason for this result is not clear, 

but it may be related to the camera calibration result or ground type, which can be further 

explored in future research. Even if there is still a coordinate error higher than the image 

resolution after point clouds registration, this degree of checkpoint error will not have 

much impact on the calculation of the canopy leaf area index on the plot scale. A large 

number of GCP can significantly improve the accuracy of point cloud coordinates [38]. 

However, setting a large number of GCPs in a complex forest scene is very difficult, and 

the low-cost advantages of the SFM–MVS process decrease as the GCP deployment points 

increase. Many studies have pointed out that coupling oblique photographs and nadiral 

photographs with RTK (without GCP) can also restore the surface model well in some 

complex scenes, which is consistent with the results of this study [39,40]. Restricted by the 

terrain and the coverage of the base station, RTK will produce large errors when applied 

to the coordinate acquisition of GCP under a forest that is heavily shaded by trees. Hence, 

based on our research results, in forest scenes, we recommend combining the nadir photo 

and the 30° tilted photo of the drone to obtain the canopy 3D point cloud. 

 

Figure 11. The side view intuitively reflects the height difference between the surface model of O and OT30, where the 

colored area is OT30 and the gray area is O. 

In the SFM process, homology point-matching between images is the key step that 

directly determines the canopy 3D point-cloud density and the utilization of image infor-

mation [41]. The result of homologous point matching between photos of different view-

ing angles changes and becomes unstable. Thus, a large number of oblique photos were 

used in this research to ensure the integrity of the canopy structure, which led to the point 

cloud derived from the multi-angle scheme being more refined and not having a large 

range of noise compared with the single-oblique angle schemes. In addition, lens resolu-

tion and flight height of UAV are also important factors that determine the density of 

derived point clouds [42]. Even if the high-resolution photos of drones flying at low alti-

tudes are very effective in capturing canopy details [43], low content of photo content 

from a low flight altitude requires a high image overlap rate to get an excellent image 

matching result, while numerous photo sets generated in this way will greatly increase 

the cost of photogrammetry and computer hardware requirements. Thus, adjusting the 

UAV flight height according to lens resolution is very important for the reconstruction 

accuracy of the 3D model. 

4.2. Leaf Area Estimation 

Numerous remote sensing estimation methods on forest LAI have been reported in 

the past [44,45], while the instability of multispectral data for model fitting and the high 

Figure 11. The side view intuitively reflects the height difference between the surface model of O and OT30, where the
colored area is OT30 and the gray area is O.

In the SFM process, homology point-matching between images is the key step that
directly determines the canopy 3D point-cloud density and the utilization of image in-
formation [41]. The result of homologous point matching between photos of different
viewing angles changes and becomes unstable. Thus, a large number of oblique photos
were used in this research to ensure the integrity of the canopy structure, which led to the
point cloud derived from the multi-angle scheme being more refined and not having a
large range of noise compared with the single-oblique angle schemes. In addition, lens
resolution and flight height of UAV are also important factors that determine the density
of derived point clouds [42]. Even if the high-resolution photos of drones flying at low
altitudes are very effective in capturing canopy details [43], low content of photo content
from a low flight altitude requires a high image overlap rate to get an excellent image
matching result, while numerous photo sets generated in this way will greatly increase the
cost of photogrammetry and computer hardware requirements. Thus, adjusting the UAV
flight height according to lens resolution is very important for the reconstruction accuracy
of the 3D model.

4.2. Leaf Area Estimation

Numerous remote sensing estimation methods on forest LAI have been reported in the
past [44,45], while the instability of multispectral data for model fitting and the high cost of
LiDAR data have restricted forest LAI estimation. In this study, based on the SFM-MVS
workflow, a 3D point cloud of the forest canopy was generated from a collection of photos
from different angles of the drone, and the LAI was calculated based on the voxelized
model. Our results show that the 3D point cloud derived from photogrammetry using nadir
photos and 30◦ oblique photos provides the best LAI estimation. Although Lisein et al. [46]
suggested that the canopy point cloud generated based on photogrammetry is incomplete
because the optical image is not penetrating, they did not discuss the complement ability
of oblique photography for canopy structure. Combining the LAD incremental comparison
results of different oblique photography schemes relative to the nadir-photo-only scheme,
we believe that coupling oblique photography and nadiral photography can compensate
to a certain extent for the weak acquisition ability of the nadir-photo-only scheme for the
canopy structure. Moreover, the UAV that executes the orthogonal flight plan can obtain
canopy information from four directions, which further improves the canopy information
obtained by oblique photography. Although detecting the complete canopy internal
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information is still difficult, oblique photography can obtain a very fine leaf point cloud
for tree species with exposed leaves, which could avoid the overestimation of LAI caused
by the existence of branches inside the canopy. The canopy structure of Masson pine in
our study area is simple, and the leaves are relatively sparse due to poor soil [47], so
the leaf information can be obtained very clearly and completely from the oblique image
(Figure 12).
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Figure 12. Figure shows the local point cloud of OT30 and the vertical profile distribution of a single
tree. For better display, the ground point clouds are removed.

Sub-voxels of different sizes have different abilities to fill gaps in the point clouds [48].
The LAI estimation derived from the voxelization model increase with the increase of the
sub-voxel size [49]. As long as the relatively complete canopy structure is retained, even
point clouds with low density can also improve leaf area estimation by increasing the
sub-voxel size (O, T15, T30). Therefore, the determination of the optimal sub-voxel size is
extremely critical for forest leaf area estimation. However, the density of the point cloud
derived from the nadir-photo only scheme (O) has a big difference in vertical space [50].
The point cloud derived from O is very fine due to excellent image details at the top of
canopy but is sparse due to the limitation of nadir photo viewing angle in the middle and
lower parts of the canopy. Thus, the good LAI estimation given by O is based on the fact
that the voxels in the lower part of the canopy contain more blank areas in exchange, which
determines that the nadir-photo-only scheme is not suitable for LAI estimation. The lower
and middle structure of the two single-oblique angle schemes (T15, T30) is more complete
than that of O. Nevertheless, the point cloud derived from oblique-only photos schemes is
sparse and has many noise points because of the poor homology points matching results,
which fail to reflect the details of canopy well. Thus, even if the sub-voxel size is increased
to accommodate more blanks, the oblique-only photo schemes alone still can not give an
accurate LAI estimate.
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Multi-angle schemes combine the excellent image details of nadir photos for the top
part of the canopy and the strong acquisition ability of oblique photos for the middle and
lower canopy, which led to good performance in LAI estimation. The top and middle parts
of the canopy are less affected by the canopy occlusion, so the multi-angle schemes in
different LAI areas always provide a fairly accurate leaf area estimation. For the lower part
of the canopy, the point cloud details become more complete as the angle of the oblique
photo increases in the low-LAI area, which is not very significant in high-LAI areas because
of the overlapping occlusions between canopies. In low-LAI areas, overlapping occlusions
are rare because the lower part of the canopy is largely exposed due to the scarcity of trees,
so the addition of oblique photos can significantly improve the LAD estimation of the
middle and lower canopies. In the high-LAI area, the canopy overlap between the single
wood blocks the lower canopy layer, so the UAV cannot get fine point clouds in this part of
the canopy, which also leads to the underestimation of the leaf area under the canopy in
the high LAI area.

4.3. Limitation of this Study

Since there are no real leaf area data for the lower part of the canopy, we cannot
evaluate the LAD estimates for different heights of the canopy generated by the multi-angle
scheme. Even though the LAD increment in this study is relative to the nadir-photo-only
scheme, it can also reflect the improvement in leaf area estimation by point clouds derived
from multi-angle schemes to a certain extent. In this study, we did not set up different
altitude UAV flight plans to test their ability for forest LAI estimation, and the impact of
increasing the resolution of the UAV camera on the estimation of LAI using point clouds
generated from multi-angle images is also still unknown. Even if they are not the focus of
this study, they may provide the potential for insufficient leaf area estimation in the lower
part of the canopy in areas with canopy occlusion. Finally, obtaining sub-centimeter-level
three-dimensional structures of the forest surface without using a large amount of GCP is
one of the most important issues for future SFM–MVS applications in forest surveys.

5. Conclusions

Under the background that the SFM-MVS workflow technology is very mature, we
explored the feasibility of using point cloud data derived from photogrammetry to estimate
forest LAI. The results show that the scheme with oblique photos (OT15, OT30, T15, T30)
always provides better checkpoint accuracy than schemes with nadir-photos only (O). For
the four oblique photography schemes, the surface model accuracy of the multi-angle
scheme (OT15 and OT30) is better than that of the single oblique angle scheme (T15 and
T30). The point clouds data derived from the coupled nadir photos and 30◦ oblique photos
provide the best checkpoint accuracy (RMSE (H) = 0.2917 m, RMSE (V) = 0.1797 m) and
the best LAI estimation by sub-voxel size of 0.09 m (RMSE = 0.1790 m2/m2), and its
improvement in the estimation of leaf area in the middle and lower part of the canopy is
better than the single angle scheme (O, T15, T30) and the multi-angle solution with 15◦

oblique photos (OT15). Moreover, the LAI estimation provided by the scheme with 30◦

photos is always better than that of the scheme with 15◦ photos (T30 better than T15, OT30
better than OT15).
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metry and qualitative estimation. Measurement 2015, 73, 619–627. [CrossRef]
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37. Balenović, I.; Simic Milas, A.; Marjanović, H. A Comparison of Stand-Level Volume Estimates from Image-Based Canopy Height
Models of Different Spatial Resolutions. Remote Sens. 2017, 9, 205. [CrossRef]

38. Persia, M.; Barca, E.; Greco, R.; Marzulli, M.I.; Tartarino, P. Archival Aerial Images Georeferencing: A Geostatistically-Based
Approach for Improving Orthophoto Accuracy with Minimal Number of Ground Control Points. Remote Sens. 2020, 12, 2232.
[CrossRef]

39. Thomas, O.; Stallings, C.; Wilkinson, B. Unmanned aerial vehicles can accurately, reliably, and economically compete with
terrestrial mapping methods. J. Unmanned Veh. Syst. 2019, 8, 57–74. [CrossRef]

40. Nolan, M.; Larsen, C.; Sturm, M. Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using
structure-from-motion photogrammetry. Cryosphere 2015, 9, 1445–1463. [CrossRef]

41. Meesuk, V.; Vojinovic, Z.; Mynett, A.E. Extracting inundation patterns from flood watermarks with remote sensing SfM technique
to enhance urban flood simulation: The case of Ayutthaya, Thailand. Comput. Environ. Urban. Syst. 2017, 64, 239–253. [CrossRef]

42. D’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco.
Remote Sens. 2012, 4, 3390–3416. [CrossRef]

43. Harwin, S.; Lucieer, A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned
Aerial Vehicle (UAV) imagery. Remote Sens. 2012, 4, 1573–1599. [CrossRef]

44. Pu, R.; Cheng, J. Mapping forest leaf area index using reflectance and textural information derived from WorldView-2 imagery in
a mixed natural forest area in Florida, US. Int. J. Appl. Earth Obs. 2015, 42, 11–23. [CrossRef]

45. Korhonen, L.; Korpela, I.; Heiskanen, J.; Maltamo, M. Airborne discrete-return LIDAR data in the estimation of vertical canopy
cover, angular canopy closure and leaf area index. Remote Sens. Environ. 2011, 115, 1065–1080. [CrossRef]

46. Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P. A Photogrammetric Workflow for the Creation of a Forest Canopy Height
Model from Small Unmanned Aerial System Imagery. Forests 2013, 4, 922–944. [CrossRef]

47. Yu, K.Y.; Yao, X.; Deng, Y.B.; Lai, Z.J.; Lin, L.C.; Liu, J. Effects of stand age on soil respiration in Pinus massoniana plantations in
the hilly red soil region of Southern China. Catena 2019, 178, 313–321. [CrossRef]

48. Morsdorf, F.; Kötz, B.; Meier, E.; Itten, K.I.; Allgöwer, B. Estimation of LAI and fractional cover from small footprint airborne laser
scanning data based on gap fraction. Remote Sen. Environ. 2006, 104, 50–61. [CrossRef]

49. Deng, Y.; Yu, K.; Yao, X.; Xie, Q.; Hsieh, Y.; Liu, J. Estimation of Pinus massoniana Leaf Area Using Terrestrial Laser Scanning.
Forests 2019, 10, 660. [CrossRef]

50. Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of Drone Altitude, Image Overlap, and
Optical Sensor Resolution on Multi-View Reconstruction of Forest Images. Remote Sens. 2019, 11, 1252. [CrossRef]

http://doi.org/10.5194/isprs-archives-XLI-B1-835-2016
http://doi.org/10.1016/j.isprsjprs.2018.03.004
http://doi.org/10.1016/j.geomorph.2020.107064
http://doi.org/10.1016/j.geomorph.2012.08.021
http://doi.org/10.5194/esurf-4-359-2016
http://doi.org/10.1016/j.procs.2019.01.219
http://doi.org/10.3390/rs8060501
http://doi.org/10.1016/j.isprsjprs.2020.03.004
http://doi.org/10.1109/TGRS.2006.881743
http://doi.org/10.1016/j.agrformet.2003.08.001
http://doi.org/10.1016/j.jag.2016.03.014
http://doi.org/10.1016/j.measurement.2015.04.018
http://doi.org/10.3390/rs12111808
http://doi.org/10.3390/rs9030205
http://doi.org/10.3390/rs12142232
http://doi.org/10.1139/juvs-2018-0030
http://doi.org/10.5194/tc-9-1445-2015
http://doi.org/10.1016/j.compenvurbsys.2017.03.004
http://doi.org/10.3390/rs4113390
http://doi.org/10.3390/rs4061573
http://doi.org/10.1016/j.jag.2015.05.004
http://doi.org/10.1016/j.rse.2010.12.011
http://doi.org/10.3390/f4040922
http://doi.org/10.1016/j.catena.2019.03.038
http://doi.org/10.1016/j.rse.2006.04.019
http://doi.org/10.3390/f10080660
http://doi.org/10.3390/rs11101252

	Introduction 
	Materials and Methods 
	Overview of Study Region 
	UAV Parameters and Flight-Scheme Design 
	Methods 
	Three-Dimensional Reconstruction Process 
	Point-Cloud Data Processing 
	LAI Calculation Method 
	LAI Field Measurement 


	Results 
	Point Clouds Coordinates Accuracy Assessments 
	LAI Retrieval from Five Schemes 
	Leaf Area Distribution in Vertical Directions under the Same Sub-Voxel Size 

	Discussion 
	Three-Dimensional Reconstruction 
	Leaf Area Estimation 
	Limitation of this Study 

	Conclusions 
	References

