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Abstract: Dominica is a geologically young, volcanic island in the eastern Caribbean. Due to
its rugged terrain, substantial rainfall, and distinct soil characteristics, it is highly vulnerable to
landslides. The dominant triggers of these landslides are hurricanes, tropical storms, and heavy
prolonged rainfall events. These events frequently lead to loss of life and the need for a growing
portion of the island’s annual budget to cover the considerable cost of reconstruction and recovery.
For disaster risk mitigation and landslide risk assessment, landslide inventory and susceptibility
maps are essential. Landslide inventory maps record existing landslides and include details on their
type, location, spatial extent, and time of occurrence. These data are integrated (when possible) with
the landslide trigger and pre-failure slope conditions to generate or validate a susceptibility map.
The susceptibility map is used to identify the level of potential landslide risk (low, moderate, or high).
In Dominica, these maps are produced using optical satellite and aerial images, digital elevation
models, and historic landslide inventory data. This study illustrates the benefits of using satellite
Interferometric Synthetic Aperture Radar (InSAR) to refine these maps. Our study shows that
when using continuous high-resolution InSAR data, active slopes can be identified and monitored.
This information can be used to highlight areas most at risk (for use in validating and updating the
susceptibility map), and can constrain the time of occurrence of when the landslide was initiated
(for use in landslide inventory mapping). Our study shows that InSAR can be used to assist in
the investigation of pre-failure slope conditions. For instance, our initial findings suggest there
is more land motion prior to failure on clay soils with gentler slopes than on those with steeper
slopes. A greater understanding of pre-failure slope conditions will support the generation of a more
dependable susceptibility map. Our study also discusses the integration of InSAR deformation-rate
maps and time-series analysis with rainfall data in support of the development of rainfall thresholds
for different terrains. The information provided by InSAR can enhance inventory and susceptibility
mapping, which will better assist with the island’s current disaster mitigation and resiliency efforts.

Keywords: landslides; InSAR; inventory mapping; landslide motion; Dominica

1. Introduction

The Lesser Antilles is an arc of dormant and active volcanic islands in the Caribbean
Sea [1]. In the centre of the arc is the island of Dominica. Similar to other developing island
states, Dominica is highly vulnerable to natural hazards from hurricanes, intense and
prolonged rainfalls, volcanic and seismic activity, earthquakes, and tsunamis [2,3]. In 2018,
the island was ranked 12th out of 111 for disaster vulnerability in the Commonwealth’s
Composite Vulnerability Index [4], and in 2020, it ranked 10th out of 180 in the Climate
Risk Index Score [5].

Dominica’s heavily rugged terrain, substantial rainfall, and distinct soil character-
istics make it highly susceptible to landslides. The dominant triggers are hurricanes,
tropical storms, and heavy rainfall events [6]. These types of storms are not uncommon.
Based on the number of tropical storms and hurricanes recorded in Dominica between
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1886 and 1996, tropical storms and hurricanes with intensity levels of one, two, three, four,
and more than four were estimated to occur once in every 2.9, 5.8, 13.6, 23.8, and 125 years,
respectively [6]. For the estimate of category 4 (and above) hurricanes, there were only
two events in the database, one of which occurred in 1979. As category 5 hurricane Maria
occurred in 2017, this may suggest a higher frequency of these types of major events.

1.1. Impact of Landslides in Dominica

Large storms have an enormous impact on Dominica’s population, critical infrastruc-
ture, economy, and landscape. In 1979, category 4 Hurricane David devastated Dominica,
subjecting it to hurricane level winds for over 10 h with peaks of up to 241 km/h [7].
Six days later, Hurricane Frederic tracked just north of the island, further exacerbating
the damages from David as it brought heavy rainfall to the already saturated terrain [8].
Together, the two hurricanes triggered “innumerable” landslides, displaced 78% of the
population, and significantly damaged the transportation infrastructure [8]. The estimated
damage from David was over USD 20 million [6].

On 28 August 2015, the effects of Tropical Storm Erika caused massive mudslides
and resulted in significant flooding in Dominica [9]. Within a 10 h period, over 500 mm
of rain fell on the island [10]. The damages amounted to USD 483 million (90% of the
country’s Gross Domestic Product (GDP)) [11] and rendered two villages in the southeast
uninhabitable [4]. Figure 1 shows a small sample of the numerous landslides triggered by
Erika in the village of Petite Savanne [12,13]. Similar to the devastation from Hurricanes
David and Frederic, Erika most widely affected the transportation and housing industries,
in addition to the agricultural sector [6].
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On 18 September 2017, category 5 Hurricane Maria decimated Dominica. Maria passed
directly over the island with winds exceeding 274 km/hr. Storm surges surpassed tide
levels by close to 1 m, and depending on elevation, total rainfall ranged from 452–579 mm [2].
Over 9900 landslides were triggered, covering more than 1.3% of the island [14]. Total damages
amounted to USD 930.9 million (or 226% of the country’s 2016 GDP), with transportation,
housing, and agriculture most severely affected [2].
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1.2. Landslide Risk Assessment in Dominica

The considerable cost of reconstruction and recovery from these storm events is sig-
nificant. The need to build resiliency and reduce risk against natural hazards is thereby
evident. In 2014, the World Bank initiated the Caribbean Risk Information Program (CRIP)
to assist the government of Dominica (and other islands in the Caribbean: Belize, Saint Lu-
cia, Saint Vincent and the Grenadines, and Grenada) in building the capacity to develop
landslide and flood maps for disaster risk mitigation [15]. This program provides landslide
and flood risk information to Dominica for use in infrastructure planning and develop-
ment. The landslide risk information program is intended to facilitate the identification
of areas that are at the highest risk of slope failure. This knowledge allows for the bet-
ter placement of infrastructure. Development in areas at high risk, for example, may be
avoided if possible, or at least restricted. The information also allows for more effective
mitigation strategies to be implemented. Specifically tailored mitigation measures, such as
adding proper drainage or altering the geometry of the slope through grading, excavation,
and landscaping, may be better applied to manage or prevent future slope failure [16].

Key maps produced through CRIP include landslide inventory maps and landslide
susceptibility maps. Landslide inventory maps are considered to be the most important
map for the assessment of landslide risk [17]. These maps include details of landslide type
(debris flow, rockslide, etc.), location, date, and spatial extent. They are recommended
to be produced after every major storm event, and periodically, to adequately assess and
record newly developed landslides [6]. The objective is to properly link landslides to
their triggering event. Understanding the circumstances that lead to slope failure is of
paramount importance to assessing landslide risk and susceptibility [16]. This is because
pre-landslide conditions (i.e., slope, soil type and thickness, elevation, annual rainfall
amount, etc.) are used as indicators in the prediction of future risk from similar landslide
triggering events [18].

Landslide inventory maps are used in the development of a landslide susceptibility
map (or to validate a previously developed susceptibility map) to identify areas of risk [6].
Currently, landslide inventory maps for Dominica are generated using optical satellite
and aerial images, Digital Elevation Models (DEMs), and previous landslide inventory
and susceptibility maps [6]. Verification is carried out via fieldwork, communicating with
people in the community, and news articles [15]. As noted by [6], there are significant
challenges in creating these inventory maps. Field verification is highly limited due to the
extremely rugged terrain, lack of roads, and small population size (personnel). There is a
lack of historical landslide data, including the absence of older inventory maps. When using
optical data, the rapid regrowth of vegetation within a few months has the potential to
obscure the occurrence of newly developed landslides. Optical data are also limited due to
their inability to penetrate clouds. Persistent cloud coverage is very common over tropical
islands due to diurnal heating [19]. Ref [14] used satellite optical data to assess the number
of landslides triggered after Hurricane Maria. Their map contained significant cloud cover,
predominantly over the southeast of the island (an area that suffered significant damage
from Tropical Storm Erika). Major storm events have the capacity to induce numerous
(concurrent) landslides over most areas of the island. Obstruction due to cloud coverage
restricts the ability to accurately survey these newly developed landslides and properly
link them to their triggering event(s).

1.3. SAR for Landslide Risk Assessment

Satellite synthetic aperture radar (SAR) sensors are functional in all weather conditions
and are able to penetrate clouds. They can also provide large spatial and frequent temporal
coverage at high resolution. These attributes, along with the ability to measure changes
in phase between acquisitions, have allowed SAR data to be used extensively in the
mapping and monitoring of landslides ([20–29] and many others). In tropical environments
similar to Dominica, SAR data have been shown to be successful in mapping and tracking
slow-moving landslides for risk detection and disaster management applications [30–33].
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Refs. [30,31], for example, applied the Differential Interferometric Synthetic Aperture Radar
(DInSAR) technique to satellite SAR data over active landslide areas within Indonesia.
Similar to Dominica, Indonesia is a tropical environment vulnerable to landslides due to
its mountainous landscape, loose soil, and heavy rainfall. Ref. [30] focused their study
on a massive rock avalanche induced by significant rainfall, while [31] concentrated on
a number of predominantly slow-moving translational and slump slides that occurred
in rock layers and unconsolidated materials, respectively. Ref. [30] was able to observe
surface displacement prior to the catastrophic slope failure, while [31] was able to identify
active landslides and monitor their deformation rates. DInSAR-derived data, such as the
detection of deformation prior to massive slope failure, were recommended to be used as
an added capability in landslide susceptibility mapping. In addition, the identification and
monitoring of slow-moving slides from DInSAR was determined to be suitable for use in
landslide hazard mapping.

Ref. [33] showed the applicability of SAR and optical data for the mapping and mon-
itoring of slow-moving landslides over various terrain. Their work was carried out in
association with a European commissioned project to highlight the applicability of Earth
observation (EO) data for disaster management. Their study included examples from
Italy, Austria, Slovakia, and Taiwan. Taiwan was selected due to its high susceptibility to
landslides after heavy rainfall events, such as typhoons. Similar to Dominica, Taiwan’s
mountainous terrain limits access for ground-based deformation monitoring of the hun-
dreds to thousands of landslides that may be concurrently triggered by these types of
events. Through the application of DInSAR, with the Small Baseline Subset (SBAS) tech-
nique, ref. [33] illustrated the use of satellite SAR data for the back-monitoring of landslides
over Taiwan. Their results showed clear temporal and spatial surface deformation patterns
prior to catastrophic failure directly linked to the Typhoon Morakot event. Deformation
rates were observed to be accelerating up to weeks before the event.

Satellite SAR data have been shown to be a valuable tool in the landslide emergency
management stages of prevention, mitigation, and response [33]. As well as for landslide
inventory mapping, rapid mapping, and back-monitoring applications [33], satellite InSAR
is an additional tool for the planning and predictability of landslide risk [34]. This study
presents the results of applying DInSAR with both the SBAS and Multidimensional SBAS
(MSBAS) techniques to satellite SAR data over Dominica. The goal is to illustrate how
SAR can be utilized to complement CRIP‘s current landslide risk assessment and disaster
mitigation strategy within Dominica. This study also investigates the role that Dominica’s
soil characteristics play in slope failure.

2. Geological Background

Dominica is one of the largest and most mountainous islands within the Caribbean [7],
measuring roughly 47 km in length and 29 km at its widest point [35]. It is geologically
young (Figure 2a), originating from volcanic activity in the early Miocene [36], and con-
tains nine volcanic complexes with seven active volcanic centres dating back to the late
Pleistocene [37]. The large concentration of active volcanoes is amongst the highest on
Earth [38]. Dominica is almost entirely composed of volcanic rock (Figure 2b) deposited
predominantly during the Pleistocene [1,39,40]. Due to recent volcanic activity, uplift in the
Mid-Pleistocene, high drainage densities, and accelerated erosion (mainly from landslides),
the island is extremely rugged [40,41]. Its peaks are higher than 1400 m (Figure 2c) and
over 60% of its slopes have gradients >30% [35]. Its rugged topography leads to orographic
lift [35], causing the island to experience up to 10 times more rainfall than other areas in
the region [7]. The annual rainfall amounts vary depending on elevation (Figure 2d), with
the central peaks receiving over 7500 mm annually and over 80% of the island receiving
more than 2500 mm annually [41].
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Elevation Model (DEM) derived shaded relief. (a–c) were produced from data provided from [42], while (d) was devel-
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Figure 2. (a) Geological age, (b) deposits, (c) elevation, and (d) annual rainfall amounts of Dominica overlaying a Digital
Elevation Model (DEM) derived shaded relief. (a–c) were produced from data provided from [42], while (d) was developed
from data provided from [43].
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In-depth studies by [8,39] identified the following four main types of soils overlying
Dominica’s volcanic bedrock: smectoid clays, kandoid clays, allophane latosolics, and al-
lophane podzolics. They found that their distribution around the island was mostly a
function of rainfall variability. Smectoid clays occurred mainly along the northern and
western coasts, where annual rainfall amounts were less than 2500 mm. The kandoid clays,
allophane latosolics, and allophane podzolics were generally located in areas with annual
rainfalls between 2500 and 3800 mm, over 3800 mm, and in excess of 7000 mm, respectively.
The clay soils were found to have considerably higher shear strength relative to temperate
clays [39]. This provided an explanation of how such steep slopes could remain relatively
stable. Ref. [8] also provided a detailed discussion of the properties of each of the main
soil types, providing an explanation as to why heavy prolonged rainfall events, such as
hurricanes and tropical storms, trigger such numerous landslides in some areas and not
in others.

As noted from [8], there is relatively low annual rainfall (less than 2500 mm), long pe-
riods of dry weather, and an impermeable subsoil layer within the smectoid clay areas.
The impermeability keeps the lower layers relatively dry, or delays their saturation by
hours. Landslides in smectoid clays were observed to be limited, suggesting that sig-
nificant rainfall events may not be enough to overcome the overland flow, throughflow,
and impermeability to induce slope failure. Kandoid clay and allophane latosolics were
observed to have similar properties. Ref. [8] observed that to induce instability at the
soil/rock interface (the location shown to be the point of failure for the landslides analyzed
within these soil types), the saturation zone would need to expand substantially in the
vertical direction. To do this, significant rainfall (i.e., from a hurricane type event) would be
required to percolate beyond the topsoil (which becomes quickly saturated, easily resulting
in lateral throughflow) and overcome the increasingly impermeable subsoil layers. For the
allophane podzolics, Ref. [8] found that, from field observations, slope failure in these soils
was shown to be “shallow translational slides” at the hardpan boundary (located below
the top and subsoil layers). Due to the deep and highly permeable layers above the pan, [8]
concluded that only exceptionally extended and intense rainfall events, equivalent to a
cyclone, would be enough to saturate the zone above the pan such that it would vertically
expand to the point required for slope failure.

3. Materials and Methods

This study used seventy-seven ascending and descending single-look complex (SLC),
wide multi-look fine, RADARSAT-2 (RS2) SAR datasets spanning April 2014 to June 2018.
Their details are summarized in Table 1. A 10 m resolution DEM was used via [42]. The spatial
coverage of the SAR and DEM datasets is shown in Figure 3. Data processing was performed
using the DInSAR approach through GAMMA software [44]. The post processing was
performed with the program provided by [45]. The application of both the SBAS technique,
based on the work presented in [46,47], and the MSBAS process from [48], was used.

Table 1. Information used in the Small Baseline Subset (SBAS) and Multidimensional SBAS (MSBAS) processing (θ◦, ϕ◦,
and N are the azimuth, incidence angle, and number of single-look complexes (SLCs), respectively).

Beam Mode—Polarization Orbit Time Span (YYYYMMDD) Resolution 1, m θ◦ ϕ◦ N

MF23W-HH Ascending 20140106–20180626 2.7 × 2.4 348 32 40
MF22W-HH Descending 20140411–20161102 2.7 × 2.5 −168 34 37

1 Pixel spacing.
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The data were preprocessed using MacDonald, Dettwiler and Associates’ Enhanced
Definitive Orbit Tool (EDOT) to update the orbit vectors. EDOT uses raw Global Positioning
System (GPS) data and provides an overall accuracy less than 1 m [49]. After the orbit
vectors are updated, the perpendicular baselines between all non-redundant pairs of
SLCs are calculated. A master image from each dataset is selected, 4 × 4 multi-looked,
and geocoded to the DEM. The corresponding stacks of SLCs are then co-registered to
their masters using look-up-table (LUT) refinement. A DEM in range Doppler coordinates
(RDC) was also produced from each dataset.

Phase difference images, known as complex interferograms, were generated (from
each dataset) using all non-redundant pairs of co-registered SLCs. The magnitude of the
interferograms is a measure of coherence and represents the accuracy of the phase, while the
interferometric phase represents a summation of the curved Earth, topography, deformation,
atmospheric, and other phase noise components, as represented in Equation (1).

∆ϕ = ϕcurved Earth + ϕtopography + ϕdeformation +ϕatmospheric noise + others (1)

The components of phase related to the Earth’s curvature (ϕcurved Earth) and topog-
raphy (ϕ topography) are simulated and removed using the DEM (in RDC) and baselines.
The results are differential interferograms (DIs). DIs contain inherent noise due to the
geometry of the baseline, changes in temporal backscattering (i.e., changes in vegetation
or land cover between acquisitions), thermal noise, and scene rotation [50]. Common-
band filtering (including for both the range and azimuth spectra) was applied to improve
correlation, while the adaptive filter purposed by [51] was applied to smooth out the
interferometric fringes. For the adaptive filter, a correlation estimation window size of
5 pixels was used, along with a non-linear filter exponent of 0.2 (the lower end of the
nominal range), and a Fast Fourier Transform filtering size of 16 (to take into account the
rugged terrain). These values were selected based on the recommendations within the
GAMMA software for Dominica’s terrain morphology.

The interferometric phase is cyclic in nature (it repeats every 2π), i.e., it is wrapped.
To recover the absolute phase, phase unwrapping was applied. This is the method of
adding or subtracting an integer value (n) of 2π to the phase of each neighbouring pixel [52].
As there is no unique solution (without added information), unwrapping is a mathemat-
ically ill-posed problem [53]. Accurate phase unwrapping is therefore crucial in InSAR
processing. In this study, phase unwrapping was performed using an unwrapping mask
(using a coherence threshold of 0.35) with minimum cost flow and Delaunay triangulation
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analysis. This phase unwrapping methodology has been shown to be suitable for the level
of coherence obtained over Dominica [54].

From the unwrapped DI and DEM in RDC, the initial baseline estimate was refined
based on the relationship between phase and topography, as represented in Equation (2) [55],
where φtopo, Bn, λ, R, θ, and z represent the unwrapped phase, perpendicular baseline,
radar wavelength, distance between the sensor and the target, look angle, and elevation,
respectively. By taking a set of points on a grid, polynomial coefficients of the baseline may
be determined through minimum least-squares estimation. Once the baselines are refined,
the process of generating DIs is repeated. Based on the level of coherence, the DIs that
contained consistently coherent pixels were selected for further processing.

φtopo =
4πBn

λRsinθ
z (2)

The unwrapped DIs represent line-of-sight (LOS) deformation that has occurred
between the two SAR acquisitions, as well as atmospheric and other noise components.
They also include residual topography as a result of inaccuracies in the DEM used in the
topographic phase removal [47]. The objective therefore becomes to minimize or remove
these noise components to gain a more accurate deformation measurement. This was
performed using the SBAS technique, which utilizes multi-master DI combinations with
small temporal and perpendicular baselines [33]. As discussed in [47], the atmospheric
phase component is assumed to contain all other random noise. The atmospheric (and
other noise) components are estimated and removed through calibration. Equation (3)
from [47] is then used to simultaneously solve for both the deformation rates between
acquisitions, and the residual topography.

AV = φ (3)

In Equation (3), A is a matrix that represents the associated time intervals (consecutive)
between the DIs, V is the unknown velocity vector corresponding to the deformation rates,
and φ is the observed DI phase vector. The unknown residual topography term is added to
the velocity vector V. Linear least-squares inversion via singular value decomposition is
then applied to solve for V. Knowing the deformation rates between acquisitions, the LOS
cumulative displacement may be reconstructed through integration (as discussed next and
shown in Equation (5)). This provides nonlinear LOS deformation time-series (for more
detailed discussion, see [47]). The results were re-projected and converted to lat/long LOS
deformation in metres with 10 m spatial sampling.

An extension of SBAS is the MSBAS process. MSBAS uses data from ascending and
descending orbits to obtain time-series deformation in both the vertical and east-west
directions [48], as calculated with Equation (4) from [48].(

Â
λL

)(
VE
VU

)
=

(
φ̂
0

)
(4)

The matrix Â = {sEA,sUA}, where A is the associated time intervals as described in
Equation (3), and sE and sU are the corresponding LOS vector components in the east (E)
and up (U) directions. The velocity vector V contains the unknown E and U velocities,
while φ̂ is the observed DI phase. The regularization parameter λ is used to smooth
out the results, while L is a difference operator that controls the regularization order.
Singular value decomposition is then applied to solve for the velocity vector at each
pixel that remains coherent throughout the stack of interferograms. Once the E and U
velocities are determined, the cumulative time-series deformation maps in the east-west
and up-down directions are computed from Equation (5) from [48]. Here, d represents the
deformation, N represents the total number of time intervals, and ∆t is the time difference
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between corresponding acquisition pairs. For a more detailed explanation and thorough
illustration of this process, see [48].

dE
i =

N

∑
i=1

VE
i ∆ti, dU

i =
N

∑
i=1

VU
i ∆ti (5)

4. Results and Discussion

Dominica is a densely forested tropical island. Its steep rugged terrain and thick
vegetation impact satellite spatial coverage and image-to-image coherence, respectively.
Due to the satellite viewing geometry, the steep terrain introduces artifacts into the SAR
data (foreshortening and layover). Slope faces that are visible from the ascending pass may
not be visible from the descending pass, and vice-versa. This limits the spatial coverage
when using the MSBAS technique (as it is dependent on there being coherence within both
the ascending and descending datasets), and it restricts the use of ascending or descending
passes to the slope orientation.

InSAR-SBAS processing is also dependent on coherence. Within the 2014 to 2018 range
of SAR acquisitions used in this study, two major storm events occurred that dramatically
altered the landscape due to extensive landslides and flooding. This led to a dramatic
reduction in coherence. To mitigate these difficulties, the selection of orbit pass and
DIs for each application studied was performed based on the slope and aspect of the
terrain, and the dates of the Tropical Storm Erika and Hurricane Maria events. In addition,
the selection of DIs was restricted to consecutive acquisition dates to ensure maximum
coherence/spatial coverage. Dominica’s dense vegetation also limits coherence. Therefore,
the InSAR results of this study reflect the coherent parts within the landslide (or slope),
and not the entire landslide area. To note, the location of the reference point for each InSAR
dataset was calculated automatically using a Z-Score approach. Additionally, the SBAS
and MSBAS results represent relative deformation. For more accurate results, a known
stable reference point would be required.

4.1. Identifying and Monitoring Landslide Activity

Figure 4 shows the April 2014 to November 2016 descending LOS deformation-rate
map (or motion map) obtained from SBAS processing over the upper slopes surrounding
the village of Soufriere. The results are overlain on Google Earth and include time-series
analysis integrated with average monthly rainfall data. In the figure, there is also a segment
of the 2016 landslide susceptibility map (produced after Tropical Storm Erika and before
Hurricane Maria) over the same area illustrating the estimated risk of slope failure. The red
colours in the deformation-rate map illustrate subsidence, while the blue colours represent
uplift. The green areas in the susceptibility map show low risk zones where landslides are
unlikely to take place, but may occasionally occur. The yellow areas represent moderate
risk zones where landslides may occur, and the red areas represent zones where landslides
are most likely to occur.

From satellite SAR data, InSAR motion maps can be used to identify areas at high
risk by distinguishing between sites that are stable from those that are undergoing current
slope instability. From the InSAR motion map in Figure 4a, for example, the yellow areas
within the slopes are demonstrating stability, while the red areas are showing gradual
motion of the parts of the slopes where potential landslides can occur when triggered by
high rainfall. This map therefore highlights the areas within the slopes that are most at risk.
These red and yellow areas correlate well with the corresponding susceptibility map in
Figure 4c. Areas indicating notable subsidence or relative stability align with the red and
green zones, respectively. In addition, our InSAR motion map, which focusses on the active
slopes within the high landslide density areas, shows an active landslide recognized by
InSAR (P1, P2, and P3, for example). Identifying active landslides, and highlighting areas
most at risk from the InSAR motion map, allows it to be used to validate and update (if
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needed) the susceptibility map. The correlations between these two maps further confirm
which areas are at greatest risk of landslide.

Remote Sens. 2021, 13, 815 9 of 19 
 

 

𝑑 =  𝑉 ∆𝑡 , 𝑑 =  𝑉 ∆𝑡   (5) 

4. Results and Discussion 
Dominica is a densely forested tropical island. Its steep rugged terrain and thick veg-

etation impact satellite spatial coverage and image-to-image coherence, respectively. Due 
to the satellite viewing geometry, the steep terrain introduces artifacts into the SAR data 
(foreshortening and layover). Slope faces that are visible from the ascending pass may not 
be visible from the descending pass, and vice-versa. This limits the spatial coverage when 
using the MSBAS technique (as it is dependent on there being coherence within both the 
ascending and descending datasets), and it restricts the use of ascending or descending 
passes to the slope orientation.  

InSAR-SBAS processing is also dependent on coherence. Within the 2014 to 2018 
range of SAR acquisitions used in this study, two major storm events occurred that dra-
matically altered the landscape due to extensive landslides and flooding. This led to a 
dramatic reduction in coherence. To mitigate these difficulties, the selection of orbit pass 
and DIs for each application studied was performed based on the slope and aspect of the 
terrain, and the dates of the Tropical Storm Erika and Hurricane Maria events. In addition, 
the selection of DIs was restricted to consecutive acquisition dates to ensure maximum 
coherence/spatial coverage. Dominica’s dense vegetation also limits coherence. Therefore, 
the InSAR results of this study reflect the coherent parts within the landslide (or slope), 
and not the entire landslide area. To note, the location of the reference point for each In-
SAR dataset was calculated automatically using a Z-Score approach. Additionally, the 
SBAS and MSBAS results represent relative deformation. For more accurate results, a 
known stable reference point would be required. 

4.1. Identifying and Monitoring Landslide Activity 
Figure 4 shows the April 2014 to November 2016 descending LOS deformation-rate 

map (or motion map) obtained from SBAS processing over the upper slopes surrounding 
the village of Soufriere. The results are overlain on Google Earth and include time-series 
analysis integrated with average monthly rainfall data. In the figure, there is also a seg-
ment of the 2016 landslide susceptibility map (produced after Tropical Storm Erika and 
before Hurricane Maria) over the same area illustrating the estimated risk of slope failure. 
The red colours in the deformation-rate map illustrate subsidence, while the blue colours 
represent uplift. The green areas in the susceptibility map show low risk zones where 
landslides are unlikely to take place, but may occasionally occur. The yellow areas repre-
sent moderate risk zones where landslides may occur, and the red areas represent zones 
where landslides are most likely to occur. 

 

Remote Sens. 2021, 13, 815 10 of 19 
 

 

 

Figure 4. (a) Line-of-sight (LOS) descending deformation-rate map over Soufriere Village, overlain on Google Earth. (b) 
InSAR time-series overlaid on monthly rainfall measurements (obtained from [56]) showing differential rates of landslide 
motion. (c) Susceptibility map overlain on a DEM with landslide inventory data over the same area. (c) was produced 
from data provided through [23] and the rainfall data were from [56]. 

From satellite SAR data, InSAR motion maps can be used to identify areas at high 
risk by distinguishing between sites that are stable from those that are undergoing current 
slope instability. From the InSAR motion map in Figure 4a, for example, the yellow areas 
within the slopes are demonstrating stability, while the red areas are showing gradual 
motion of the parts of the slopes where potential landslides can occur when triggered by 
high rainfall. This map therefore highlights the areas within the slopes that are most at 
risk. These red and yellow areas correlate well with the corresponding susceptibility map 
in Figure 4c. Areas indicating notable subsidence or relative stability align with the red 
and green zones, respectively. In addition, our InSAR motion map, which focusses on the 
active slopes within the high landslide density areas, shows an active landslide recognized 
by InSAR (P1, P2, and P3, for example). Identifying active landslides, and highlighting 
areas most at risk from the InSAR motion map, allows it to be used to validate and update 
(if needed) the susceptibility map. The correlations between these two maps further con-
firm which areas are at greatest risk of landslide. 

When creating a landslide inventory map, it is important to know when the land-
slides occurred. This is carried out to properly link the landslides with their triggering 
event in order to better predict future landslide risk from similar events. For slow-moving 
landslides, InSAR time-series analysis can be used to narrow down the time-period of 
when the slope initially begins to fail. When integrated with rainfall data (or landslide 
triggering events), the connection between the initiation of deformation and rainfall (or 
triggering event) may be analyzed. From the time-series analysis and rainfall data illus-
trated in Figure 4b, for example, the time-period for when the deformation was initiated 
for all points was observed to be between the December 2014 and January 2015 acquisi-
tions. This deformation was shown to be initiated shortly after a significantly rainy month 
(November) in 2014. From this data, it is therefore suggested that the landslide observed 
at points P1–P3 was initiated between the end of 2014 and the start of 2015, and that heavy 
rainfall from the month of November 2014 may be the triggering event. Additional infor-
mation regarding the variability in deformation behavior between the four points is also 
illustrated in Figure 4b. All points, for example, are shown to be relatively stable through-
out the 2014 acquisitions. After the possible triggering event, each point shows subsid-
ence, with P1–P3 subsiding at a faster rate than P4. P4 is then shown to be relatively stable 
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When creating a landslide inventory map, it is important to know when the landslides
occurred. This is carried out to properly link the landslides with their triggering event in or-
der to better predict future landslide risk from similar events. For slow-moving landslides,
InSAR time-series analysis can be used to narrow down the time-period of when the slope
initially begins to fail. When integrated with rainfall data (or landslide triggering events),
the connection between the initiation of deformation and rainfall (or triggering event)
may be analyzed. From the time-series analysis and rainfall data illustrated in Figure 4b,
for example, the time-period for when the deformation was initiated for all points was
observed to be between the December 2014 and January 2015 acquisitions. This defor-
mation was shown to be initiated shortly after a significantly rainy month (November)
in 2014. From this data, it is therefore suggested that the landslide observed at points
P1–P3 was initiated between the end of 2014 and the start of 2015, and that heavy rainfall
from the month of November 2014 may be the triggering event. Additional information
regarding the variability in deformation behavior between the four points is also illustrated
in Figure 4b. All points, for example, are shown to be relatively stable throughout the 2014
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acquisitions. After the possible triggering event, each point shows subsidence, with P1–P3
subsiding at a faster rate than P4. P4 is then shown to be relatively stable throughout 2016,
while P1–P3 continuously subside at different rates. This type of information provides a
better understanding of the slope behaviour before and after the initiation of subsidence.
Ref. [57] have shown similar motion on different parts of the island.

The back-monitoring capability from InSAR, when integrated with rainfall data (or
data corresponding to known landslide triggering events), provides key information
regarding the timespan of when the slope initially begins to fail, while also assisting
with the identification of the potential landslide trigger—both of which are highly useful
when producing inventory and susceptibility maps. It is worth noting that periodically
applying InSAR on a regional scale for landslide monitoring, and then manually analyzing
the time-series analysis for each point, may be difficult due to the large volume of data.
Semi-automated approaches have been successfully implemented to address this challenge
in relation to using DInSAR for geohazard activity assessment [58].

4.2. Slope Conditions Prior to Failure

InSAR motion maps with time-series analysis can be used to facilitate a deeper under-
standing of the state of the slope prior to failure. Understanding pre-landslide conditions is
essential as they are used to establish indicators for future risk when producing landslide
susceptibility maps. Typical indicators that are used include slope, soil type and thickness,
elevation, and annual rainfall amount. With InSAR, an additional indicator, such as slope
motion behaviour observed prior to the initiation of slope failure, could be used. These be-
haviours may include whether or not the slope was stable, subsiding, or demonstrating uplift,
and at what rates and time of year there was motion. This information can then be integrated
with other parameters for a more robust understanding of pre-landslide conditions. An
example of this is illustrated through Figure 5, which shows the results of applying the SBAS
technique to ascending DIs from February to September 2017 over the southeastern area of
the island. This dataset comprises the six months of acquisitions prior to Hurricane Maria.
Figure 5a is a subset of the ascending LOS annual deformation-rate map overlaying the main
soil types. Figure 5b is the mapped landslides triggered by Hurricane Maria overlaying the
annual rainfall within the same area. Both images are overlaying a shaded relief. Within both
images are ten points selected for time-series analysis. Points K1 to K6 are within the kandoid
latosolic clays, and points A7 to A10 are in the allophanoid latosolics. All points are from
areas that experienced debris slides (DS) from Hurricane Maria.
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Figure 5. (a) Pre Hurricane Maria LOS ascending deformation-rate map overlaying the soil types. (b) Debris Flows (DF), Debris Slide
(DS), and flood/debris flow channels (SS) triggered by Hurricane Maria overlaying the annual rainfall map. DS appears to be the most
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data provided by [42,56], respectively.

From the time-series in Figure 5d, the different deformation behaviour of each point
prior to failure is observed. Points K1–K4 are shown to be stable until the start of the
wet season. The other points show a slow rate of subsidence prior to the wet season,
after which their rates of subsidence accelerate. All the points either remain stable after
the June acquisition, or begin to demonstrate uplift. Through linking these site-specific
patterns to other indicators used in future landslide risk assessment, such as slope and soil
type, a more detailed analysis of the pre-landslide state may be established. For example,
based on soil type, the kandoid clays and allophane latosolics are shown to be displaying
similar trends, with the allophane latosolics showing an overall greater magnitude of
deformation. With the addition of the slope information, it appears that the clay soils
showing the greatest deformation are also the areas with the shallower slopes. This is
observed within both the allophane latosolics and kandoid clay soils. For the allophane
latosolics, point A9 has the shallowest slope (~13 degrees) and the greatest deformation
(up to 4 cm in subsidence before showing uplift). Within the kandoid clays, points K5 and
K6 have the shallowest slopes (18 to 21 degrees) while also demonstrating the greatest
deformation (subsidence over 2.5 cm).

As discussed by [8], the allophane latosolics and kandoid clays have similar properties,
but differ within the saturation conditions at the soil/rock interface (kandoid clays were
at or near saturation in this zone during the wet season, whereas allophane clays were
perennially saturated). Significant rainfall was determined to be required to overcome the
increasingly impermeable subsoil layers, and lateral throughflow, to induce slope failure
at the soil/rock interface [8]. From the results in Figure 5, the points with the shallower
slopes display the most subsidence prior to failure. This may suggest that the higher slopes
help in the lateral throughflow, thereby requiring higher amounts of rainfall to induce
instability within these areas (more work is needed to better understand this observation).
The difference in saturation conditions at the soil/rock interface between the two soil types
may also help explain why the allophane areas showed a greater magnitude of deformation
over the kandoid clays. Despite these differences, each site failed due to the effects of
Hurricane Maria. Understanding their differences could assist in better understanding
pre-landslide conditions. Pre-landslide slope movement or behaviour patterns from InSAR,
integrated with soil type and slope, could be included in the list of indicators used in the
prediction of future landslide risk.
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4.3. Slope Conditions Post Failure

When making the inventory map, the landslides recorded from each mapping ses-
sion are added together and used in part to create the susceptibility map. The inventory
map overlaying the susceptibility map in Figure 4c, for example, is generated based on
the landslides recorded from inventories conducted in 1987, 1990, 2007, 2014, and 2015.
Using InSAR, the activity levels of these landslides may be monitored. This information
can assist in the classification of these landslides as being either active or dormant. Know-
ing which areas are active can facilitate a more targeted approach for the implementation
of landslide mitigation strategies, as well as be used as additional indicators in the pro-
duction of the susceptibility map. Figure 6 is shown as an example of using InSAR for
post-landslide monitoring. Illustrated in the figure are the results of applying the SBAS
technique to the ascending DIs ranging from November 2016 to May 2018. This set of
data represents roughly a year and a half post-Tropical Storm Erika (and pre-Hurricane
Maria). The InSAR results are integrated with the recorded Tropical Storm Erika-induced
landslides. The five points selected within these landslides (points X1–X5) are highlighted
in the figure. Figure 6b,c shows the slope values and time-series analysis of each point.
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Figure 6. (a) Landslides triggered by Tropical Storm Erika [42] integrated with post-Tropical Storm Erika ascending LOS
deformation-rate map. (b) is the deformation time-series of the points. Points X3 and X5 show active landslides after
Tropical Storm Erika. (c) provides the slope details of points X1 to X5 highlighted in (a).

From the graph in Figure 6b, points X1, X4, and X5 demonstrate stability from the
end of 2016 to at least mid-2018, suggesting those landslides are more dormant than active.
The landslides associated with X2 and X3, however, are shown to be relatively active.
Similar to the findings from Figure 5, from the two active landslides, the one with the
shallower slope (X3 at 8.3 degrees) is shown to be deforming at a faster rate than the
one with a steeper slope (X2 at 15.6 degrees). Identifying active sites allows for targeted
fieldwork, landslide mitigation strategies, and intense monitoring programs to be initiated
to reduce the landslide risk. We recommend that InSAR motion indicators should be
an additional layer on future landslide susceptibility maps to improve visualization and
interpretation in the determination of potential landslide risk.
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4.4. Kinematic Behaviour

In addition to supporting inventory and susceptibility mapping, InSAR data, when gen-
erated through the MSBAS approach, can provide further details of land deformation,
such as terrain kinematics. While the SBAS approach provides deformation in the LOS,
up/down (U/D) direction, the MSBAS approach, which utilizes the ascending and de-
scending data together, can provide an additional dimension of motion in the east/west
(E/W) direction. This allows MSBAS data to be used to assist in determining whether the
land is predominantly moving in the vertical U/D direction, E/W direction, or, to what
extent, a mixture of both. To note, the traditional MSBAS approach cannot measure motion
in the North/South direction. This limitation is discussed in Section 4.6.

Figure 7 shows the MSBAS results over the island using ascending and descending
data acquired between April 2014 and September 2016. Figure 7a is the deformation-
rate map of the component of motion in the U/D direction, alongside the corresponding
time-series of the ten points highlighted. Figure 7b is the corresponding data for the
component of motion in the E/W direction. The blue colours represent up and east,
while the red colours represent down and west. Illustrated in the time-series of the figure
are the differential deformation rates and two-dimensional direction of motion of the ten
points highlighted. From this data, it can be shown that point 1 is mostly moving east at a
relatively slow rate, while point 9 is mainly moving west at a faster rate. Some locations
are showing a relatively even mixture of moving down as well as east (points 4 and 5,
for example), at relatively fast rates in both directions. Points 2 and 10 are shown to
be relatively stable in both directions. These types of details can be utilized for a better
understanding of the kinematic behaviour of the terrain, which would facilitate a more
effective implementation of targeted landslide mitigation strategies. Due to the ruggedness
of the island, however, the spatial extent of the MSBAS data is limited in comparison to
the SBAS results (as discussed at the beginning of Section 4). As the MSBAS data provides
highly beneficial information, using different viewing geometries may improve their use
for high relief terrain, as occurs at Dominica.
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4.5. Landslide Rainfall Threshold

In addition to better understanding the pre-landslide conditions for use in the predic-
tion of future landslide risk, landslide-inducing rainfall thresholds are also used [59–62].
For Dominica, a rainfall threshold was calculated by linking daily rainfall measurements
(between 1977 and 2013) recorded from two rain gauges (one on the east side of the is-
land, and one on the west side) with the days in which landslides were documented [6].
Within the resulting dataset, there were a high number of rainfall events with no associated
landslides, representing false alarms. Ref. [6] speculated that this was due to both the
underreporting of landslide occurrences (lack of historical landslide data) and the lack of
rain gauges. As discussed in Section 2, the amount of rainfall varies greatly with respect to
elevation (Figure 2d), and it is therefore likely that the location of the two rainfall gauges
used did not adequately reflect the amount of rainfall that occurred in the areas with
recorded landslides.

In addition to the lack of historical landslide data, calculating a rainfall threshold is
considerably difficult due to the variability in the selection of the number of antecedent rain-
fall days to use [63]. Ranges from 1 to 15 days [64,65] to an accumulation of 180 days [66,67]
have been recommended. Ref. [6] used 5 days for the threshold in Dominica. Narrow-
ing down upper and lower limits of the number of antecedent days to use may improve
the rainfall threshold estimate. Using InSAR back-monitoring, the time-period when the
initial land subsidence occurred may be narrowed down. This information can then be
linked to the date of the rainfall event and then used to constrain the selection of the
number of antecedent days to use. Figure 4b, for example, illustrates that after the heavy
rainfall month recorded in November 2014, the initiation of subsidence was observed at the
31 December 2014 acquisition. This may suggest that slow-moving landslides, with these
particular terrain characteristics (i.e., slope geometry, soil type, annual rainfall, etc.), may be
initiated up to a month after heavy rainfall. Compiling an historical database of these types
of measurements under different environmental conditions would assist in the refinement
of the number of antecedent rainfall days to use over the various terrains, and provide
statistical reliability of the analysis. With the recent launch of Canada’s RADARSAT Con-
stellation Mission (RCM), revisit times of up to 4 days may be achieved. This is a notable
increase over RS2′s 24 day revisit period. Using RCM data, the upper and lower limits of
the number of antecedent days to use could be substantially constrained.
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4.6. InSAR Limitations

There are many benefits to the use of SAR data for landslide risk assessment. How-
ever, there are some limitations. The observable rate of deformation is restricted by the
wavelength of the SAR sensor used. Rapidly moving catastrophic landslides (as shown in
Figure 1) may have deformation rates well in excess of metres per minute. This extreme rate
of motion cannot be directly observed from today’s SAR satellites. As calculated from [34],
the maximum observable rate of deformation for RS2′s 5.5 cm C-band is 2.3 mm/day.
Increasing the wavelength or decreasing the revisit cycle would increase this rate. RCM, for
example, with its rapid revisit, would allow for the monitoring of faster moving landslides,
with deformation rates of up to 13.75 mm/day being possible. As satellite revisit times
continue to decrease, this deformation rate limitation further highlights the necessity for
better understanding and monitoring pre-failure conditions.

Another limitation is dense vegetation. Areas with higher densities of vegetation lead
to an increase in volumetric decorrelation, which limits coherence [68]. Installing corner re-
flectors on the most serious or worrisome vegetated slopes, using longer wavelengths such
as L-band that can penetrate vegetation, and/or increasing the temporal resolution would
increase coherence. However, longer wavelengths (such as L-band) can introduce signifi-
cant atmospheric delay. Without the use of complex atmospheric mitigation algorithms,
this may lead to erroneous deformation measurements.

In addition, deformation in the north/south direction cannot be measured using the
traditional MSBAS approach [48]. As surface motion occurs in three dimensional space
(up/down, east/west, and north/south), the true direction and magnitude of movement
are therefore not measured. This is a result of the lack of variability in the ascending and
descending North-South orbital plane [69]. This may be overcome by using satellite SAR
data acquired from three different viewing (orbital) geometries, or through the integration
of satellite SAR data with airborne SAR (as its azimuth direction is easily controllable) [48].

5. Conclusions

There is an increasing need for landslide disaster risk mitigation efforts within Dominica
due to the growing impacts from tropical storms and hurricane events. Landslide inventory
and susceptibility maps are considered critical to landslide risk assessment. In Dominica, these
maps are currently generated from optical imagery, digital elevation models, and historical
landslide data. In this study, we show how InSAR deformation-rate maps and time-series
analysis may be used to update inventory maps and improve susceptibility maps in a highly
rugged, tropical environment. The results of this study show differential rates of landslide
motion before and after major storm events. We show active and stable areas identified
using InSAR motion maps, as well as identify relatively continuously active and inactive
landslides after a major storm event. We observe more land motion prior to failure on clay
soils with gentler slopes than on those with steeper slopes (the reason for this needs to be
investigated further), and we show a delay in land subsidence (over numerous sites) after a
significantly rainy period from our time-series analysis. These results will improve inventory
and susceptibility mapping to better highlight areas at risk, contribute to the understanding of
pre-slope failure characteristics, support the development of rainfall thresholds for different
terrains, and further the monitoring of kinematic behaviour. More efficient infrastructure
planning and development programs may then be implemented to reduce the impact of
future major storm and heavy rainfall events.
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