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Abstract: Hyperspectral image (HSI) is easily corrupted by different kinds of noise, such as stripes,
dead pixels, impulse noise, Gaussian noise, etc. Due to less consideration of the structural specificity
of stripes, many existing HSI denoising methods cannot effectively remove the heavy stripes in mixed
noise. In this paper, we classify the noise on HSI into three types: sparse noise, stripe noise, and
Gaussian noise. The clean image and different types of noise are treated as independent components.
In this way, the image denoising task can be naturally regarded as an image decomposition problem.
Thanks to the structural characteristic of stripes and the low-rank property of HSI, we propose to
destripe and denoise the HSI by using stripe and spectral low-rank matrix recovery and combine it
with the global spatial-spectral TV regularization (SSLR-SSTV). By considering different properties
of different HSI ingredients, the proposed method separates the original image from the noise
components perfectly. Both simulation and real image denoising experiments demonstrate that
the proposed method can achieve a satisfactory denoising result compared with the state-of-the-art
methods. Especially, it outperforms the other methods in the task of stripe noise removal visually
and quantitatively.

Keywords: hyperspectral image (HSI) denoising; destriping; low-rank; spatial-spectral total variation
(SSTV); augmented lagrange multiplier (ALM)

1. Introduction

Hyperspectral image (HSI) data play an essential role in the field of remote sensing.
Unlike natural images, it contains not only spatial information, but also rich spectral
information. Therefore, it is widely used in urban planning, earth observation, agriculture,
food safety, etc. [1,2]. However, HSI suffers from various noise types because of the unstable
working environment, photon effects, instrument failure, etc. These noises degrade the
quality of HSI and limit the performance of subsequent applications, e.g., classification,
segmentation, change detection, and so on [3–6]. Therefore, mixed noise denoising becomes
a crucial step for further analysis and applications of the HSIs.

Compared with natural images, HSIs contain mixed noises with different types, such
as Gaussian noise, dead pixels/lines, sparse noise, stripe noise etc., which challenge the
existing denoising methods. Besides, HSI noises are distributed both in the spatial domain
and spectral domain, and the noise intensity of each band is different, thus making it
difficult to estimate the noise of each band [7].

So far, a large number of HSI denoising methods have been proposed. These methods
can be roughly divided into five groups. The most intuitive way is to regard each band of
an HSI as a 2-D natural image. In this way, the classical natural image denoising methods
can be used to restore the HSI data band-wise, for instance, the bilateral filter [8], the non-
local-means algorithm [9], the block-matching 3-D filtering (BM3D) [10], etc. Unfortunately,
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artifacts and deformation will be brought into the denoising results because of two main
drawbacks. The first one is that the natural image denoising methods always assume
that the noise distribution is Gaussian, which is not fit for modeling the mixed noise.
The other one is that the band-wise processing manner neglects the strong correlations
between bands.

Another natural idea is to treat the HSI data as a multidimensional data cube. Then,
the volumetric data denoising methods can be applied to denoise the HSIs, such as the 3D
non-local means filter [11], BM4D [12], PCA-BM4D [13], etc. However, these methods do
not take advantage of the correlation information through the spectral bands either, leading
to unsatisfactory results. Therefore, it is necessary to consider the spatial and spectral
information simultaneously to improve the denoising quality.

The third type of HSI denoising methods combines spatial and spectral information
to achieve better denoising performance [14–19]. Fu et al. make use of the spectral
correlation along the bands and the non-local spatial similarity to learn the adaptive
dictionary for HSI denoising [16]. Zheng et al. adapt the denoising problem to a data
fusion problem and take advantage of the noise-free bands to reconstruct the target noisy
bands [18]. The total variation (TV) regularization is favored as an image denoising
tool for its excellent denoising performance and edge-preserving property [20]. It is also
popular in HSI denoising. In [14], Yuan et al. use the spectral-spatial adaptive TV operator
as the smoothing prior of the image in the denoising model. This method can reduce
the noise in the smooth area while retaining important edge and texture information.
In [15], the authors applied the total variation (TV) to regularize the HSI data spatially and
spectrally. Then, they fused the two results by a Q-weighted fusion algorithm. Compared
with the results obtained from a single (either spatial or spectral) view, the spatial-spectral
view fusion denoising is effective. Besides, some transform domain-based methods have
also been proposed [21–23].

Low-rank-based methods are considered as the fourth type of common HSI denois-
ing methods. The adjacent bands of an HSI have strong correlations, thus forming the
low rankness of an HSI. In return, the low-rankness implies the low-dimensional struc-
tural characteristic of high-dimensional data, which is helpful for recovering data. In
general, the low-rankness is always achieved by applying the low-rank matrix approxi-
mation [24–26], low-rank tensor decomposition [27–29], and low-rank constraint [30–32].
In [25], Zhang et al. take advantage of the low-rank property by regarding the noisy-free
HSI data as a low-rank matrix. Then, they propose to remove the different kinds of noise
at the same time based on the low-rank matrix recovery (LRMR). He et al. build a patch-
wise low-rank matrix approximation (LRMA) according to the low-rank property of the
local 3D patches [26]. Based on the LRMA, they come up with a noise-adjusted iterative
low-rank matrix approximation (NAILRMA) method. Their following work presents a
TV-regularized low-rank (LRTV) matrix factorization denoising method in [33]. They use
the nuclear norm, TV regularization, and L1 norm together to formulate the restoration
problem. In [34], Zheng et al. proposed a double-factor-regularized low-rank tensor factor-
ization (LRTF-DFR) method for HSI denoising. They embed the group sparsity constraint of
the spatial factor and correlation constraint of the spectral factor into the LRTF framework,
and obtain a satisfactory denoising result.

More recently, many deep learning-based methods have been proposed and achieve
superb results [35–39]. The performance of these supervised learning-based methods
highly depends on the extensive noisy/clean HSI pairs and parameter selection. However,
in practice, it is difficult and costly to acquire large amounts of clean HSIs in remote sensing,
limiting the supervised learning methods.

In reality, it is not really necessary to separate the fourth type of HSI denoising
methods from the third one. A large amount of work integrate the spatial and spectral
information with the low-rank property to detach the clean HSI from the observed noisy
image [29,30,32,33,40,41]. In [41], a local low-rank matrix recovery and global spatial-
spectral total variation model (LLRSSTV) was proposed by He et al. Instead of processing
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the local patches independently, as the previous low-rank-based HSI denoising methods
do, the global spatial-spectral TV (SSTV) regularize all the local patches simultaneously and
can ensure the global spatial-spectral smoothness of the estimated image. Besides, it helps
to separate the sparse and Gaussian noise from the observed patches via the estimated
clean patches.

Unfortunately, due to less consideration of the structural specificity of stripes, these
methods cannot effectively remove the heavy stripe noise from mixed noise. To the best of
our knowledge, most of the existing works on mixed noise denoising model the observed
HSI data without considering the stripe noise as an independent component, resulting in
unsatisfactory destriping performance. While for the destriping works, they mainly focus
on the stripe noise removal but ignore other noise. Therefore, we are motivated to propose
a destriping and denoising algorithm. In this paper, we propose a stripe-spectral low-rank
(SSLR) matrix recovery and combine it with the global SSTV regularization method to
restore the HSIs corrupted by various types of noises. The output of the proposed method
includes three independent components that are completely decoupled, i.e., sparse noise,
stripes, and the clean image.

The contributions of the proposed approach can be summarized as follows.

1. Previous methods on denoising mixed noise usually classify stripes to sparse noise
without considering its structural specificity, while in our paper, we treat the stripes
as an independent component and take full advantage of its low-rank property, thus
obtaining better destriping and denoising performance.

2. A global spatial-spectral total variation (SSTV) regularization is combined with the
stripe-spectral low-rank constraint (SSLR) in the proposed HSI denoising model to
reconstruct the clean image, stripe, and sparse noise.

3. The augmented Lagrange multiplier (ALM) algorithm is employed to solve the
proposed SSLR-SSTV model. Both simulated and real data experimental results
demonstrate that the proposed method improves the denoising results significantly
when compared with the state-of-the-art techniques. Especially, the proposed method
provide superb destriping performance with the stripe low-rank constraint.

The rest of the paper is organized as follows. Section 2 introduces the backgrounds
and preliminaries on low-rank property of HSI and stripes and SSTV regularization. The
proposed denoising model is described in Section 3. Section 4 is the experimental configura-
tions. In Section 5, both simulated experiments and real data experiment are described and
analyzed. We analyze the influence of selecting several important parameters in Section 6,
and finally, conclusions are given in Section 7.

2. Backgrounds and Preliminaries
2.1. Low-Rank Property of HSI and Stripe Component

The spectral bands of HSI data are highly correlated and have abundant redundancy.
This implies that a large number of spectra can be represented by linear low-dimensional
models [28]. To illustrate this property, we extract a full-band image patch of size m× n× P
from a HSI of size M × N × P, and convert the patch into a matrix of size mn× P. For
analyzing the low-rank property over the bands, we decompose the matrix using the
singular value decomposition (SVD), as shown in Figure 1a. The rank of full-band patch is
much less than its size, i.e., r1 � P and r1 � mn.

In terms of the stripe noise, it is different from other noise and has significant structural
and directional characteristics. We quantitatively analyze the property of stripes in HSI. For
a simulated stripe noise image, we decompose the stripe matrix using the SVD, as shown
in Figure 1b. We can observe that the singular values of the stripe image rapidly decrease
to zero with rank 1. In other words, the subspace of additive stripes can be well modeled
by low-rank constraints. Therefore, we propose to use the low-rank constraint on the
stripe directly.
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Figure 1. Low-rank property of hyperspectral image (HSI) and stripe component.

2.2. Spatial-Spectral TV (SSTV) Regularization

TV-based techniques have been widely applied to image denoising since its emer-
gence [20]. It helps to regularize the signals while preserving the important details.
Without exception, it is one of the most powerful and popular tools for HSI noise re-
moval [14,33,42,43]. For a 2D grayscale image I, the standard isotropic TV norm is
defined as

‖I‖TV = ‖DiI‖1 + ‖DjI‖1 (1)

where Di and Dj compute the first-order derivative along the horizontal and vertical
direction of the input image, respectively. The ‖·‖1 is L1-norm and denotes the sum of
absolute value of the matrix. Note that an HSI has three dimensions and strong correlations
between bands. Therefore, the isotropic SSTV norm of an HSI X is defined as

‖X‖SSTV = ‖DiX‖1 + ‖DjX‖1 + ‖DbX‖1 (2)

where Db acts the same role as Di and Dj do, but along the spectral direction. As the
gradient of different directions on HSI may be different, the istropic SSTV norm Equation (2)
can be extended to an anisotropic version:

‖X‖SSTV = τi‖DiX‖1 + τj‖DjX‖1 + τb‖DbX‖1 (3)

where τi, τj, and τb are the weighting coefficients in three directions.

3. Stripe-Spectral Low Rank and Spatial-Spectral TV Method

As mentioned before, an HSI contains different kinds of noises. In this paper, we
consider the following model:

Y = X + S + B + N (4)

where Y ∈ RM×N×P is the observed HSI, with M, N, and P the number of the rows,
columns, and bands, respectively. In (4), X is the desired clean image, S corresponds
to the additive stripe noise; N denotes the Gaussian noise; and B represents the sparse
noise, including the impulse noise, dead pixels, or lines. Despite the fact that the noises
are dependent in raw space, we do not know the prior knowledge about the correlation
between different noises. Therefore, in this paper, we assume that the different noises are
independently distributed. The aim of denoising is to recover X from Y.



Remote Sens. 2021, 13, 827 5 of 19

3.1. Proposed Model

As we have analyzed in Section 2.1, the stripe component S occurs in random bands
and has structurally repeated structure that can be described low-rank features. Therefore,
we are inspired by using a low-rank constraint on the stripe. For recovering the clean image
X from observed HSI Y, except for the widely used SSTV regularization, we also apply the
spectral low-rank constraint as a regularization term. Finally, we use the sparse constraint
on sparse noise component B. Therefore, our image reconstruction model is described by

min
X,S,B

rank(X) + λ‖B‖1 + τ‖X‖SSTV + β
P

∑
b=1

rank(Sb)

s.t.‖Y− X− S− B‖2
F ≤ ξ, rank(X) ≤ r1

‖Yb − Xb − Sb − Bb‖2
F ≤ ξ, rank(Sb) ≤ r2.

(5)

As the rank constraint rank(·) is non-convex, we adopt the nuclear norm ‖·‖∗ to
replace it, i.e., the sum of the singular values of matrix [44,45]. Therefore, the reconstruction
model is reformulated as

min
X,S,B
‖X‖∗ + λ‖B‖1 + τ‖X‖SSTV + β

P

∑
b=1
‖Sb‖∗

s.t.‖Y− X− S− B‖2
F ≤ ξ, rank(X) ≤ r1

‖Yb − Xb − Sb − Bb‖2
F ≤ ξ, rank(Sb) ≤ r2

(6)

where λ, τ, and β are the coefficients that controls the sparsity regularizer of noise, SSTV
regularizer, and the stripe low-rank regularizer, respectively. Moreover, r1 and r2 are the
upper bounds of the low-rank matrix.

When solving the low-rank constraint of the above model, the size of each band Xb of
the HSI is elongated from M× N to MN × 1, so the size of X becomes MN × p, making X
a very thin matrix. It is proved in [46] that the processing of a very thin matrix may cause
parametric blurring because of the limited degrees-of-freedom. Therefore, the application
of a global low-rank constraint to the HSI is unfavored. In order to solve this problem,
in [41], the authors divide the HSI in local and full-band overlapping patches, thus better
preserving the detail information. In this paper, we also apply the low-rank constraint to
the local patches, refer to Figure 1a as an example. We obtain full-band patches from the
3-D image X and sparse noise B. For the stripe noise, we still use the global information.
Based on this idea, the optimization problem (6) can be defined as

min
X,S,B

∑
ij
(
∥∥Xij

∥∥
∗ + λ

∥∥Bij
∥∥

1) + τ‖X‖SSTV + β
P

∑
b=1
‖Sb‖∗

s.t.
∥∥Yij − Xij − Sij − Bij

∥∥2
F ≤ ξ, rank(X) ≤ r1

‖Yb − Xb − Sb − Bb‖2
F ≤ ξ, rank(Sb) ≤ r2,

(7)

where Xij and Bij are the clean image patch and sparse noise patch of m× n× p at location
(i, j), respectively. The patch cube is extracted by a binary operator Aij : X→ Xij.

The proposed reconstruction model aims to optimize three variables—X, S, and B—
simultaneously, which can be solved via an alternatively minimizing strategy. Next, we will
introduce the optimization procedure and solve the optimization problem (7) according to
the augmented Lagrange multiplier (ALM) method.
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3.2. Optimization Procedure

As mentioned above, we adopt the ALM to solve the minimization problem (7) by
introducing three variables J, W ∈ RM×N×P and U ∈ RM×N×P×3. The optimization
problem (7) is then equivalent to

min
X,S,B,J,W,U

∑
ij
(
∥∥Xij

∥∥
∗ + λ

∥∥Bij
∥∥

1) + τ‖U‖SSTV + β
P

∑
b=1
‖Sb‖∗

s.t.Xij = Jij, J = W, U = DW,∥∥Yij − Xij − Sij − Bij
∥∥2

F ≤ ξ, rank(X) ≤ r1

‖Yb − Xb − Sb − Bb‖2
F ≤ ξ, rank(Sb) ≤ r2

(8)

where D =
[
τiDi, τjDj, τbDb

]
is the SSTV operator, as presented in Equation (3).

The augmented Lagrangian function is described as follows:

{X, S, B, J, W, U} = arg min
X,S,B,J,W,U

∑
ij

(∥∥Xij
∥∥
∗ + λ

∥∥Bij
∥∥

1

+IY
ij · (Yij − Xij − Bij − Sij) +

ρ

2

∥∥Yij − Xij − Bij − Sij
∥∥2

F

+IX
ij · (Xij − Jij) +

ρ

2

∥∥Xij − Jij
∥∥2

F

)
+ I J · (J −W) +

ρ

2
‖J −W‖2

F

+ τ‖U‖SSTV + IU · (U −DW) +
ρ

2
‖U −DW‖2

F

+
P

∑
b=1

(
β‖Sb‖∗ + I

S
b · (Yb − Xb − Bb − Sb) +

ρ

2
‖Yb − Xb − Bb − Sb‖2

F

)
(9)

where ρ is the penalty coefficient, and IY
ij , IX

ij , I J , IU , and IS
b are the Lagrangian multi-

pliers. By choosing proper initialization and regularization parameters, we can obtain a
satisfactory result. The restoration process of ALM can be decomposed into six simpler
subproblems, and their variables are updated in an alternate iterative manner.

(1) Optimization problem regarding Xij:

Xij = arg min
Xij

∑
ij

(∥∥Xij
∥∥
∗ + I

Y
ij · (Yij − Xij − Bij − Sij) +

ρ

2

∥∥Yij − Xij − Bij − Sij
∥∥2

F

+IX
ij · (Xij − Jij) +

ρ

2

∥∥Xij − Jij
∥∥2

F

)
= arg min

Xij
∑
ij

∥∥Xij
∥∥
∗ +

ρ

2

∥∥∥∥∥Yij − Xij − Bij − Sij +
IY

ij

ρ

∥∥∥∥∥
2

F

+
ρ

2

∥∥∥∥∥Xij − Jij +
IX

ij

ρ

∥∥∥∥∥
2

F

.

(10)

The step of updating Xij is a typical low-rank matrix approximation problem, which
can be easily solved by performing a soft threshold operation on the matrix singular value
decomposition (SVD) [47]:

Xij = U
(

shrink_L∗(Σr1 ,
1

2ρ
)

)
V∗

shrink_L∗(Σr1 ,
1

2ρ
) = diag{max(Σr1 ii −

1
2ρ

, 0)}

SVD(
Yij + Jij − Bij − Sij

2
+
IY

ij − IX
ij

2ρ
) = UΣV∗

(11)

where Σr1 ii is the diagonal element of the singular-value matrix Σr1 = diag(σi(1 < i < r1)).
(2) Optimization problem regarding stripe noise Sb:



Remote Sens. 2021, 13, 827 7 of 19

Given an image X, sparse noise B, and the optimization equation of striped noise, Sb
is as follows:

Sb = arg min
Sb

P

∑
b=1

(
β‖Sb‖∗ + I

S
b · (Yb − Xb − Bb − Sb) +

ρ

2
‖Yb − Xb − Bb − Sb‖2

F

)

= arg min
Sb

P

∑
b=1

β‖Sb‖∗ +
ρ

2

∥∥∥∥∥Yb − Xb − Bb − Sb +
IS

b
ρ

∥∥∥∥∥
2

F

.

(12)

Equation (12) can also be easily solved by performing soft threshold operation on the
matrix singular values. 

Sb = U
(

shrink_L∗(Σr2 ,
β

ρ
)

)
V∗

SVD(Yb − Bb − Xb +
IS

b
ρ
) = UΣV∗

, (13)

where Σr2 = diag(σi(1 < i < r2)).
(3) Optimization problem regarding sparse noise Bij:

Given an image X, stripe noise B, and the optimization equation of sparse noise, Bij is
as follows:

Bij = arg min
Bij

∑
ij

(∥∥Bij
∥∥

1 + I
Y
ij · (Yij − Xij − Bij − Sij) +

ρ

2

∥∥Yij − Xij − Bij − Sij
∥∥2

F

)

= arg min
Bij

∑
ij

∥∥Bij
∥∥

1 +
ρ

2

∥∥∥∥∥Yij − Xij − Bij − Sij +
IY

ij

ρ

∥∥∥∥∥
2

F


= shrink_L1(Yij − Xij − Sij +

IY
ij

ρ
,

λ

ρ
)

(14)

where shrink_L1 is the soft-threshold operator of L1 norm [48], which is defined as

shrink_L1(x, γ) =


x− γ, i f x > γ

x + γ, i f x < γ

0, else

. (15)

(4) The J-related optimizing step:

J = arg min
J

∑
ij

(
IX

ij · (Xij − Jij) +
ρ

2

∥∥Xij − Jij
∥∥2

F

)
+ I J · (J −W) +

ρ

2
‖J −W‖2

F

= arg min
J

∑
ij

ρ

2

∥∥∥∥∥Xij − Jij +
IX

ij

ρ

∥∥∥∥∥
2

F

+
ρ

2

∥∥∥∥J −W +
I J

ρ

∥∥∥∥2

F
.

(16)

It is easy to see that (16) has a closed-form solution. The form of solution is as follows:

J = (W − I
J

ρ
+ ∑

ij
AT

ij(Xij +
IX

ij

ρ
))./(L + ∑

ij
AT

ij Aij) (17)

where L represents a full-one tensor of size M×N× P, and ./ means dividing each element
of the previous matrix by the corresponding element of the latter matrix.



Remote Sens. 2021, 13, 827 8 of 19

(5) The W-related optimizing step:

W = arg min
W
IU · (U −DW) +

ρ

2
‖U −DW‖2

F + I
J · (J −W) +

ρ

2
‖J −W‖2

F

=arg min
W

ρ

2

∥∥∥∥U −DW +
IU

ρ

∥∥∥∥2

F
+

ρ

2

∥∥∥∥J −W +
I J

ρ

∥∥∥∥2

F
.

(18)

This problem can be effectively solved according to the fast Fourier transform (FFT)
method [41]:

W = F−1

 F ((J + I J

ρ ) + DT(U + IU

ρ ))

1 +F (τiDi)2 +F (τjDj)2 +F (τbDb)2

 (19)

where F and F−1 represent the Fast Fourier Transform (FFT) and the inverse FFT, respec-
tively. DT stands for the adjoint operator of D.

(6) The U-related optimizing step:

U = arg min
U

τ‖U‖1 + I
U · (U − DW) +

ρ

2
‖U − DW‖2

F

= arg min
U

τ‖U‖1 +
ρ

2

∥∥∥∥U − DW +
IU

ρ

∥∥∥∥2

F

(20)

where Y and U can be expressed as IU = [IU
1 , IU

2 , IU
3 ] and U = [U1, U2, U3]. The opti-

mization problem (20) can be solved by soft-thresholding (shrinkage) operator shrink_L1,
which is the same as Equation (15):

U1 = shrink_L1(τiDiW −
IU

1
ρ

,
τ

ρ
)

U2 = shrink_L1(τjDjW −
IU

2
ρ

,
τ

ρ
)

U3 = shrink_L1(τbDbW −
IU

3
ρ

,
τ

ρ
)

. (21)

Then, the Lagrangian multipliers IY
ij , IX

ij , I J , IU and IS
b can be updated in parallel:

IY
ij = IY

ij + ρ(Yij − Xij − Bij − Sij)

IX
ij = IX

ij + ρ(Xij − Jij)

I J = I J
ij + ρ(J −W)

IU = IU
ij + ρ(U −DW)

IS
b = IS

ij + ρ(Yb − Xb − Bb − Sb)

. (22)

The algorithm procedure is summarized in Algorithm 1.
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Algorithm 1 SSLR-SSTV

1: Input: observed HSI Y, desired rank r, patch size, stopping criterion ε, regularization parameters
λ, β and τ = [τi, τj, τb]

2: Initialize: Set parameters λ, β, τ = [τi, τj, τb], ε, r; Y = X = J = W; U = S = B = 0;
3: for iter=1 : IterMax do

Update Xij via (11);
Compute Sb by solving (13);
Solve (14) for B;
Update J, W, U, and the Lagrangian multipliers using (17), (19), (21) and (22), respectively.
Check the convergence conditions.
‖Y− X− S− B‖2

F ≤ ξ ,
‖Yb − Xb − Sb − Bb‖2

F ≤ ξ
end for

4: Output: Clean Image X, sparse noise B and stripe noise S.

4. Experimental Configurations
4.1. Datasets

In our experiments, we use four HSI datasets. The details of these datasets (The
datasets are available through: http://lesun.weebly.com/hyperspectral-data-set.html, https:
//engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html, http://www.escience.
cn/people/feiyunZHU/DatasetGT.html (accessed on 11 January 2021)) are as follows.

• ROSIS Pavia city center dataset: This dataset was collected by the reflective optics
system imaging spectrometer (ROSIS-03). We use a 200× 200× 80 cube to implement
our experiment.

• HYDICE Washington DC Mall (WDC) dataset: This dataset was acquired in the Wash-
ington DC mall by the Hyperspectral Digital Imagery (HYDICE) sensor. The whole
image contains 1208× 307 pixels and 191 spectral channels. We select a sub-image of
256× 256× 80.

• EO Hyperion Dataset: This dataset was acquired by the EO-1 HYPERION sensor;
the spectral and spatial resolutions of this dataset are 166 bands and 400 × 200
pixels, respectively.

• HYDICE Urban Dataset: This dataset was acquired in the Copperas Cove by the
HYDICE sensor, which also contains intricate ground substances. The spectral and
spatial resolutions of this dataset are 210 bands and 307× 307 pixels.

The first two datasets are noise-free and used in the simulated experiments. The last
two datasets are corrupted by real noise and used in the real noise experiments.

4.2. Experimental Indicators and Settings

In the simulated experiments, we use the mean peak signal-to-noise ratio
(MPSNR) [49,50], mean structural similarity (MSSIM) [51], and the mean spectral an-
gle mapper (MSAM) [52] to evaluate the quality of the denoising results of each algorithm.
PSNR and SSIM are two of the most widely used quality assessment indexes in the field
of image processing and computer vision. The PSNR measures the quality of the restored
image according to the mean square error, and the SSIM evaluates the similarity between
the target image and the reference image. The higher the PSNR and SSIM are, the better the
restored image is. SAM calculates the spectral similarity according to the angular difference
between the spectrum vectors of the filtered and the noise-free HSI. The smaller SAM is,

 http://lesun.weebly.com/hyperspectral-data-set.html
https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
http://www.escience.cn/people/feiyunZHU/Dataset GT.html
http://www.escience.cn/people/feiyunZHU/Dataset GT.html
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the more similar the restored image is to the original image. These three measurements are
calculated as

MPSNR =
1
b

P

∑
b=1

10log10
Imax,b

2 ×MN

‖ûb − ub‖2

MSSIM =
1
b

P

∑
b=1

(2µub µûb + C1)(2σub ûb + C2)

(µ2
ub
+ µ2

ûb
+ C1)(σ2

ub
+ σ2

ûb
+ C2)

MSAM =
1
P

P

∑
b=1

arccos

 ∑MN
i ui

bûi
b√

∑MN
i=1 (u

i
b)

2
√

∑MN
i=1 (û

i
b)

2


(23)

where Imax,b is the maximum value of the image on the bth band. ûb and ub denote the
denoised and clean HSI in bth band, respectively. µub and µûb are average values of image ub
and ûb, and σub , σûb represent the the variances, while σub ûb means the covariance between
two images.

In real HSI experiments, due to the lack of reference image, we use a no-reference
HSI quality assessment (The MATLAB code was provided by Dr. Jingxiang Yang; Avail-
able: https://github.com/polwork/No-Reference-Hyperspectral-Image-Quality-Assessment-
via-Quality-Sensitive-Features-Learning (accessed on 11 January 2021)) [50] to evaluate the
denoised images. The smaller the quality assessment score is, the better the denoising or
restoring result is.

In both simulated and read data experiments, we compare our denoising results
with six state-of-the-art denoising methods on mixed noise: BM4D [12], low-rank matrix
recovery (LRMR) [25], the TV-regularized low-rank method (LRTV) [33], the noise-adjusted
iterative low-rank matrix approximation (NAILRMA) [26], SSTV-regularized local low-
rank matrix recovery (LLRSSTV) he2018hyperspectral, and double-factor-regularized LRTF
(LRTF-DFR) method [34]. In addition, in order to further demonstrate the superior de-
striping performance of our method, we also compare our SSLR-SSTV method with the
low-rank-based single-image decomposition model (LRID) under different stripe noise.

We set the penalty parameter ρ as 10−2. The patch size is initialized to 20 × 20,
and the step length is 10 both in the horizontal and vertical directions, empirically. Finally,
the stopping criterion ε and the iteration number IterMax are set to 10−6 and 50, respectively.
Before the denoising, we normalize the HSI data to [0, 1] by dividing the maximal value of
the HSI data cube. The selection of parameters will be discussed in Section 6.

4.3. Simulation Configurations

Real HSIs are usually degraded by a mix of various noises. The goal of our algorithm
is to destripe and denoise. To simulate a noisy image, we add Gaussian noise with different
standard variance σ, salt-and-pepper impulse noise with different percentage o, and stripes
with different percentages r and different intensities v to randomly selected 30% the bands
of the two HSI datasets, as described in the following three cases.

• Case 1: (Gaussian Noise + Salt and Pepper Noise + stripes with different percentages) We
add Gaussian noise and impulse noise with σ = 0.05 and o = 0.1. Besides, the intensity
of the stripes is v = 0.075. For each band with stripes, we consider using increasing
percentages of the stripes r = 0.3, 0.5, and 0.7, respectively.

• Case 2: (Gaussian Noise + Salt and Pepper Noise + stripes with different intensity) Based on
case 1, we choose the stripe noise with the percentage of r = 0.3 and the intensity of
v = 0.05, 0.075, and 0.1.

• Case 3: (only stripes) Only stripe noise is added to image data. The intensity of the
stripes is v = 0.05 0.075, 0.1, and the percentages of the stripes are r = 0.3, 0.5.

https://github.com/polwork/No-Reference-Hyperspectral-Image-Quality-Assessment-via-Quality-Sensitive-Features-Learning
https://github.com/polwork/No-Reference-Hyperspectral-Image-Quality-Assessment-via-Quality-Sensitive-Features-Learning
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5. Experimental Results

In this part, we conduct several simulated and real data experiments to verify the
effectiveness of our method.

5.1. Simulated Data Experiments

In our proposed method, clean image components X are reconstructed through TV
regularization terms and local low-rank constraints. The L1 sparse regularization and the
low-rank constraint help to separate the sparse noise B and stripe noise S from the HSI,
respectively. Figure 2 illustrates the output independent components of our method in case
1 with σ = 0.05, o = 0.1, v = 0.075, and r = 0.3. Figure 2a presents the observed image Y,
Figure 2b is the denoised image X, and Figure 2c,d shows the output sparse noise B and
the output stripe noise S, respectively.

Figures 3 and 4 present the denoising results of the different methods for the two
simulated data sets in Case 1 with r = 0.5, v = 0.075. Figure 3 shows the denoising
results of Pavia city center data in band 11 and its zoom-in image. Figure 4 presents
the denoising results of Washington DC Mall data in band 3 and its zoom-in image.
Figures 3a and 4a present the original Pavia City Center data and Washington DC Mall
data, respectively. Figures 3b and 4b show the image after adding the simulated mixed
noise. Figures 3c–i and 4c–i display the denoising results of the different methods. By
visually comparing the denoising results of these methods, it can be seen clearly that the
proposed method outperforms the other methods and can effectively remove the mixed
noise. From Figure 4c–i, we can observe that BM4D fails in removing sparse noise and
stripe noise because it does not consider the correlation between bands. NAILRMA does
not behave well because it only considers the Gaussian distribution of noise. LRMR,
LLRSSTV, LRTV, and LRTF-DFR can effectively remove the sparse noise and Gaussian
noise, but the stripe noise is not well filtered. Figures 3 and 4 demonstrate that the proposed
SSLR-SSTV can best preserve local details and remove high intensity of stripe noises in the
mixed noise.

Figure 5 shows the PSNR and SSIM values of each band of the Pavia City Center
images and Washington DC Mall in case 1, respectively. As presented in Figure 5, the pro-
posed method achieves the best PSNR and SSIM values in most bands of the image. In
addition, we can see that the PSNR and SSIM of our method are smooth between bands,
while other methods have relatively large differences between each band, which forms saw-
tooth. Actually, the sawtooth is generated at bands where there are stripe noise. Figure 5
proves that our method has better destriping performance than the other methods. The
above experiments demonstrate the superiority of the proposed method, especially its
ability of destriping in mixed noise.

The quantitative evaluation results of the different denoising methods with the simu-
lated noise in cases 1 and 2 for the Washington DC Mall data and the Pavia City Center
data are shown in Table 1. We use bold to mark the best result for each quality index in the
same case. As is shown in Table 1, our method achieves the highest MPSNR, the largest
MSSIM, and the smallest MSAM in most cases when compared to the other methods. This
result proves the advantage of our method in removing mixed noise from HSI.

Besides, we made rough comparisons with three deep learning-based methods [35–37].
Given the input images with the same noise level, our method can yield comparable or
even better denoising results according to the evaluation indexes. However, we cannot
conclude that our method is better than the deep learning-based methods, as those deep
learning-based methods need proper training datasets, hyperparameter selection, etc.,
which are not accessible in our experiments. In this paper, we focus on developing a
model-based HSI denoising method to quickly obtain accurate results without supervising
information and training data.
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(a) (b) (c) (d)

Figure 2. The image decomposition result of our method in Pavia City Center image (band 22). The data are corrupted by
the noise simulated in case 1 with σ = 0.05 and o = 0.1, r = 0.3, and v = 0.075; (a) observed image Y, (b) denoised image X,
(c) the output sparse noise B, and (d) the output stripe noise S.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3. The Pavia City Center image (11th band) (top) and zoom-in image (bottom) before and after denoising in case 1
with σ = 0.05 and o = 0.1, r = 0.5, v = 0.075. (a) Original image; (b) noise image; and the image denoising results of (c) BM4D,
(d) NAILRMA, (e) LRMR, (f) LLRSSTV, (g) LRTV, (h) LRTF-DFR, and (i) SSLR-SSTV (proposed method).

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4. The Washington DC Mall image (3th band) (top) and zoom-in image (bottom) before and after denoising in case 1
with σ = 0.05 and o = 0.1, r = 0.5, v = 0.075. (a) Original image; (b) noise image; and the image denoising results of (c) BM4D,
(d) NAILRMA, (e) LRMR, (f) LLRSSTV, (g) LRTV, (h) LRTF-DFR, and (i) SSLR-SSTV (proposed method).

(a) (b) (c) (d)

Figure 5. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) values of each band in the Pavia City
Center images (a,b) and Washington DC Mall (c,d) with case 1: σ = 0.05 and o = 0.1, r = 0.5, v = 0.075.
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Table 1. In the different cases of simulated mixed noise (case 1 and case 2), the quantitative picture quality indices of
denoising two HSI data with different methods.

Case Data Gaussian
Noise

Salt and
Pepper Noise Stripes Indicators Noisy BM4D NAILRMA LRMR LLRSSTV LRTV LRTF_DFR SSLR-SSTV

Case 1
Gaussian+
Salt and
Pepper Noise
+stripes
(different
percentages)

Pavia city σ = 0.05 o = 0.1

r = 0.3
v = 0.075

r = 0.5
v = 0.075

r = 0.7
v = 0.075

MPSNR
MSSIM
MSAM

MPSNR
MSSIM
MASM

MPSNR
MSSIM
MSAM

14.2135
0.2414
0.7083

14.1624
0.2380
0.7103

14.1338
0.2358
0.7126

25.1773
0.6985
0.2340

25.0946
0.6944
0.2325

25.0585
0.6914
0.2339

26.3919
0.8161
0.1415

25.9381
0.7916
0.1569

25.5457
0.7627
0.1805

32.1789
0.9006
0.1442

31.3789
0.8760
0.1746

30.9459
0.8468
0.2099

33.0750
0.9256
0.1299

31.0370
0.8924
0.1634

30.0624
0.8564
0.2102

34.0848
0.9240
0.1311

33.5149
0.9078
0.1566

33.1073
0.8819
0.1922

34.2962
0.9400
0.1001

33.3251
0.9286
0.1062

32.6091
0.9028
0.1062

35.9412
0.9672
0.0883

35.9781
0.9674
0.0860

35.9542
0.9674
0.0864

Washington DC Mall σ = 0.05 o = 0.1

r = 0.3
v = 0.075

r = 0.5
v = 0.075

r = 0.7
v = 0.075

MPSNR
MSSIM
MSAM

MPSNR
MSSIM
MASM

MPSNR
MSSIM
MSAM

14.1100
0.2030
0.6104

14.0866
0.2013
0.6127

14.0452
0.1989
0.6145

24.5282
0.5682
0.2187

24.5261
0.5675
0.2198

24.3282
0.5574
0.2213

25.9672
0.7230
0.1597

25.5618
0.6864
0.1708

25.2558
0.6745
0.1769

32.2587
0.8481
0.1017

31.3062
0.8015
0.1255

31.2042
0.7979
0.1400

32.2334
0.8989
0.1162

30.9260
0.8584
0.1302

30.6388
0.8407
0.1283

33.4941
0.8946
0.0746

32.7237
0.8561
0.0939

32.5230
0.8466
0.1102

34.7571
0.9327
0.0577

33.5054
0.9059
0.0668

33.1975
0.8954
0.6070

34.7809
0.9499
0.0807

34.6840
0.9494
0.0806

34.7539
0.9498
0.0795

Case 2
Gaussian+
Salt and
Pepper Noise
+stripes
(different
intensity)

Pavia city σ = 0.05 o = 0.1

r = 0.3
v = 0.05

r = 0.3
v = 0.1

MPSNR
MSSIM
MSAM

MPSNR
MSSIM
MSAM

14.2506
0.2445
0.7061

14.1672
0.2387
0.7110

25.2494
0.7020
0.2333

25.0163
0.6935
0.2359

26.6699
0.8329
0.1333

25.8698
0.7903
0.1612

33.2249
0.9298
0.1187

31.3262
0.8757
0.1695

35.0842
0.9585
0.0909

31.1318
0.8958
0.1570

34.9714
0.9478
0.1072

33.4429
0.9053
0.1485

35.6133
0.9619
0.0765

33.0726
0.9218
0.1217

35.9348
0.9673
0.0881

35.9719
0.9676
0.0862

Washington DC Mall σ = 0.05 o = 0.1

r = 0.3
v = 0.05

r = 0.3
v = 0.1

MPSNR
MSSIM
MSAM

MPSNR
MSSIM
MASM

14.1461
0.2052
0.6086

14.0768
0.2010
0.6129

24.5298
0.5706
0.2202

24.4740
0.5656
0.2206

26.1667
0.7390
0.1568

25.4846
0.6844
0.1719

33.2962
0.8821
0.0865

31.2627
0.8073
0.1228

32.9514
0.9181
0.1097

30.8719
0.8577
0.1273

34.2894
0.9222
0.0613

32.6464
0.8604
0.0900

35.2569
0.9398
0.0532

33.2457
0.9033
0.0678

34.8278
0.9501
0.0796

34.7806
0.9502
0.0799

Table 2 shows the destriping results for both Pavia City and Washington DC datasets
with the simulated stripe noise in cases 3. In general, our method has higher MPSNR
and MSSIM values in most cases compared with the LRID method. This phenomenon
shows that our method is competitive in restoring images corrupted by stripe noise. We
show the destriping results of the Pavia city and Washington DC Mall in Figures 6 and 7,
respectively.

(a) (b) (c) (d)

(e) (f) (g)

Figure 6. Comparison of the destriping results in Pavia City (11th band) under two different noise
levels. (a) Original image. (b) Noise image r = 0.5, v = 0.075. (c) LRID. (d) Our method. (e) Noise
image with r = 0.3, v = 0.1. (f) LRID. (g) SSLR-SSTV (proposed method).
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7. Comparison of the destriping results in Washington DC Mall (3th band) under two different
noise level. (a) Original image. (b) Noise image r = 0.5, v = 0.075. (c) LRID. (d) Our method.
(e) Noise image with r = 0.3 v = 0.1. (f) LRID. (g) SSLR-SSTV (proposed method).

Table 2. The result of HSI denoising using low-rank-based single-image decomposition model (LRID) and SSLR-SSTV in
different stripe noise levels.

Image Method Indicators
Stripes

r = 0.3
v = 0.075

r = 0.5
v = 0.075

r = 0.7
v = 0.075

r = 0.3
v = 0.05

r = 0.3
v = 0.1

Pavia city

LRID_destripe
MPSNR
MSSIM
MSAM

32.7530
0.9554
0.0907

32.7487
0.9559
0.0905

32.6235
0.9547
0.0920

33.3185
0.9567
0.0797

32.7800
0.9552
0.0919

SSLR-SSTV
MPSNR
MSSIM
MSAM

35.7038
0.9673
0.0866

36.3639
0.9704
0.0805

32.9474
0.9391
0.1048

38.0868
0.9786
0.0722

37.5613
0.9770
0.0753

Washington DC Mall

LRID_destripe
MPSNR
MSSIM
MSAM

31.9562
0.9403
0.0589

32.0484
0.9394
0.0566

31.8708
0.9403
0.0589

32.0538
0.9404
0.0575

31.8131
0.9392
0.0598

SSLR-SSTV
MPSNR
MSSIM
MSAM

33.8812
0.9466
0.0755

36.4991
0.9699
0.0657

33.1961
0.9305
0.0815

35.4121
0.9652
0.0699

33.8284
0.9485
0.0761

5.2. Real HSI Noise Experiments

In this section, we evaluate the performance of the proposed method on two real HSI
data sets: EO Hyperion Dataset and HYDICE Urban Dataset. Figures 8 and 9 show the
denoising results obtained in the EO Hyperion data of bands 132 and Urban dataset of
bands 206, respectively. From Figures 8a–h and 9a–h, we can see that the BM4D method fails
to denoise the mixed noise. As presented in Figures 8 and 9c,d, the NAILRMA and LRMR
can remove some noise, but there is still obvious noise surviving. In Figures 8e and 9e,
LRTV has oversmoothed the image and distorted the edge. By comparison, our method,
LLRSSTV, and LRTF-DFR achieve a better restoration result visually than other compared
methods. In Figure 8e,g, LLRSSTV is slightly better than our method in maintaining details.
Table 3 shows the blind HSI quality assessment of different methods on real data. As shown
in this table, our method achieves the lowest scores on two real HSI datasets. This result
further demonstrates the superiority and robustness of our method.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Band 132 of the EO Hyperion dataset before and after denoising via the different methods: (a) Original image,
(b) BM4D, (c) NAILRMA, (d) LRMR, (e) LLRSSTV, (f) LRTV, (g) LRTF-DFR, and (h) SSLR-SSTV (proposed method).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. Band 206 of the EHYDICE Urban dataset before and after denoising via the different methods: (a) Original image,
(b) BM4D, (c) NAILRMA, (d) LRMR, (e) LLRSSTV, (f) LRTV, (g) LRTF-DFR, and (h) SSLR-SSTV (proposed method).

Table 3. THE result of HSI denoising on real data.

Data Noise BM4D NAIRLMA LRMR LLRSSTV LRTV LRTF_DFR SSLR-SSTV

EO Hyperion 13.7319 13.7218 13.6193 13.4800 12.3797 12.3925 13.4411 12.1580
URBAN 12.9954 12.8967 12.2262 12.2081 10.8188 11.8250 12.9058 10.7117

6. Discussion

Parameters play significant roles in controlling the denoising performance. In our
method, the parameter λ controls the regularization of the sparse noise B, β is the parameter
for stripe noise S, and τ adjusts the spatial-spectral smoothness of the reconstructed X.
In the experiments, we adjust these parameters to achieve the highest PSNR value.

First, we analyze the influence of the parameters τ, λ and β on the denoising results
with the simulated noise in cases 1 and 2 for the two simulated datasets. Figure 10 shows
the MPSNR values of SSLR-SSTV on the Pavia dataset and Washington DC Mall data,
as related to parameters τ, λ, and β. It can be seen from these figures that the optimal
parameters of our method are τ = 0.03, λ = 0.3 and β = 1, and the result is robust under
different noise cases and different images.

Second, we investigate the effect of the upper bound rank r1 and r2. We select r1 and
r2 from [1, 6], and fix the parameters as τ = 0.03, λ = 0.3 and β = 1. It is clear that the
denoised results are best when r1 = 2 and r2 = 1 in Figure 11. This is in accordance with
our analysis in Section 2.1.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. MPSNR values of SSLR-SSTV (proposed method) for Pavia City Center image (top) and Washington DC Mall
(bottom) by varying parameters τ, λ, and β. The data were corrupted by the noise simulated in case 1 and case 2 with σ = 0.05
and o = 0.1: (a,f) r = 0.3, v = 0.075; (b,g) r = 0.5, v = 0.075; (c,h) r = 0.7, v = 0.075; (d,i) r = 0.3, v = 0.05; (e,j) r = 0.3, v = 0.1.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11. MPSNR values of SSLR-SSTV (proposed method) for Pavia City Center image (top) and Washington DC Mall image
(bottom) by varying parameters r1 and r2. The data were corrupted by the noise simulated in case 1 and case 2 with σ = 0.05
and o = 0.1 (a,f) r = 0.3, v = 0.075; (b,g) r = 0.5, v = 0.075; (c,h) r = 0.7, v = 0.075; (d,i) r = 0.3, v = 0.05; (e,j) r = 0.3, v = 0.1.

During the simulation experiment, we find some bias between the mean value of the
filtered result and the original image, i.e., the filtered image is visually darker than the
original image. This phenomenon is because our algorithm regards horizontal and vertical
components of the clean image as stripes. Numerous experiments have shown that the
difference between the mean value of the filtered image and the original image is close to
the mean value of the stripes component. Therefore, we compensate for the filtered result
by adding the difference and achieve an excellent visual effect.

Furthermore, we compare the running time with the other methods. Table 4 shows
the average processing time of these methods on simulated data and on real data. All
of the compared algorithms are running on Matlab R2019a (Intel i7 CPU at 3.60 GHz,
16 GB of memory). Note that our degradation model contains four components, and the
optimization process may be a little more costly than the other methods, but our method
can provide better denoising and destriping results.



Remote Sens. 2021, 13, 827 17 of 19

Table 4. Comparisons of computational time for the denoising methods (in seconds).

Data BM4D NAILRMA LRMR LLRSSTV LRTV LRTF_DFR SSLR-SSTV

Pavia city 178.59 s 60.94 s 111.18 154.63 s 20.94 s 71.22 s 220.25 s

Washington DC Mall 341.22 s 77.57 s 283.32 373.11 s 31.52 s 107.29 s 576.58 s

EO Hyperion 1432.84 s 1951.05 s 1031.03 723.98 s 91.54 s 144.56 s 1006.70 s

URBAN 3526.43 s 4860.03 s 3124.84 s 773.26 s 106.78 s 161.74 s 757.68 s

7. Conclusions

Focusing on the destriping and denoising problem of HSI corrupted by mixed noise,
we proposed a stripe and spectral low-rank matrix recovery and global spatial-spectral
total variation (SSLR-SSTV) method in this paper. In our model, the noises in HSI are
classified into sparse noise, stripe noise, and Gaussian noise. A global spatial-spectral
TV regularization and local low-rank constraint is utilized to remove the Gaussian noise
and reconstruct the clean image. Considering the significant structural and directional
characteristic of stripes, we use the low-rank constraint on the stripe noise of each band.
In addition, we take advantage of the sparse property to remove the sparse noise. The
designed restoration model is efficiently solved by the augmented Lagrange multiplier
algorithm. Experiments on both simulated and real HSI datasets show that our method has
the ability to accurately suppress noise and keep image details. Our method outperforms
the state-of-the-art methods both in visual quality and evaluation criteria, especially when
the stripe noise is strong in the mixed noise.
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