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Abstract: This study investigates the use of unmanned aerial systems (UAS) mapping for monitor-
ing the efficacy of invasive aquatic vegetation (AV) management on a floating-leaved AV species,
Nymphoides cristata (CFH). The study site consists of 48 treatment plots (TPs). Based on six unique
flights over two days at three different flight altitudes while using both a multispectral and RGB
sensor, accuracy assessment of the final object-based image analysis (OBIA)-derived classified images
yielded overall accuracies ranging from 89.6% to 95.4%. The multispectral sensor was significantly
more accurate than the RGB sensor at measuring CFH areal coverage within each TP only with the
highest multispectral, spatial resolution (2.7 cm/pix at 40 m altitude). When measuring response in
the AV community area between the day of treatment and two weeks after treatment, there was no sig-
nificant difference between the temporal area change from the reference datasets and the area changes
derived from either the RGB or multispectral sensor. Thus, water resource managers need to weigh
small gains in accuracy from using multispectral sensors against other operational considerations
such as the additional processing time due to increased file sizes, higher financial costs for equipment
procurements, and longer flight durations in the field when operating multispectral sensors.

Keywords: crested floatingheart; herbicide; multispectral; Nymphoides cristata; object-based; OBIA; UAS

1. Introduction

Aquatic vegetation (AV), also known as macrophytes, has important ecological and
regulatory functions in lakes, streams, and wetlands [1]. These ecosystem services in-
clude habitat provisioning for fauna and waste treatment via nutrient uptake from the
water column [2]. Invasive AV can alter native plant communities by displacing native
species, changing community structures or ecological functions, or hybridizing with native
species [3,4]. By monitoring AV, ecosystem changes can be detected. Subsequently, water
resource managers can implement control strategies when and where necessary.

1.1. Aquatic Vegetation Management

Typical invasive AV management strategies include (a) biological control, (b) mechan-
ical control, and (c) herbicide control [4,5]. Biological control includes the use of insects,
fish, or other animals to consume invasive AV. Prominent examples of biological control
for AV include grass carp for submersed AV [6] and insects feeding on emergent AV [7].
Mechanical control necessitates the use of harvesting equipment to physically remove the
invasive vegetation from the water column. For example, harvesting is used for both hy-
drilla (Hydrilla verticillata) and rotala (Rotala rotundifolia) in South Florida canal systems [8].
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Lastly, using herbicides can kill or stunt the growth of invasive AV. Herbicides are often
applied as either in-water treatments or foliar applications.

Invasive, exotic AV can be found across all four major categories of macrophytes:
emergent (EAV), floating-leaved (FLAV), submersed (SAV), and free-floating (FFAV) [5].
In 2003, a cost-benefit analysis of aquatic weed impact on recreational use of waterways
was estimated between $1 and $10 billion annually in the United States [9]. Further, federal
spending in the United States on invasive AV control was estimated at over $1.3 billion
in 2009 [10]. To ensure the public use of waterways as well as other positive ecosystem
services, water resource managers spend significant time and monetary resources on
the control of invasive or nuisance AVs. In Florida, there are 80 species of vegetation
listed as Category 1 invasive exotic plants on the Florida Exotic Pest Plant Council’s 2019
List of Invasive Plant Species [3]. Nymphoides cristata, more commonly known as crested
floatingheart (CFH), is an invasive aquatic weed that was originally added to this list in
2009 [11]. Furthermore, CFH was added to the Florida Department of Agriculture and
Consumer Services (FDACS) Noxious Weed List in 2014 making CFH illegal to introduce,
multiply, possess, move, or release [12,13].

CFH is a type of FLAV with a nymphaeid growth form, which means the plant
is rooted in the sediment and produces floating leaves at the end of long stems [14].
Thus, as a type of FLAV, CFH is different from FFAV such as waterhyacinth (Pontederia
(Eichhornia) crassipes). Waterhyacinth, another Florida Noxious Weed [13], forms dense
mats on the water surface but is more susceptible to drift due to water currents and wind
direction [15]. CFH aggressively reproduces even in nutrient-poor environments [12] and is
capable of spreading rapidly in large bodies of water over a short period of time [16]. Thus,
detection and management of CFH are of critical importance to water management districts
within Florida (e.g., South Florida Water Management District (SFWMD), Southwest
Florida Water Management District (SWFWMD)) and outside Florida (e.g., Santee Cooper
in South Carolina). Since mechanical harvesting results in plant material breaking off
during removal, mechanical control is not a suitable management option because CFH
and similar species can propagate through fragmentation (i.e., when stems/leaves break
off a parent plant to form new plants) [12]. While biological control development is
recommended and being investigated for CFH, it is not yet a viable control strategy [17].
Thus, herbicide control is the primary management method for CFH and related FLAV
species. Greenhouse/tank studies of herbicide efficacy on CFH have been conducted and
yielded promising results [18–20]; however, field trials were necessary to replicate these
successful, controlled studies in more challenging, real-world environments.

To monitor AV communities and the effectiveness of management strategies, tradi-
tional methods rely on boat-based surveys [21,22] and aerial observations from manned
aircraft and satellites [23]. The efficacy of traditional field-based surveys of treatment
efficacy is often dependent on subjective visual estimates with effective rankings from
1–10 by wetland biologists in the field [24]. Management needs and quantitative rigor
can demand more objective, measurable determinations of (a) species presence/absence,
(b) vegetation community coverage, (c) community change detection, and (d) vegetation
health [25]. One AV monitoring method growing in prominence is the use of unmanned
aerial systems (UAS) [26–31]. Depending on the UAS platform used and the imaging
sensor mounted to the platform, UAS can capture high spatial and spectral resolution
imagery that is critical for identifying individual species, accurately mapping vegetation
communities, and subsequently analyzing AV change detection.

1.2. Monitoring Vegetation Communities with UAS Mapping

UAS mapping provides users with a method to automate high spatial resolution im-
agery data collection over a user-defined area via an aerial platform. In addition to potential
improvements in spatial resolution relative to typical aerial imagery datasets, UAS map-
ping practitioners also benefit from (a) relatively low operational costs compared to those
of traditional manned aircraft, (b) on-demand deployment for small, localized areas, and
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(c) contiguous areas of cloud-free imagery [32–34]. A major disadvantage for UAS mapping
versus other aerial mapping modalities is the computational resource intensity, data storage
inefficiency when mapping large areas [34], and high image overlap between adjacent im-
ages leading to an increase in processing time to perform alignment/aerotriangulation [35].
UAS mapping fills a significant gap for water resource managers looking to monitor AV
covering moderate project areas on a semi-regular basis (e.g., weekly, monthly, bimonthly).
Recent developments in sensor technology (e.g., multispectral, hyperspectral, thermal,
lidar), comparisons of UAS platforms (e.g., fixed-wing, rotary, hybrid), and broader dis-
cussions of UAS mapping applications across non-vegetation monitoring applications
(e.g., geomorphology, archaeology, transportation, wildlife, civil engineering, energy) are
described in detail elsewhere [32,36–38].

To obtain actionable information from UAS mapping activities, the choice of an ap-
propriate image processing methodology is of critical importance. In more traditional
remote sensing approaches to supervised land cover classification, analyses were pre-
dominantly pixel-based with each individual pixel being assigned to a class. The spatial
resolution of UAS-derived orthophoto mosaics is typically composed of sub-decimeter
pixels, which is considered ultra-high-resolution imagery. This resolution is obtainable
due to improved sensors and low-altitude unmanned platforms. Counterintuitively, the
enhanced spatial resolution does not always correspond to improvements in pixel-based
classification accuracy [39]. Thus, significant efforts have been invested in object-based
image analysis (OBIA) to improve classification accuracy instead [29,40,41]. The OBIA
methodology groups adjacent pixels together as image objects based on preset criteria
during the image segmentation step as described in Section 2.4. Spectral, textural, and
geometric information can then be extracted and summarized (e.g., as mean values) from
all pixels within a given object and used for subsequent image classification.

The use of UAS mapping for weed management and invasive vegetation monitoring
is a growing field of study [42]. Torres-Sánchez et al. [43] effectively examined the efficacy
of early site-specific weed management by analyzing different UAS flying heights (30 m,
60 m, 100 m) and sensor types (RGB and multispectral) with decreasing accuracy found
for datasets at higher flight altitudes and fewer spectral bands. It is important to note that
these different flight altitudes impacted pixel sizes and the corresponding resolution of the
imagery. Thus, a key takeaway is that sensor selection determines the resolution at a given
flight altitude and the efficacy of the monitoring performance should be attributed to the
image resolution at the different altitudes and not the specific altitudes flown. Similarly,
López-Granados et al. [44] adopted these findings for detecting johnsongrass (Sorghum
halepense) weeds amongst maize crops using an OBIA framework. Whether imagery is col-
lected at a) typical UAS altitudes (i.e., 30–100 m) [43], b) during extremely low-altitude UAS
flights (i.e., <5 m) [45], or c) from sensors mounted on agricultural equipment [46], the com-
mon objective is accurate weed identification to optimize management strategies through
minimization of operational costs and reduction in unnecessary herbicide applications.

In riparian environments, Michez et al. [47] investigated the optimization of OBIA
classification parameter selection for accurately detecting Himalayan balsam (Impatiens
glandulifera), giant hogweed (Hercaleum mantegazzianum), and Japanese knotweed (Fallopia
japonica) in UAS-derived orthophotos. Martin et al. [48] successfully showcased the use
of UAS mapping in identifying the same highly invasive Asian knotweed across multiple
seasons through the implementation of an OBIA framework that emphasized the inclusion
of multiple vegetation indices as object features. Advanced multi-view OBIA methods
were also used to identify invasive cogon grass (Imperata cylindrica) in natural areas of
Florida [49,50]. For native AV, Nahirnick et al. [51] successfully delineated eelgrass (Zostera
marina) habitats that are critical for coastal ecosystem health and biodiversity through
OBIA segmentation of UAS orthophotos and subsequent manual supervised classification.
For invasive AV, Sartain et al. [30] used multispectral imagery from satellites and UAS
to demonstrate the effectiveness of remote sensing in quantifying the response of giant
salvinia (Salvinia molesta), a type of invasive FFAV, to herbicide control.
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1.3. Objectives

The primary goal of this research is to determine practical UAS mission planning
parameters and image processing methods that contribute to efficiently and accurately
monitoring the response of a specific FLAV species, CFH, to management practices. More
specifically, the following objectives will be addressed:

• Determine the effect of sensor selection and ground sample distance (GSD) on accurately
identifying and measuring areal coverage of invasive CFH in a wetland environment

• Determine the effect of sensor selection on accurately measuring the response of an
invasive CFH community to management strategies

• Provide operational guidance to water resource managers adopting UAS for monitor-
ing the efficacy of AV management strategies

By using a FLAV species (CFH) that is growing in importance due to its relatively
recent introduction and rapid growth potential, the analysis presented in this study will
benefit water resource managers across Florida and beyond as CFH inevitably spreads
to new geographic areas. From a UAS operations perspective, both sensor and mission
planning parameter selection play a critical role in the efficiency of UAS monitoring and
the wider adoption of this technique for monitoring FLAV.

2. Materials and Methods
2.1. Study Site and Experiment Design

The 0.8 ha project area, outlined in Figure 1, is in Palm Beach County, FL, USA. The
study area comprises two earthen test ponds in the Stormwater Treatment Area 1 West
(STA-1W) under the jurisdiction of the SFWMD. The STAs are man-made wetlands de-
signed to capture nutrients from agricultural areas prior to the water filtering into the
Everglades [52]. The 30 m by 85 m test ponds are areas where SFWMD personnel and
affiliates perform research and development related to vegetation management. Ponds
were rehabilitated (drained, treated with herbicides, and burned) prior to CFH herbicide
treatments to reduce existing vegetation, which consisted primarily of muskgrass (Chara
sp.), cattail (Typha sp.), spikerush (Eleocharis sp.), and algae (mixed planktonic and fila-
mentous species). Each test pond contained twenty-four 3.5 m by 3.5 m treatment plots
(TPs) as shown in Figure 2 and water depth was maintained at 1 m for the duration of the
herbicide trials. Each TP was constructed through the installation of 8 metal fence posts:
one at each TP corner and one at the midpoint of each side. The fence posts were then
wrapped in bright white, plastic sheeting to separate the water and AV on the interior of
each TP from that found in the remainder of the test ponds. As a constructed wetland, the
test ponds are separated from each other and the surrounding wetlands by earthen levees.
Land cover in the project area consisted of gravel/soil on the levees, open water, SAV (e.g.,
submersed muskgrass, algae), EAV (e.g., cattail, spikerush, emergent muskgrass), FLAV,
and manmade materials used to construct the TPs as shown in Figure 3. CFH was the only
FLAV species in the ponds. Each planting unit consisted of five mature CFH planted in a
plastic dishpan filled with coarse sand that was amended with controlled-release fertilizer.
Each TP had five planting units of CFH arranged in an “X” pattern with one planting unit
in the middle and one at each end. This planting arrangement is standard protocol for
herbicide treatment trials.

The herbicide control study was set up using a randomized block design with 12
unique treatments that varied the type and quantity of herbicide used. Treatments included
six foliar applications (64 oz/ac imazamox; 96 oz/ac imazapyr; 5.6 oz/ac penoxsulam; 5.6
oz/ac penoxsulam + 64 oz/ac imazamox; 5.6 oz/ac penoxsulam + 96 oz/ac imazapyr; 1.5
oz/ac florpyrauxifen-benzyl), five water-column applications (2.5 ppm endothall; 0.37 ppm
diquat; 2.5 ppm endothall + 0.37 ppm diquat; 0.2 ppm flumioxazin + 0.37 ppm diquat; 0.02
ppm florpyrauxifen-benzyl), and an untreated reference. Each treatment was replicated in
two random TPs per test pond for a total of 4 replicates per treatment with the untreated
reference plots found in TP2, TP14, TP33, and TP37. All herbicides were applied by a
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licensed Florida Aquatic Pesticide Applicator following herbicide label rates and state
regulations [53].

To ensure positional accuracy and data consistency between flights on a given day and
temporally across monitoring dates, project control points (PCPs), ground control points
(GCPs), and checkpoints (CPs) were used. Three permanent PCPs were set at the beginning
of the monitoring project and surveyed using static Global Navigation Satellite Systems
(GNSS) surveying to establish a common geodetic basis for all data acquisitions. The GNSS
survey yielded point precisions for the three PCPs on the order of 4 mm horizontally and
8 mm vertically. Following the static survey, one PCP served as the real-time kinematic
(RTK) GNSS base station and the remaining two PCPs served as quality assurance checks
for the RTK GNSS survey during each day of data acquisition. To georeference the UAS
imagery, photo-identifiable GCPs were set for the duration of the data acquisition day as
shown in Figure 4. GCPs and CPs were aerial targets consisting of 60 cm square targets
with alternating black and white triangles and 30 cm circular orange targets with concentric
black and white circles (not shown in the figure). For each field day, all GCPs and CPs were
double-occupied by RTK GNSS with a dual-frequency Topcon HiperLite Plus base receiver
set on one PCP and a matching rover receiver occupying the GCPs, CPs, and remaining
PCPs as shown in Figure 4. Rover occupation times on each point were at least 60 s with
a minimum of one hour between occupations. Data were post-processed using Topcon
Tools v8.2.3 to ensure point precisions were less than 1 cm in the horizontal and vertical
components.
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2.2. Aerial Image Acquisition

A DJI Phantom 3 Professional (P3P) quadcopter UAS was used for aerial image
acquisition throughout this monitoring project. The P3P is a typical consumer-grade drone
(sometimes called a prosumer drone) that would be widely available to water resource
managers at a relatively low price point (<$1500) [54]. The field site was flown on the
day of herbicide application on 16 August 2017 (i.e., Day 0 after treatment: 00AT) and
2 weeks after herbicide application on 30 August 2017 (14AT). Subsequent monitoring was
disrupted by compounding factors related to (a) restricted water flow in the test ponds
due to CFH containment concerns and (b) vegetation and infrastructure damage from
Hurricane Irma, a category 4 hurricane that caused landfall on peninsular Florida on
10 September 2017 (25AT).

Two separate flights were conducted on 00AT and four separate flights were conducted
on 14AT. Temperatures were approximately 33 ◦C (91◦F) on both days. Flying conditions
consisted of partly cloudy skies with flights conducted during breaks in cloud coverage
to obtain similar lighting for all data acquisitions. All flights were conducted within two
hours of solar noon to maintain a consistent sun angle across acquisitions. Winds had
minimal impact on data acquisition with average sustained winds of 2.0 m/s (4.5 mph)
and infrequent gusts reaching 3.5 m/s (8.0 mph). Mission planning was conducted with
DroneDeploy flight planning software based on sensor specifications to ensure 80% image
overlap and 80% image sidelap. The P3P is equipped with a single-frequency code-based
positioning sensor suite to provide coarse navigation for the UAS along a preprogrammed
flight path from waypoint to waypoint.

The two separate imaging sensors used for this study are summarized in Table 1.
The stock P3P camera, a Sony EXMOR 1/2.3” CMOS, is a 3-band (RGB) camera used
on two flights. The second imaging sensor used on the remaining four flights was the
MicaSense RedEdge. The RedEdge has five cameras capturing simultaneous images in
distinct bands along the electromagnetic spectrum. This results in five individual images
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for each exposure: one in the blue (450 nm, 20 nm bandwidth (BW)), green (560 nm, 20 nm
BW), red (668 nm, 10 nm BW), near-infrared (840 nm, 40 nm BW), and red edge (717 nm,
10 nm BW) bands.

Table 1. Summary of parameters for the RGB Sony and multispectral RedEdge sensors.

Parameter Sony EXMOR MicaSense RedEdge

Bands B, G, R B, G, R, RE, NIR
Cameras 1 5 (1 per band)

Focal length (mm) 3.61 5.5
Physical sensor size (mm) 6.16 × 4.62 4.80 × 3.60

Field of view 65.2◦ × 80.9◦ 36.4◦ × 47.1◦

Image resolution (pix) 4000 × 3000 (12 MP) 1280 × 960 (1.2 MP)
Mission setting: aperture (f-stop) f/2.8 f/2.8

Mission setting: ISO 100 100
Mission setting: shutter speed (s) 1/108–1/2141 1/505–1/2611

The two imaging sensors across the six data acquisitions were operated in aperture-
priority mode with the mission settings for each sensor summarized in Table 1. Based
on flight altitude above ground level (AGL), the approximate GSDs for each sensor and
respective flying time can be found in Table 2. The default AGL for the Sony sensor was
set to 40 m since this is a flying height that ensures high spatial resolution while balancing
practical operational considerations related to mission coverage and flight duration. The de-
fault AGL for the RedEdge sensor was set at 60 m per manufacturer recommendations [55].
On 14AT, additional RedEdge flights were conducted at 40 m and 80 m AGL, respectively,
to test the impact GSD has on CFH community detection. To maintain the same image
overlap parameters, the RedEdge requires additional flight lines due to its smaller field of
view (FOV) relative to the Sony camera.

Table 2. Summary of unmanned aerial systems (UAS) monitoring trials with Trial IDs, ground
sample distances, and flight times.

Trial Day Sensor AGL (m) Trial Name GSD (cm/pix) Flight Time (s)

1 00AT Sony 40 S40 1.7 393
2 00AT RedEdge 60 RE60 4.1 542
3 14AT Sony 40 S40 1.7 399
4 14AT RedEdge 40 RE40 2.7 1010
5 14AT RedEdge 60 RE60 4.1 614
6 14AT RedEdge 80 RE80 5.5 428

2.3. Image Processing—Structure from Motion (SfM)

Agisoft Metashape v1.5.3 was the SfM processing software used to convert individual
aerial images into orthophotos and digital elevation models. USGS Agisoft PhotoScan
workflows provided the guiding principles for SfM processing parameter selection within
this project [56]. As shown in Figure 1, five three-dimensional GCPs approximating a
bounding box with a point in the center of the project area were used to georeference
the final datasets. These GCPs were critical to ensuring that resultant datasets align for
subsequent analysis. Meanwhile, the eleven CPs provided an internal quality assurance
measure to ensure that independent points not used in the georeferencing had spatial
accuracies that were within acceptable horizontal tolerance (sub-pixel level magnitude).
In addition, the elevation of the CPs provided a quality assurance check on the vertical
accuracy of the digital surface model (DSM) generated during the SfM processing.

To radiometrically calibrate the multispectral imagery, MicaSense RedEdge best prac-
tices were followed [55,57]. This procedure required the use of both the downwelling light
sensor (DLS) data captured with each image and images of radiometric calibration panels
taken at the beginning and end of each flight. Orthophoto output from Agisoft was either
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(a) 3-band RGB orthomosaic derived from Sony imagery or (b) 5-band, radiometrically-
calibrated multispectral orthomosaic derived from RedEdge imagery. A DSM with ap-
proximately twice the resolution of the orthomosaic (e.g., 1.7 cm/pix orthomosaic with
3.4 cm/pix DSM) was output from Agisoft for each trial as well.

2.4. Image Processing—Segmentation

OBIA was implemented using Trimble eCognition Developer v9.4. The initial image
segmentation for each trial was a vector-based segmentation of the input RGB and multi-
spectral datasets to mask the areas in the orthophotos outside of the project area shown in
Figure 1 from subsequent processing. This mask of extraneous information reduced both
processing time and file sizes containing image objects.

The eCognition software implements the multiresolution segmentation algorithm, a
region merging technique, to maximize homogeneity and minimize heterogeneity within
objects throughout the scene [58]. The multiresolution segmentation algorithm starts
with each pixel as an individual image object. At each step in the process, an image
object merging decision is made based on the similarity of adjacent image objects meeting
a ‘least degree of fitting’ parameter. eCognition refers to this user-defined threshold
parameter of maximum allowable heterogeneity as the ‘scale’ parameter [59]. In addition
to the scale parameter, two additional parameters are required in eCognition: ‘shape’
and ‘compactness.’ The shape parameter acts as a weight from 0 to 1 between spectral
information (i.e., color of an image object) and spatial information (i.e., compactness and
smoothness of an image object). Given that multiresolution parameters are highly scene-
dependent [29], multiple iterations of the multiresolution segmentation algorithm were
conducted to determine the scale parameter that best-defined image objects within the
project area across the six datasets. Specifically, the goal was to obtain image objects
for this scene that were neither too small that textural information lacked relevance nor
too large that multiple classes were mixed within a given object. For this project, these
multiresolution parameters were 30 and 15 scale for the multispectral and RGB images,
respectively; 0.2 for shape; and 0.5 for compactness. The 0.2 value for shape meant the
spectral characteristics were weighted higher than the spatial characteristics.

2.5. Image Processing—Classification

A three-stage hybrid classification approach incorporating both rule-based and Ran-
dom Forest (RF) classification was adopted. First, a rule-based classification was used to
identify the 48 TPs. RF classification of the objects within the TPs was then used. Finally,
a rule-based classification to refine the RF results was implemented. Since the project
goal was to identify CFH within each of the 48 TPs, preliminary classification of all TP
image objects was the first step. To identify non-vegetation object candidates that could
represent the bright white, plastic sheeting bordering each TP, image object thresholds for
the Normalized Difference Vegetation Index (NDVI) for multispectral datasets only, the
Visible-Band Difference Vegetation Index (VDVI), and the Visible Brightness (VB) were
used in series. These values were computed for each image object as follows:

NDVI =
NIR − R
NIR + R

(1)

VDVI =
2G − B − R
2G + B + R

(2)

VB =
G + B + R

3
(3)

where R, G, B, NIR are mean values of the red, green, blue, and near-infrared bands for a
given image object, respectively.

The resultant non-vegetation borders were infilled using simple object rules (e.g.,
enclosed by class) to identify TP candidate objects (TPCOs) consisting of all interior objects.
Prior to defining training samples for subsequent vegetation classification across the 48 TPs,
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the next step was the refinement of TPCOs on the external border of each TP. For the
multispectral dataset trials, the TPCOs effectively represented the size and shape of the
CFH communities across the 48 TPs. Thus, the TPCOs were exported to a shapefile
for the creation and editing of a training point dataset in external software. For the
RGB-only datasets, the multiresolution segmentation algorithm was performed again on
the TPCOs using a scale parameter of 15. This reduced scale parameter improved the
segmentation through better representation of the small, individual CFH communities
across the 48 TPs. These refined image objects were similarly exported to shapefiles to
create the training dataset.

To establish point training samples for classification, the image objects exported from
eCognition were imported into ESRI’s ArcGIS Pro v2.5.1 (AGP) for digitization. Point
samples were needed for six classes: dense crested floatingheart (CFH dense), sparse
crested floatingheart (CFH sparse), dense submersed aquatic vegetation (SAV dense),
sparse submersed aquatic vegetation and water (SAV sparse), emergent aquatic vegetation
(EAV), and plastic sheeting (Other). For ground truth reference data, non-georeferenced,
high-resolution RGB images of each individual TP were captured at approximately 5 m
AGL (~0.2 cm/pix GSD) with the Sony EXMOR camera for each of the 48 TPs on 00AT
and 14AT. These images are referred to herein as plot-level images. Training samples
were derived through image interpretation of the original orthomosaics for each trial and
verified with corresponding plot-level images. The ultra-high-resolution, plot-level images
provided a reliable method for reducing the uncertainty associated with only using the
orthomosaics for training sample digitization. Each class had between 55 and 90 training
points spread across the 48 TPs for all six trials found in Table 2. Most training points were
common amongst trials from the same day (e.g., 00AT, 14AT); however, non-uniform image
object location, size, and shape across trials necessitated training point modifications for
each trial. The training point shapefile for each trial was then imported into eCognition for
the training of the classification algorithm.

RF classifiers have consistently been one of the best-performing classifiers for object-
based land cover image classification [60]. Thus, the Random Trees classifier, eCognition’s
implementation of the RF classification algorithm, was chosen as the classifier for the
entirety of this project. The RF classifier is an ensemble, non-parametric Classification and
Regression Tree (CART) classifier that does not make any assumptions on the normality
of the frequency distribution. Furthermore, it is known for its robustness in handling
high data dimensionality and multicollinearity amongst variables [61]. Object features are
the variables extracted from the images for each object and used in the classification. To
perform an RF classification, the user must select specific object features from a multitude
of available object features that enable the classifier to separate image objects into the
desired classes. Additionally, users can also create their own customized object features
using relational and arithmetic functions of available object features. In this project, the
RF classifier used a combination of spectral variables, textural variables, and band indices
as object features. These object features are shown in Table 3. The selection of object
features for inclusion in this RF classifier was based on previous OBIA studies detailing
the importance of spectral information (e.g., R, G, B, NIR, RE band means and standard
deviations) and geometric information such as DSM elevations [29,41,47,48]. Textural
features capture local spectral variations in the pixels within an object. Sub-object analysis
can be performed on pixel values directly or through analysis of pixel gray level frequencies.
These features are also deemed important to classifier accuracy in these studies broadly [44]
or through specific reference to Gray Level Co-occurrence Matrix (GLCM) derivative
variables [29,47,48,50]. Lastly, band indices (e.g., NDVI, VDVI, VB, max difference) were
shown to be useful features for distinguishing between vegetation and non-vegetation
classes [29,43,44,48]. Given the ability of the RF classifier to handle multicollinearity
amongst variables, further discrimination through feature space optimization between
preserving or removing object features was not prioritized for this study. However, the
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importance of object features post-classification was reported for guidance on inclusion
going forward.

Table 3. Object features used with Random Trees classifier.

Object Feature Sony EXMOR MicaSense RedEdge

Bmean, Bsd X X
Gmean, Gsd X X
Rmean, Rsd X X

NIRmean, NIRsd n/a X
REmean, REsd n/a X

DSMmean, DSMsd X X
Max Diff X X

NDVI n/a X
VB X X

VDVI X X
GLCMDiss. (All dir.) X X
GLCMMean (All dir.) X X

To produce the final classified image for each trial, a post-processing simple rule-
based classification was needed to refine the RF classified objects. Based on contextual and
thematic information, this refinement consisted of (a) removing extraneous objects from
the edges of each TP, (b) cleaning the few spurious classified objects from the “Other” class
found in the interior of a TP separated from the TP borders where the white plastic sheeting
is located (more predominant in RGB datasets), and (c) cleaning spurious vegetation
classified objects surrounded by “Other” classified image objects indicating an occasional
misclassification of vegetation within the white plastic sheeting. All final classified images
were output as 6-class polygonal shapefiles and used to assess classification accuracy.

2.6. Accuracy Assessment

An accuracy assessment of each classified image was conducted using an equalized
stratified random sampling strategy post-classification for the six classes. This sampling
strategy ensured that classes with low percentages of areal coverage including the focal
FLAV community of CFH were adequately assessed in each trial. Each of the six classes
had an initial sample of 40 points. Once reference data was assigned to the initial accuracy
assessment points for each of the six trials, these points were used for all subsequent accu-
racy assessments of classified images for that trial. The assessment points were assigned to
classes through image interpretation of the original orthomosaic and corresponding plot-
level images. The final accuracy assessment confusion matrices aggregated both crested
floatingheart classes (sparse and dense) into one CFH class and both submersed vegetation
and water classes (sparse and dense) into one SAV class.

2.7. Community Coverage Assessment

To determine the response of AV to herbicide management within each TP, a com-
munity coverage assessment of the focal vegetation species (CFH) was needed through
the computation of areal coverage. To standardize the extent of the area analysis, the
boundaries of all 48 TPs were digitized in AGP using the orthophoto of the Sony imagery
on 00AT as shown in Figure 2. For each trial, the “Summarize Within” function in AGP
used the polygon TP boundary file and the final classified image to compute the total area
of each class within each TP boundary.

Using image interpretation of the orthomosaic and corresponding plot-level images,
all CFH vegetation communities were manually digitized in AGP on the Sony orthophoto
mosaic for each treatment day. Figure 5 shows a comparison of the digitized CFH vegetation
communities overlaid on the orthophoto mosaic next to the plot level image of TP3 from
00AT. Again, the “Summarize Within” function computed the area of the digitized CFH



Remote Sens. 2021, 13, 830 12 of 30

community coverage within each TP through the use of the same polygon TP boundary
file incorporated into the classified image community coverage assessment.
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Two primary methods of community coverage assessment were conducted at the
treatment plot level. The first method was a comparison of areal coverage between the
digitized areas of CFH and the image object area from the final classified images. This
provides an aggregate difference in CFH coverage for all 48 TPs across each trial. This metric
quantifies the overestimation or underestimation of CFH community coverage based on
the sensor and flight AGL. The second comparison analyzed community coverage change
across treatment dates. Using the difference in community change between the reference
datasets from 00AT to 14AT, trials that shared the same sensor and AGL across two dates
were compared to analyze if a particular sensor/AGL pair was more prone to error in
community change detection. These values were computed for each TP as follows:

∆AIR,i,j = ACI,i,j − ARP,i (4)

∆ACI,j = ACI14AT,j − ACI00AT,j (5)

∆ARP = ARP14AT − ARP00AT (6)

where i is the unique evaluation date (e.g., 00AT, 14AT) and j is the unique pair of sensor
and flight altitude (AGL). ACI is the aggregated community coverage area per TP for each
final classified image (CI) and ARP is the aggregated community coverage area per TP
for digitized reference polygon (RP) data. ∆AIR,i,j is the area coverage difference between
the final classified image for each trial and digitized reference polygon data for the same
day. Meanwhile, ∆ACI,j is the area coverage difference for the same sensor and AGL
pair between final classified images on different days. Lastly, ∆ARP is the area coverage
difference between reference polygon datasets on different days.
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2.8. Statistical Analysis

To determine the significance of differences between datasets, three statistical tests
were conducted in the subsequent analysis. The first statistical test was a Welch’s t-test
to compare the means of two datasets with unequal variances. The second statistical test
compared multiple trial datasets using an analysis of variance (ANOVA) test to determine
if significant differences exist between the trials. If the ANOVA test revealed significant
differences, it was unlikely that all trials were significantly different from each other.
Thus, the third statistical test, the Tukey HSD (honestly significant difference) test, was
implemented. The Tukey HSD is a post hoc multiple comparison statistical test used to
determine which trial pairs had differences that were significantly different from each other.

3. Results
3.1. Image Classification

Following the RF image classification and subsequent post-classification refinement,
the final classified images for both trials from the initial day of treatment (00AT) are shown
in Figure 6 and the corresponding trials from the day of post-treatment assessment (14AT)
are shown in Figure 7. Through visual inspection of the two figures, significant changes
in CFH community coverage are apparent over this 14-day period. Next, an accuracy
assessment of the final classified image for each trial was conducted. A summary of overall
classification accuracy and kappa coefficients for each of the six trials is shown in Table 4.
Tables A1–A6 in the appendix show the accuracy assessment confusion matrices for each
trial. The producer’s accuracy, a measure of omission error that indicates the probability
that a reference datapoint is correctly classified [62], ranged across the six trials for the
CFH class between 90.8% with the lowest spatial resolution in trial RE80 on 14AT and
98.6% for the two remaining multispectral trials on 14AT (RE40, RE60). The user’s accuracy,
a measure of commission error that indicates the probability that a classified datapoint
on the map represents that class on the ground [62], differed across the six trials for the
CFH class ranging between 86.3% for two trials on 14AT (S40, RE80) and 96.3% for both
trials on 00AT (S40, RE60). The EAV class had the highest misclassification across the six
trials with commission errors greater than 25.0% for all but two trials: 14AT-RE40 (5.0%)
and 14AT-RE60 (15.0%). In contrast, the commission errors for the SAV and Other classes
were consistently low (<5.0%) across all six trials. Given the overall classification accuracy
greater than 89% for all six trials and producer’s and user’s accuracies exceeding 86% for
all six trials for the focal vegetation type in this study (CFH class), the classified images
accurately represented the wetland land cover and could be used with confidence for
subsequent analysis.

3.2. Community Coverage

Since the TPs were constructed from non-rigid materials (i.e., flexible plastic sheeting),
the total area of each TP ranged from 11.8–16.1 m2, which is within the range of expectations
for the field-constructed TPs with approximate 3.5 m × 3.5 m dimensions. Figure 8 provides
an overview of aggregated CFH class area for all 48 TPs within each trial. Additionally,
Figure 9 provides context for the area of CFH community coverage relative to the other
three classes. In general, the graphs exhibit consistency in areal coverage per class across
trials for both assessment dates. The SAV class (SAV and open water) was the dominant
cover for most TPs with greater variation across TPs on 14AT. The proportion of each TP
covered by CFH changed significantly from the initial day of herbicide treatment to the
post-treatment assessment two weeks later (compare CFH between Figure 9 left and right).
A Welch t-test confirmed that this decrease in the mean CFH area of the reference datasets
(RP) from 00AT to 14AT is significant [t(72) = 24.53, p < 0.001].
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Table 4. Accuracy assessment summary for all final classified images.

Trial Day Trial Name Overall
Accuracy

Kappa
Coefficient

1 00AT S40 0.933 0.907
2 00AT RE60 0.925 0.895
3 14AT S40 0.896 0.856
4 14AT RE40 0.954 0.937
5 14AT RE60 0.921 0.891
6 14AT RE80 0.896 0.856
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If UAS-derived datasets are to be relied upon to accurately measure changes in a
vegetation community, evaluation of the difference in area between the digitized refer-
ence polygons and the final classified images for each trial (Equation (4)) is important.
Figure 10 shows that there are predominantly positive areal differences which is indicative
of OBIA overestimating coverage; however, these differences were not significantly differ-
ent from 0. Table 5 summarizes these areal differences. An ANOVA test was implemented
to statistically test the accuracy of measuring CFH areal coverage from classified imagery.
Test results determined that the average difference in CFH area between the reference
dataset and the classified imagery was significantly different for both the pond in which the
TP was located [F(1, 281) = 12.153, p < 0.001] and the trial used [F(5, 281) = 2.835, p = 0.016].
Post hoc comparisons using the Tukey HSD test indicated that there was a significant
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difference at a 90% confidence level or higher between the mean areal difference for the
RE40/S40 trial pair (p = 0.039) and the RE40/RE80 trial pair (p = 0.073). Both trial pairs
indicated that the RE40 trial was significantly (or close to significantly) more accurate in
determining CFH area than the S40 and RE80 trials. This implies that the multispectral
sensor was better in discriminating CFH at higher resolutions of multispectral imagery
(i.e., 2.7 cm/pix for 40 m versus 5.5 cm/pix for 80 m) and yielded better results than the
RGB sensor which had a higher resolution (1.7 cm/pix at 40 m). Further, it should be noted
that the areal differences using multispectral imagery at the lower GSDs (i.e., 2.7 cm/pix
for 40 m and 4.1 cm/pix for 60 m) were more consistent (i.e., smaller standard deviations
and interquartile ranges shown in Table 5) than the corresponding areas derived from the
higher resolution RGB imagery.
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Table 5. Summary statistics for the difference in CFH area (m2) for 48 TPs between the classified
image area and reference polygon area across all six trials.

Trial Mean SD Med IQR

S4000AT 0.075 0.315 0.025 0.483
RE6000AT 0.073 0.238 0.074 0.346
S4014AT 0.169 0.193 0.123 0.278

RE4014AT 0.039 0.126 0.008 0.082
RE6014AT 0.126 0.181 0.088 0.168
RE6014AT 0.158 0.213 0.130 0.250

To understand vegetation community response to a management strategy such as
herbicide control, accuracy evaluation of areal change between treatment dates is necessary.
As shown in Equation (6), the reference dataset to evaluate the temporal change in area for
a given TP was derived by subtracting the area of the digitized polygons on 00AT from
the area of the digitized polygons on 14AT. This reference dataset was compared to the
temporal area change as determined by using a specific sensor/AGL pair (Equation (5)).
These findings, in turn, were used to evaluate if sensor choice played a role in areal change
assessment. Figure 11 shows the temporal change in area from original cover (00AT) to
post-treatment cover (14AT) across all 48 TPs for a given trial. An ANOVA test yielded
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that there was no significant difference [F(2, 141) = 0.299, p = 0.742] between the mean
areal change differences for the S40, RE60, and RP datasets found in Figure 11. Thus, both
the multispectral sensor and the RGB sensor captured temporal areal change similar to
the reference dataset at the tested flight altitudes and corresponding GSDs (1.7 cm/pix
for RGB and 4.1 cm/pix for multispectral). Therefore, these findings also reveal that
multispectral sensors can be used to measure the temporal areal change of CFH at lower
spatial resolutions than RGB sensors with no significant decrease in performance.
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3.3. Vegetation Health

Water resource managers are also often interested in vegetation health after treatment
of invasive AV [25]. Simple vegetation indices such as NDVI (Equation (1)) and VDVI
(Equation (2)) can be used as proxies for vegetation health [63]. The site characteristics for
this project (e.g., shallow water, low flow, high nutrients) were conducive to the growth
of SAV and specifically Chara sp. As shown in Figure 12, CFH are prevalent on the water
surface and Chara are plentiful in the water column and near the water’s surface. Thus,
most of the example plot (TP13) exhibits relatively robust vegetation health for both the
CFH and SAV classes, respectively, on the day of treatment (00AT). Post-treatment the
eradication of vegetation within the plot on 14AT and subsequent visualization of the
shallow bottom yields an absence of healthy vegetation for the interior of TP13. The lack
of healthy vegetation at the water’s surface within TP13 corresponds to the low NDVI
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values throughout the TP interior. Furthermore, as shown in Figure 13 of TP23, diminished
CFH health is evident when low NDVI values correspond to the dead AV floating on
the water surface; meanwhile, much of the rest of the TP23 interior exhibits high NDVI
values due to the health of the Chara near the water surface. The response of CFH and
SAV to herbicide treatment can vary substantially depending upon the herbicide used
and application method employed within a TP. For this project, the vegetation indices
(i.e., NDVI and VDVI) were most impactful as object features in discriminating the plastic
sheeting (“Other” class) bordering each TP from the remaining classes across the 48 TPs as
shown in Figures 12 and 13.
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3.4. Treatment Efficacy

Given the external environmental factors (e.g., restricted water flow, severe weather)
impacting herbicide treatment effectiveness, the main objective of this study is not to
make specific recommendations on the efficacy of a particular herbicide control strategy
for managing CFH as previous studies did in controlled environments [18–20]. Instead,
the objective is to illustrate the effectiveness of using UAS to (a) accurately identify CFH
communities and (b) accurately measure the change in vegetation community coverage due
to a management technique in a field setting. Figure 14 shows the response of CFH across
the 48 TPs for each of the 12 treatments from 00AT to 14AT. This figure captures general
trends (e.g., Treatment 5 was clearly more effective as a CFH management treatment than
Treatment 3). While rehabilitation protocols outlined in Section 2.1 were followed prior
to the construction of the project site to create consistent environments in both ponds,
these ponds are natural systems that led to some variation in environmental conditions.
This variation contributed to differences in CFH response with limited sample sizes per
treatment (e.g., Treatment 2). However, the high classification accuracy of CFH discussed
previously provides water resource managers with confidence that UAS are an effective
tool to make management decisions on the efficacy of a given herbicide control strategy for
similar FLAV species going forward in subsequent field trials.
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4. Discussion

The OBIA method outlined herein accurately classified high-resolution UAS orthoim-
agery of the herbicide control treatment study with overall accuracy exceeding 89% for
all six trials as shown in Table 4. Given these image classification accuracy assessment
results, the final classified images from each trial could be used with confidence to assess
CFH community coverage based on mapping parameters (e.g., sensor, ground sample
distance) and changes over time due to herbicide control. Furthermore, the areal coverage
assessment results suggest that water resource managers can accurately determine the
response of an invasive FLAV species to a management technique by using UAS in small,
localized project areas to assess changes in area coverage over time.

4.1. UAS Operational Considerations

A primary objective of this study was to determine the impact that sensor choice has
on the classification of CFH. The NIR bands found in multispectral sensors such as the
MicaSense RedEdge can aid in determining vegetation health (e.g., input into NDVI com-
putation) while also providing additional feature object information for the RF classifier
as shown in Table 3. This additional object information can be helpful in discriminat-
ing between vegetation and non-vegetation classes. During the 14AT trials, emergent
aquatic vegetation (EAV) was more prevalent in the TPs than it was on 00AT as shown in
Figure 9. Furthermore, the EAV and CFH classes were the most frequently confused classes
in the accuracy assessment confusion matrices found in Tables A1–A6. The multispectral
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classified image derived from imagery at the lowest GSD (2.7 cm/pix at 40 m AGL) had
the best performance in discriminating between these two vegetation classes as shown in
Table A3. When comparing multispectral (2.7 cm/pix GSD) and RGB (1.7 cm/pix GSD)
datasets collected at the same flight altitude (40 m), the results from the RE40 dataset
showed a small but significant improvement in the accuracy of measuring areal coverage
at a 95% confidence level. Based on the manufacturer’s recommendation, multispectral
data was only collected at the flight altitude of 60 m (4.1 cm/pix GSD) for the pre-treatment
assessment date (00AT). Thus, a comparison between datasets from the same flight altitude
(40 m) was only conducted for 14AT where data was available.

While multispectral sensor performance showed statistically significant improvement
over RGB-only datasets at certain spatial resolutions for accurately measuring areal cov-
erage, water resource managers must also balance other operational considerations. The
first consideration is cost. At present, prosumer drones (e.g., DJI Phantom series used
herein) are approximately $1500 with standard visual cameras (e.g., Sony EXMOR) in-
cluded in the price. Quality UAS multispectral cameras (e.g., MicaSense RedEdge) cost
approximately $5000 without accounting for a stable UAS platform to carry the sensor.
Suitable UAS platforms range in price from a few hundred to a few thousand dollars.
Once startup costs are accounted for, operational considerations must be evaluated as
well. Multispectral cameras such as the RedEdge typically have a limited field of view
relative to standard optical cameras as shown in Table 1. To maintain the 70–80% image
sidelap necessary for quality SfM-derived orthophoto mosaics, additional flight lines in
the field are required [38]. This corresponds to both additional images and flight time as
shown in Table 2. Consequently, data volume can differ considerably across sensors as well.
The RedEdge sensor comprises five cameras, each operating on a different portion of the
electromagnetic spectrum. For every image location, a single uncompressed 2.4 megabytes
(MB) tif image is captured by each camera. Meanwhile, the Sony EXMOR camera captures
the RGB bands in one compressed jpeg image that is approximately 5 MB in size. For
this small 0.8 ha project, raw multispectral imagery collected at 40 m AGL on 14AT was
approximately 1,980 MB of imagery files and the Sony imagery collected at the same 40 m
AGL was 590 MB. While specifications certainly vary by sensor, UAS operators need to be
cognizant of file storage and subsequent processing demands especially with multispectral
imagery which is typically stored and processed in an uncompressed format. Thus, the
implementation of multispectral imaging into a UAS operational workflow is not a trivial
decision based purely on accuracy performance.

Similar to other UAS projects targeting specific vegetation species [43,44], flight al-
titude and in turn GSD impacted the accuracy of CFH detection in this study. This is
evidenced by the differences in CFH class accuracy from the classified image accuracy
assessments (Tables A4 and A6) as well as the small but significant difference in areal
coverage accuracy (Figure 10) between the RedEdge trial flown at 40 m (RE40) and the
RedEdge trial flown at 80 m (RE80). As a result, water resource managers must find an
acceptable balance between potentially small but significant accuracy improvements noted
above and the additional operational constraints imposed by achieving a higher spatial
resolution. In this 0.8 ha study, the flight time for RE40 was nearly 10 min longer than
the 7-min, RE80 flight as shown in Table 2. The lower flight altitude not only restricts the
mission areal coverage per takeoff, but it also leads to increased volumes of data: 1,980 MB
of imagery for RE40 versus 1,280 MB of imagery for RE80 on 14AT. Given these operational
considerations and the ability to still obtain a high overall accuracy assessment (e.g., 89.6%
with a 5.5 cm/pix GSD), many water resource managers may be willing to forego the
marginal accuracy improvements of capturing data at a higher spatial resolution. One
potential way to mitigate the time constraints of flying lower is to improve the spatial
resolution of the multispectral sensor. For example, the newest, multispectral MicaSense
sensor is the Altum, which offers a 50% improvement in spatial resolution relative to
the MicaSense RedEdge [64]. Thus, operational efficiencies can be gained by flying 50%
higher with the newer Altum sensor and maintaining the same GSD as the RedEdge.



Remote Sens. 2021, 13, 830 24 of 30

Alternatively, managers willing to forego the highest accuracies could fly the Altum at
maximum allowable altitudes without a waiver (e.g., 121.9 m in the United States) to obtain
a GSD of 5.3 cm/pix. With these operational parameters, UAS practitioners could reduce
the amount of data acquired and subsequent SfM processing time while still creating
high-accuracy datasets.

Even after optimizing operations through sensor selection and UAS flight planning
parameters, multiple factors can still influence the accuracy of the results. For this project,
the datasets were tightly georeferenced using stationary GCPs to ensure the best possible
dataset alignment across the various trials. In a larger, natural wetland setting, access to
well-distributed GCPs will be minimal. In these situations, georeferencing datasets using
on-board, post-processed kinematic (PPK) GNSS can provide the best available positioning
solution with misalignment errors similar to using GCPs [65–67]. The implementation of
PPK GNSS requires either a PPK-enabled UAS platform or additional positioning sensors
mounted to the existing UAS platform. Either scenario results in additional financial costs
above and beyond the cost of the prosumer drone to mitigate dataset misalignment. During
data acquisition, a poor sun angle can cause sun glint on the water surface. Sun glint can
cause misalignments in the SfM processing, potentially adversely impacting the accuracy
of resultant classified imagery [51,68].

Another environmental factor that impacts floating wetland vegetation more so than
terrestrial vegetation is vegetation movement. While FLAV is tethered to the bottom, the
vegetation is still susceptible to drift on the water’s surface. This can cause individual
vegetation leaves to cluster or disperse depending on water and wind currents. When
plants disperse, the spatial resolution of the imagery must be high enough to capture
individual leaves on the water surface, or underestimation of invasive vegetation will
result. Meanwhile, plants that cluster together can cause overlapping leaves and in turn,
result in underestimation of the subject vegetation class area coverage as well. While some
field conditions can be mitigated (e.g., sun angle planning, PPK implementation), there
is inherent noise in the classified image datasets that water resource managers need to be
aware of when integrating UAS mapping and analysis in the decision-making process.

4.2. Future Considerations

To effectively study herbicide efficacy on highly invasive vegetation in a randomized
block design field trial, meticulous planning went into planting equal amounts of CFH in
each TP and subsequently containing the CFH from entering the larger wetland complex
surrounding the treatment ponds. Hence, water flow was restricted to the treatment
ponds and plastic sheeting was used to form a physical barrier surrounding each TP and
the subject vegetation. Due to these constraints, there was less mixing of invasive and
native wetland vegetation than would be encountered when finding CFH in natural areas.
A field study that investigates the management of CFH in a natural setting similar to
Lishawa et al. [69], which investigated the management of Typha spp., would be the next
progression in determining the value that multispectral remote sensing adds when water
resource managers are faced with greater vegetative biodiversity than encountered in
this project.

Thus far, CFH was accurately detected at all spatial resolutions tested in this project.
A natural progression would be to further optimize data acquisition efficiency by collecting
lower spatial resolution, multispectral imagery with the RedEdge sensor (e.g., 6.8 cm/pix at
100 m AGL, 8.3 cm/pix at 121.9 m AGL) and with the Sony sensor (e.g., 2.6 cm/pix at 60 m
AGL, 3.4 cm/pix at 80 m AGL). If CFH communities can still be mapped accurately at these
lower resolutions, water resource managers would have additional opportunities to reduce
processing time and the amount of data acquired. Other data acquisition (e.g., image
sidelap/overlap) and image processing (e.g., segmentation and classification parameters)
variables were standardized for this project, but further investigation may yield additional
accuracy improvements. On the data collection side, the sidelap and overlap parameters
were each set to 80% for both sensors to ensure that no issues were encountered during SfM
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alignment and subsequent orthophoto mosaic generation. Reducing the sidelap parameter
would reduce the number of flight lines leading to reductions in data acquisition time
and the volume of data acquired. To test, a water resource manager could run a sample
experiment by collecting UAS imagery at an extremely high sidelap of 90% or 95%. During
SfM processing, datasets could be generated using every other or every third flightline to
find the point at which the final classified imagery accuracy degrades for the given wetland
environment and target vegetation species. This could help optimize data collection for
temporal monitoring of larger areas with similar landcover characteristics.

The image processing parameters were standardized during the image segmentation
and image classification process. Given prior studies on the superior performance of RF
classifiers for OBIA land cover classification [60], testing of additional classifier algorithms
was not undertaken. Furthermore, while additional testing of RF parameters and object
features may yield improvements in the accuracy assessment of the classified images,
these improvements if significant would be minimal given the high overall accuracy
assessments found in Table 4. For future consideration, the feature objects of importance
for the RF classifier were exported from eCognition. The mean values for the green
and blue bands and the indices (i.e., NDVI, VDVI, VB) were most important for object
classification. Meanwhile, the standard deviation value of the spectral bands, the mean
and standard deviation of the DSM, and the GLCM Dissimilarity object feature were
characterized as the least important. The relative importance of these object features may
be applicable going forward for subsequent monitoring studies of similar FLAV species
especially when considering the use of band indices for discriminating between vegetation
and non-vegetation classes [29,43,44,48].

As the fields of deep learning and artificial intelligence continue to evolve, the adoption
of these approaches to temporal vegetation monitoring is certainly encouraged [49]. For
larger monitoring projects of invasive vegetation management techniques, a deep learning
framework incorporating high-resolution UAS imagery as the training data for satellite
imagery would be a valuable tool for water resource managers. The success of previous
studies expanding the scale of remote sensing projects through the fusion of datasets from
multiple sensor types provides additional support for this effort [28,30].

5. Conclusions

This study provides a more thorough understanding of UAS sensor selection and
UAS data acquisition for monitoring the effectiveness of invasive aquatic vegetation man-
agement strategies. CFH (Nymphoides cristata), a floating-leaved aquatic plant, was the
focal invasive vegetation species investigated herein due to its rapid growth potential in
the southeastern US. Through investigation of OBIA classified images, the only significant
difference in area coverage accuracy at a 95% confidence level amongst the six trials was
a small improvement in accuracy between the 40 m multispectral (2.7 cm/pix GSD) and
the 40 m RGB-only (1.7 cm/pix GSD) datasets. When comparing temporal area change
between treatment day and two weeks post-treatment, there was no statistically significant
difference between the change in area derived from the reference polygons and change
in area derived from the other two trial pairs (multispectral with 4.1 cm/pix GSD and
RGB-only with 1.7 cm/pix GSD). Based on these results, water resource managers can have
confidence in the adoption of an object-based UAS remote sensing workflow for vegetation
species detection and vegetation community areal change assessment when monitoring
invasive aquatic vegetation management strategies. Finally, additional UAS operational
considerations (e.g., cost, time, data storage) related to flight planning and sensor selection
were provided to guide decision-making on the adoption of multispectral UAS remote
sensing for a given monitoring application.
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Appendix A

Table A1. Accuracy assessment confusion matrix for the OBIA RF classification results from 0AT
with the Sony sensor and a 1.7 cm/pix GSD.

Ground Truth/Reference
Class CFH SAV EAV Other Total User’s Acc. Commiss. Error

CFH 79 1 2 0 82 0.963 0.037
SAV 0 79 1 1 81 0.975 0.025
EAV 7 0 25 3 35 0.714 0.286

Other 0 1 0 41 42 0.976 0.024
Total 86 81 28 45

Producer’s Acc. 0.919 0.975 0.893 0.911 Overall Acc. 0.933
Omission Error 0.081 0.025 0.107 0.089 Kappa 0.907

Table A2. Accuracy assessment confusion matrix for the OBIA RF classification results from 0AT
with the MicaSense RedEdge and a 4.1 cm/pix GSD.

Ground Truth/Reference
Class CFH SAV EAV Other Total User’s Acc. Commiss. Error

CFH 77 1 2 0 80 0.963 0.038
SAV 1 78 0 1 80 0.975 0.025
EAV 6 5 27 2 40 0.675 0.325

Other 0 0 0 40 40 1.000 0.000
Total 84 84 29 43

Producer’s Acc. 0.917 0.929 0.931 0.930 Overall Acc. 0.925
Omission Error 0.083 0.071 0.069 0.070 Kappa 0.895
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Table A3. Accuracy assessment confusion matrix for the OBIA RF classification results from 14AT
with the Sony sensor and a 1.7 cm/pix GSD.

Ground Truth/Reference
Class CFH SAV EAV Other Total User’s Acc. Commiss. Error

CFH 69 1 10 0 80 0.863 0.138
SAV 0 78 2 0 80 0.975 0.025
EAV 2 5 30 3 40 0.750 0.250

Other 0 1 1 38 40 0.950 0.050
Total 71 85 43 41

Producer’s Acc. 0.972 0.918 0.698 0.927 Overall Acc. 0.896
Omission Error 0.028 0.082 0.302 0.073 Kappa 0.856

Table A4. Accuracy assessment confusion matrix for the OBIA RF classification results from 14AT
with the MicaSense RedEdge and a 2.7 cm/pix GSD.

Ground Truth/Reference
Class CFH SAV EAV Other Total User’s Acc. Commiss. Error

CFH 73 0 7 0 80 0.913 0.088
SAV 0 79 1 0 80 0.988 0.013
EAV 1 1 38 0 40 0.950 0.050

Other 0 0 1 39 40 0.975 0.025
Total 74 80 47 39

Producer’s Acc. 0.986 0.988 0.809 1.000 Overall Acc. 0.954
Omission Error 0.014 0.013 0.191 0.000 Kappa 0.937

Table A5. Accuracy assessment confusion matrix for the OBIA RF classification results from 14AT
with the MicaSense RedEdge and a 4.1 cm/pix GSD.

Ground Truth/Reference
Class CFH SAV EAV Other Total User’s Acc. Commiss. Error

CFH 70 2 6 2 80 0.875 0.125
SAV 0 79 1 0 80 0.988 0.013
EAV 0 5 34 1 40 0.850 0.150

Other 1 0 1 38 40 0.950 0.050
Total 71 86 42 41

Producer’s Acc. 0.986 0.919 0.810 0.927 Overall Acc. 0.921
Omission Error 0.014 0.081 0.190 0.073 Kappa 0.891

Table A6. Accuracy assessment confusion matrix for the OBIA RF classification results from 14AT
with the MicaSense RedEdge and a 5.5 cm/pix GSD.

Ground Truth/Reference
Class CFH SAV EAV Other Total User’s Acc. Commiss. Error

CFH 69 0 11 0 80 0.863 0.138
SAV 0 77 2 1 80 0.963 0.038
EAV 7 4 29 0 40 0.725 0.275

Other 0 0 0 40 40 1.000 0.000
Total 76 81 42 41

Producer’s Acc. 0.908 0.951 0.690 0.976 Overall Acc. 0.896
Omission Error 0.092 0.049 0.310 0.024 Kappa 0.856
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