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Abstract: Semantic segmentation of the sensed point cloud data plays a significant role in scene
understanding and reconstruction, robot navigation, etc. This work presents a Graph Convolutional
Network integrating K-Nearest Neighbor searching (KNN) and Vector of Locally Aggregated De-
scriptors (VLAD). KNN searching is utilized to construct the topological graph of each point and
its neighbors. Then, we perform convolution on the edges of constructed graph to extract repre-
sentative local features by multiple Multilayer Perceptions (MLPs). Afterwards, a trainable VLAD
layer, NetVLAD, is embedded in the feature encoder to aggregate the local and global contextual
features. The designed feature encoder is repeated for multiple times, and the extracted features are
concatenated in a jump-connection style to strengthen the distinctiveness of features and thereby
improve the segmentation. Experimental results on two datasets show that the proposed work settles
the shortcoming of insufficient local feature extraction and promotes the accuracy (mIoU 60.9% and
oAcc 87.4% for S3DIS) of semantic segmentation comparing to existing models.

Keywords: semantic segmentation; graph convolutional network; point cloud; NetVLAD

1. Introduction

As one of the key technologies for scene understanding, semantic segmentation [1–3]
of 3D point clouds plays fundamental roles in the fields of 3D reconstruction, autonomous
driving, and robotics. Vehicles in autonomous driving applications need to interpret the
objects (e.g., pedestrians and cars) and their kinestates in the outdoor scenes before making
reliable decisions. For a robot, reconstructing and parsing the models of surrounding
environments is the premise of navigation and object manipulation. Unlike 2D images,
point clouds are unstructured, unevenly distributed, and large in data volume, making
them difficult to process analyze by the conventional methods. Great attention has been
paid to achieving reliable semantic segmentation of point clouds in deep learning style.
However, how to effectively learn presentative features from unorganized point clouds is
still a challenging problem.

In order to solve the difficulty of feature learning caused by disordered point clouds,
a number of works [4–10] preprocess the 3D point cloud data to a normalized 2D or 3D
representation, such as voxelization and multi-view projection. However, projection causes
information loss, and the 3D convolution after voxelization brings greater computational
cost. Another type of work, on the other hand, uses the original point clouds as input and
conducts end-to-end learning, such as the pioneering work PointNet [11], the upgraded
PointNet++ [12], and other new deep networks [13–20]. They all directly deal with the
unordered point clouds, and learn global and local features to realize the classification and
segmentation. These works have achieved excellent results, yet difficulties still exist in
the processing of point clouds [21]. The effective local geometric feature correspondence
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cannot be established, and the information between the points cannot be well utilized,
which results in low accuracy of semantic segmentation.

To solve the above issues, this work mainly considers two aspects: how to learn
features from the local structures and how to aggregate the local and global information.
In this paper, we propose the K-nearest neighbor searching (KNN) and Vector of Locally
Aggregated Descriptors (VLAD) [22] combined Graph Convolutional Network (KVGCN)
to learn point cloud features from the topological graph constructed by each point and
its K-nearest neighbors. Specifically, it performs convolution on the edges of constructed
graph to extract representative local features by multiple MLPs, followed by two different
pooling operations to compensate information loss. Then, the VLAD layer is embedded in
the feature encoding block to aggregate local and global contextual features. Furthermore,
the designed feature encoding block is repeated multiple times and the extracted features
are concatenated in a jump connection style to strengthen the ability of network and thereby
improve the accuracy of semantic segmentation. Our key contributions are as follows.

• We propose an edge convolution on the constructed KNN graph to encode the local
features. The query point denotes the global position and the edges, namely, the
relative positions of the query point and its neighbors, represent the local geome-
try. By concatenating this information, representative features can be achieved via
edge convolution.

• We employ max pooling and average pooling as the symmetric functions, and be-
cause VLAD layer is symmetric, the proposed network guarantees invariance to the
point order.

• By embedding the VLAD layer in the feature encoding block, we construct an en-
hanced feature merging encoder which effectively aggregate the local features and
the global contextual information. The segmentation in dense region or confusable
region improves.

• Experimental results on two datasets show that KVGCN achieves comparable or
superior performance compared with state-of-the-art methods.

The rest of this work is organized as follows. Section 2 classifies and discusses the
related work. Section 3 describes details of the proposed KGCN and KVGCN segmentation
networks. Experimental evaluations and discussions are performed in Sections 4 and 5.
Then, Section 6 concludes this work.

2. Related Work

Before the deep learning era, most researchers followed the traditional routine of
“segmenting then labeling” in point cloud segmentation. However, with the growing
scale of 3D data, the workload of traditional methods increases rapidly, resulting in low
efficiency of segmenting [23–26]. On the other hand, the deep learning-based methods can
improve the accuracy and efficiency of semantic segmentation [27]. At present, the semantic
segmentation models based on deep learning can be divided into two main categories.

2.1. Networks with Preprocessings

This type of model presents the 3D data in multi-view renderings or voxels. The
multi-view convolutional neural network (MV-CNN) was first applied to 3D shape recog-
nition [4], rendering 3D data from multiple visions into 2D images as input to 2D CNNs.
Kalogerakis et al. [6] propose a more complex multi-view rendering framework based on
the multi-view CNNs. The MV-RNN [7] model successfully applies a Recurrent Neural
Network (RNN) to the 3D image field, which treats multi-view image sequences as time
series and uses RNN to learn features from images.

Point cloud voxelization converts the irregular point cloud into the regular 3D vox-
elized representation. Qi et al. [9] propose a volumetric convolution neural network model
(volumetric CNN), which was developed based on the 2D CNNs. Maturana et al. [5]
develop the VoxNet model, which divides the 3D space into regular 3D voxel grids and
applies it to the revised 3D CNN model. However, the biggest disadvantage of this method
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is that the higher resolution of the voxelization, the faster the memory and computing
consumption increase. What is worse, the increase in the resolution of the voxel causes
many empty voxel grids, so the calculations consumed in this part are wasteful. In order to
reduce this waste, 3D CNNs based on rough resolution [8] seem to be a solution, but in
turn lead to greater quantization errors.

Some researchers also propose other works to reduce the huge consumption of mem-
ory and computation of voxelized CNNs, for instance, the Kd-Net [28] and OctNet [29].
These algorithms are all tree-based models that can perform high-resolution voxel learning
on point clouds. These models try to ignore empty voxel grids and focus on the information-
rich grids, but are difficult to implement and expressiveness limited. Qi et al. [9] compare
the recognition performance of the volumetric methods and multi-view presentation. Com-
pared with voxel representation, multi-view rendering lowers the calculation cost, but
causes information loss.

2.2. End-to-End Learning Networks

In order to make full use of the information of point clouds, many researchers aban-
doned the preprocessing and tried to learn the point clouds end-to-end. A groundbreaking
work, PointNet [11], is completed for unordered point clouds. It directly processes point
clouds and uses the pooling layer to extract the global point features. On several differ-
ent datasets, PointNet achieves advanced performance in 3D classification and semantic
segmentation. However, there is a drawback that the PointNet lacks local feature represen-
tation. Therefore, the authors propose an improved model, PointNet++ [12], which applies
a fast point sampling algorithm and a ball query algorithm to cluster the input point clouds,
combining local dependence and multi-level features to achieve better performance. Later,
an RNN-based deep learning model RSNet [13] was proposed. This model projects the
features of disordered points onto the ordered sequence of feature vectors, which are then
fed into the recurrent neural network for learning. Besides, Graph Convolutional Neural
Networks [30–32] and Multi-scale Graph Convolutional Neural Networks [15,33] also are
used to deal with irregular data structure. Mao et al. [16] and Thomas et al. [17] present
new convolution methods to extract local features. In 2020, more powerful architectures
are presented for 3D point cloud processing, e.g., JSENet [34], CT2 [35], and Point Trans-
former [36], pushing point cloud semantic segmentation to further level. Among these
networks, Point Transformer designs self-attention layers for point clouds and uses them
to construct self-attention networks for tasks such as semantic scene segmentation and
object part segmentation, achieving the best performance on S3DIS dataset. By dropping
the preprocessing, the end-to-end learning methods can learn the intrinsic information of
the point clouds and reduce the costs of storage and calculation.

In summary, the point clouds retain most of the sensor information, and the difficulty
of directly learning from point clouds have been solved. However, how to sample from
point cloud data and how to effectively extract the local features remain to be studied, so
we make further exploration around this issue. This paper proposes a convolution network
based on a KNN topological graph to encode the local features. By embedding the VLAD
layer in the feature encoding block, we construct an enhanced feature merging encoder
which effectively aggregates the local features and the global contextual information. The
proposed network is introduced in detail in Section 3.

3. Method

Inspired by PointNet [11] and convolutions, this work proposes a different segmenta-
tion network based on the idea of graph convolution to resolve the segmentation defects
in the premise of permutation invariance of point cloud data. Unlike PointNet extracting
features from isolated points, this network constructs the neighboring geometric graphs
and then performs convolution on the edges of the local graphs to gather powerful features
for semantic segmentation.
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3.1. Knn Graph Convolution

For a point cloud with N points X = {x1, x2, ..., xN} ⊆ RF, establish the KNN topo-
logical graph. As Figure 1 illustrates, the directional graph G = {V, E} shows the local
structure of a point xi and its K nearest neighbors {xj1 , xj2 , ..., xjk}, in which V = X and
E =<i, jk>, xi, xjk ∈ V. Define edge feature eij = hθ{xi, xj}, in which hθ : RF ×RF → RF′

is a nonlinear function with learning parameter θ, and F′ denotes the dimension of the
edge features. Then, an aggregating operation C is applied on the K edge features to get
the output yi corresponding to xi, as defined in Equation (1).

yi = C
j:(i,j)∈E

hθ(xi, xj) (1)

xi

xj1

xj2

xj3 xj4

xjkeij1

eij2

eij3 eij4

eijk
...

Figure 1. The illustration of K-Nearest Neighbor searching (KNN) graph convolution.

The choice of edge function and aggregation method is crucial to the proposed KNN
graph convolution network. PointNet only encodes the global coordinates without consid-
ering the local structure, leading to unideal segmentation in local regions. To simultane-
ously take into account the global and local information, here we utilize an asymmetric
operation as edge function:

hθ(xi, xj) = hθ(xi, xi − xj) (2)

The function obtains the global information through the query point xi and the
local information through (xi − xj). In this way, both the global and local features are
counted to get stronger feature representation. For feature aggregation C, we use the
two-channel pooling (max and average pooling) techniques to compensate the information
loss, retaining strong response and fine-grained local feature. To be specific, we define the
following operator in Equation (3) to train edge feature, which could be considered as a
shared MLP with learning parameters θ = {λ, ϕ} and activation function ReLU. Then, the
aggregation can be realized on the edge features by Equation (4).

e′ij = ReLU(λ · xi + ϕ · (xi − xj)) (3)

y′i = max
j:(i,j)∈E

e′ij + avg
j:(i,j)∈E

e′ij (4)

3.2. Kgcn

To realize the above idea, we propose a KNN Graph Convolution Network (KGCN)
consisting of three main parts, as shown in Figure 2.

- First, it searches the K nearest neighbors of each point and constructs the KNN graph
(N×K tensor, N is the number of points) for the input point cloud (N× F tensor, here
F represents the data dimension, usually including coordinates, colors, normals, etc.).

- Afterward, the point cloud and its KNN graph are sent into the local feature encoder
which transforms the inputs to a N × 256 tensor. The local feature encoder block is
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recursively assembled for four times to expand the perception field, and each block
could output different level of feature abstraction.

- Finally, the third-level features and the final features are concatenated in the jump-
connection style, followed by two sets of shared MLPs (MLPs{512, 256, 128} and
MLPs{128, 64, Q}) for dimensionality reduction to get the semantic labels. The final
output of the network is a N × P matrix, namely, the possibilities of each point be-
longing to P different categories, which can be further assigned by a softmax function.
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Local 
feature 
encoder

Local 
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Output
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MLP(256)
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Figure 2. The structure of the proposed KNN Graph Convolution Network (KGCN). Four local feature encoding blocks
(big blue boxes, with detail structure shown in the dotted box) are assembled recursively to encode the local features, then
the last two outputs (orange boxes) are concatenated for segmentation which labels the point cloud by two sets of MLPs.
The four local feature encoding blocks follows the same design. The operation L (small green box) takes point features and
the KNN graph and transforms them to a N × K× 2F tensor which is trained by MLPs. Then, two pooling functions are
applied and the responses are concatenated, followed by another MLP to generate N × 256 local features.

As is implied in the network, the design of the local feature encoder plays a decisive
role. As shown in Figure 2, the structure of the encoder basically follows the idea of KNN
graph convolution introduced. First, the two input tensors—the point features and the K
neighboring relations in RF space—are merged and transformed to a N × K× 2F tensor by
a specific operation L. Assume that ki stores the indices of the K nearest neighbors of point
xi and li signifies the transformed vector related to xi, then the operation L is defined as

L : X → L (5)

L = {l1, ..., lN | li ∈ RK×2F} (6)

li(j) = [xi, xi − xj], j ∈ ki (7)

Here, li(j) corresponds to the neighbor xj, and [xi, xi − xj] represents the concat of
vector xi and (xi − xj). The tensor of edge features is repressed as E = {e1, ..., eN | ei ∈
RK×128} which is computed by Equation (8):

ei = σ(M(σ(M(li; θ1)); θ2)) (8)

In this equation,M denotes a shared MLP and σ means the activation function ReLU.
θ1 and θ2 are, respectively, the learning parameter of the two MLPs. Afterward, the max-
pooling and average-pooling are used in K channels to simultaneously get the strong and
fine-grained responses. Then, the output features Y={y1, ..., yN | yi ∈ R256} of the local
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feature encoder are determined by Equation (9), in which θ3 is the parameter of the last
MLP. Cross-entropy function is employed to weigh the loss in the network training.

yi = σ(M([max
j∈ki

(ej), avg
j∈ki

(ej)]; θ3)) (9)

3.3. Kvgcn

The KGCN extracts the global features via assembling local feature encoders repeat-
edly. This way it loses certain semantic contexts of scenes, causing confusions in dense or
regions with similar appearance. To abstract and exploit the global contextual information
effectively, we try to embed a Vector of Locally Aggregated Descriptors (VLAD) [22] layer
into the proposed network and name it the KNN and VLAD combined Graph Convolution
Network (KVGCN).

3.3.1. Overall Structure

VLAD is a traditional feature encoding algorithm based on feature descriptors, which
is usually applied in image classification and instance retrieving. It is a technique that
aggregates the local feature descriptors to global vectors with elaborate representation
of local details but no data loss. Arandjelović et al. [37] simulated VLAD and designed
a trainable generalized VLAD layer in the CNN framework, known as NetVLAD, to
aggregate the local features. In this work, we embed the NetVLAD layer into our network
and merge the local and global features for point cloud semantic segmentation (as shown
in Figure 3).

Input 
cloud
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encoder
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encoder
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Figure 3. The structure of the proposed KNN and VLAD combined Graph Convolution Network (KVGCN) which follows
the encoder–decoder pipeline. Four feature merging encoders (blue boxes, with detail structure shown in the dotted box)
are arrayed to merge the local and global features for representativeness. The point features and KNN graphs are taken
as input by a local feature encoder. Then, the encoded N × 256 local features are sent into the NetVLAD layer for global
feature aggregation via a VLAD core followed by normalizations and concatenation. Similar to KGCN, two tensors are
jump-connected for a decoding process to label the points.

The proposed KVGCN follows the similar encoder–decoder pipeline, whereas a
new feature merging encoder is designed. The new feature encoder merges the N × 256
local features and the global features aggregated by NetVLAD layer to compose the
N × 512 feature representation for the following decoding stage. The NetVLAD layer



Remote Sens. 2021, 13, 1003 7 of 18

uses a convolution and a softmax function to compute parameters of the VLAD core
which aggregates the input local features. Afterward, the L2-normalization and feature
concatenation are introduced to generate the merged features. Similar to KGCN, two
feature vectors from different stages are then jump-connected for a decoding process to
label the points. For loss function, we follow the setting in KGCN and use the cross-entropy
function to weigh the segmentation loss in network training.

3.3.2. Netvlad Layer

VLAD can be considered as a feature pooling method that stores the residuals of the
feature vector and its cluster center. Given N F-dimensional local features {xi} as input,
and P cluster centers {cp} as parameters, the output V of VLAD is a P× F representation
matrix (Equation (10)) which is further normalized to a vector as the global feature. The
(j, p) element of V is computed as

V(j, p) =
N

∑
i=1

ap(xi)(xi(j)− cp(j)) (10)

where xi(j) and cp(j) are the jth element of the ith local feature and the pth cluster center.
ap(xi) defines the contribution of feature xi to cluster cp; it is 1 or 0, meaning that cp is
the closest cluster to xi or otherwise. Intuitively, the elements of matrix V records the
residuals (xi − cp) of each feature to each cluster. Apparently, VLAD is untrainable due to
the discontinuity of ap(xi).

In order to construct a trainable VLAD layer and embed it into a back-propagation
network, the differentiability of the layer operation to its all parameters is required. To
make the operation differentiable, the hard assignment of ap(xi) is replaced with a soft
assignment in Equation (11):

āp(xi) =
e−α‖xi−cp‖2

∑p′ e
−α‖xi−cp′‖2 (11)

and āp(xi) ranges between 0 and 1 according to the proximity of feature xi to the cluster
center cp. Note that α is a positive parameter which controls the decay of the response and
α→ +∞ corresponds to the original VLAD. This equation can be expanded and simplified
by canceling e−α‖xi‖2

term, then we get a softmax function in Equation (12):

āp(xi) =
ewT

p xi+bp

∑p′ e
wT

p′ xi+bp′
(12)

where wT
p = 2αcp and b = −α‖cp‖2. Then, the soft-assignment of V is determined by

Equation (13):

V(j, p) =
N

∑
i=1

ewT
p xi+bp

∑p′ e
wT

p′ xi+bp′
(xi(j)− cp(j)) (13)

{wp},{bp} and {cp} are the trainable parameter sets of NetVLAD. Comparing to the
original VLAD just having parameter set {cp}, NetVLAD has three sets of parameters,
enabling greater flexibility.

As shown in Figure 3, the NetVLAD layer includes three steps before the normaliza-
tions: (1) a convolution “conv(w, b)” with P filters {wp} of size 1× 1 and biases {bp}, (2)
the following “softmax” function which computes weight āp(xi) by Equation (12), and
(3) the “VLAD core” taking āp(xi) as parameter to calculate the output matrix V by Equa-
tion (13). Afterward, the intra-normalization and L2-normalization are used to normalize
the aggregated P× F features. A fully connected layer and L2-normalization are added
to obtain the concise 1× 256 global descriptor, followed by a vector expansion operation
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to get the N × 256 global features, which are then concatenated with local features for
further processing.

3.4. Permutation Invariance

For unordered point cloud data, the premise of a model being invariant to input
permutation is required. The local feature encoder uses two symmetric functions—max
pooling and average pooling—to aggregate the information from each point, thus is invari-
ant to input orders. Therefore, the NetVLAD layer also meets this requirement, meaning
that it can be embedded to the feature merging encoder for point cloud feature learning.

The 1× 1 kernel only upsamples or downsamples the input feature without consider-
ing the spatial relations with others, so it will not be impacted by the input permutation,
then we can get stable parameters from “conv(w, b)” and “softmax” operations. Therefore,
the invariance of NetVLAD to input permutation lies to that of the “VLAD core”.

Given N input feature descriptors X = {x1, x2, ..., xN} and the trained parameters of
P clusters {wp},{bp} and {cp}, then the output of “VLAD core” is V = [V(j, p)],

V(j, p) =
N

∑
i=1

āp(xi)(xi(j)− cp(j)) =
N

∑
i=1

hjp(xi) (14)

V(j, p) aggregates the residuals in the jth part of each descriptor to the pth cluster center. It
is the sum of a function of descriptor xi.

For another input, X̃ = {xi, x1, ..., xt, ..., xN , xi+1} with the same descriptors as X but
different input order, the corresponding “VLAD core” output Ṽ = [Ṽ(j, p)] is calculated as

Ṽ(j, p) = hjp(xi) + hjp(x1) + ... + hjp(xt) + ... + hjp(xN) + hjp(xi+1) =
N

∑
t=1

hjp(xt) (15)

As the parameters are stable to input orders, the soft-assignment āp(xi) and the
residual of the same descriptor remain stable, which means the Equations (14) and (15)
represent the same output. Therefore, the “VLAD core” is invariance to input permutation,
and so is the NetVLAD layer.

4. Experimental Results
4.1. Datasets

To evaluate the performance of the proposed network, we test it on two different
datasets: the high-density indoor datasets S3DIS [1] and ScanNet [38], as demonstrated in
Figure 4.

S3DIS Dataset contains six different large-scale indoor scenes in three buildings,
involving 11 room types, which are divided into 13 semantic categories. It covers an area
of more than 6000 square meters, exceeding 200 million points that are composed of 3D
coordinates, colors, and point labels. ScanNet is a dataset of richly annotated RGB-D
scans of real-world environments containing 2.5 M RGB-D images in 1513 scans acquired
in 707 distinct spaces, with estimated calibration parameters, camera poses, 3D surface
reconstructions, textured meshes, and dense object-level semantic segmentations.

4.2. Experimental Details

As the S3DIS dataset is divided into six different areas, we follow the same evaluation
protocol used in PointNet [11], which is a 6-fold cross-validation over all the areas, namely,
choosing five areas as training set and one as testing set in each training and using cross-
validation to establish six models to cover the whole dataset. Three widely used metrics—
overall accuracy (oAcc), mean accuracy (mAcc), and mean intersection over union (mIoU)—
are employed to measure the segmentation performances.
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(a) S3DIS (c) vKITTI3D(b) ScanNet

(a) S3DIS (b) ScanNet

Figure 4. Demonstration of the testing datasets. (a) S3DIS dataset. (b) ScanNet dataset.

Each room in S3DIS dataset is divided into grids of 1 m× 1 m, and 4096 sample points
are randomly collected in each grid. The entire room is then traversed in a step of 0.5 m.
In the experiment, the number of sampled points is about 96.6 million, and each point is
represented by a 9-dimension vector [x, y, z, r, g, b, nx, ny, nz]. During the model training,
the batch size 4096, the batch number for each training epoch is 12, and the number of
training epoch is 100. For ScanNet, we follow the preprocessing settings in PointNet++ [12].
The point clouds are voxelized and divided into cubes of 1.5 m × 1.5 m × 3 m, and 8192
points with [x, y, z] coordinates are sampled from each cube. The 1201 samples out of total
1513 scanned scenes of ScanNet are used for training, and the other 312 samples are for
testing. The training settings for S3DIS are copied.

4.3. Parameter Evaluations

Before conducting comparisons with state-of-the-art methods, we first evaluate the
influence of two critical parameters on semantic segmentation to choose the best settings.
The two parameters are the number of neighboring points K in KNN algorithm and the
number of clusters D in NetVLAD layer. Our evaluations are carried out on S3DIS dataset,
with “Area_5” as testing set and the other five areas as training set.

4.3.1. Parameter K

The parameter K controls the scope of neighbor searching and the volume of local
information for training. Too small a value of K leads to inadequate local contextual infor-
mation, and too large a value may include irrelevant noises and is computational expensive.
The evaluation of K is performed by comparing the segmentation results of different set-
tings in KGCN. Table 1 lists the segmentation metrics under six settings of K, and the trend
can be observed though only six tests are carried out. It is easily concluded that the best
setting is K = 20 (highest mAcc, mIoU, and oAcc), and the segmentation accuracy does
not improve with more neighboring information counted as usually anticipated. In the
following evaluations, we fix parameter K to 20 for both KGCN and KVGCN.
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Table 1. The segmentation accuracy (%) of KGCN on “Area_5” of S3DIS dataset for different K.

Metric K = 5 K = 10 K = 15 K = 20 K = 25 K = 30

mAcc 52.4 59.6 62.8 63.5 63.2 60.3
mIoU 47.7 50.6 55.2 56.3 56.4 54.7
oAcc 74.6 79.5 81.8 83.2 82.5 79.6

4.3.2. Parameter D

In the NetVLAD layer of the proposed KVGCN, the input features are grouped to D
clusters and then the output of “VLAD core” is calculated. This preset parameter D has a
major impact on the performance of KVGCN. Here, we try to experimentally determine
the optimal setting for D, and the segmentation results under different D are shown in
Table 2. The segmentation accuracy arises with D ranges from 4 to 12 and drops afterwards.
The optimal value cluster number is 12, which is also the setting for parameter D in the
following evaluations.

Table 2. The segmentation accuracy (%) of KVGCN on “Area_5” of S3DIS dataset for different D.

Metric D = 4 D = 8 D = 12 D = 16 D = 20 D = 24

mAcc 60.9 62.1 66.7 62.9 61.7 59.8
mIoU 54.7 57.6 59.3 56.3 54.4 51.1
oAcc 74.6 75.3 85.3 80.2 79.1 78.3

4.4. Comparison with Other Networks
4.4.1. S3dis Dataset

We gather the segmentation results of the proposed KGCN and KVGCN models on
S3DIS dataset by 6-fold cross-validation and compare with state-of-the-art methods. The
overall accuracy results are reported in Table 3, and the IoU scores of each semantic class
are reported in Table 4. The mean IoU, overall accuracy, and mean accuracy of KGCN are,
respectively, 59.0%, 85.8%, and 70.9%, which are better than PointNet [11], G+RCU [2],
SEGCloud [3], RSNet [13], and A-SCN [19]. By combing the KNN and NetVLAD layer into
the feature encoder, the KVGCN model further lifts the segmentation accuracy on S3DIS
dataset, and the three metrics reach 60.9%, 87.4%, and 72.3%. Meanwhile, our KVGCN
model improves the IoU results in five classes (Table 4). These quantitative results show
that the NetVLAD is an essential feature pooling method for aggregating global features
from local features and can promote the accuracy of point cloud semantic segmentation.

Table 3. Comparison of segmentation accuracy (%) on the entire S3DIS dataset.

Method mIoU oAcc mAcc

PointNet [11] 41.1 78.5 49.0
G+RCU [2] 49.7 81.1 66.4
SEGCloud [3] 48.9 - -
RSNet [13] 51.9 81.7 59.4
A-SCN [19] 52.7 81.6 -
KGCN 59.0 85.8 70.9
KVGCN 60.9 87.4 72.3

To present intuitive observations, we select three samples to visualize the segmentation
results, which are shown in Figure 5. KGCN segments most of the tables and chairs in the
scenes, but the separation in certain parts (e.g., the chairs in the first two samples, denoted
in white boxes) and the easily confused areas (e.g., the corner with several different objects
and the conjunction parts of wall and windows in the third sample, denoted in white boxes)
are ambiguous. Then, KVGCN aggregates the local and global contextual features and lifts
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the segmentation in these areas. Though better segmenting boundaries are obtained by
KVGCN, there are few negative examples, which are marked by black boxes in the samples.
Overall, KVGCN achieves comparative segmentation to groundtruth on S3DIS dataset.

Table 4. IoU (%) of per semantic class in S3DIS dataset.

Method Celling Floor Wall Beam Column Window Door Chair Table Bookcase Sofa Board Clutter

PointNet [11] 88.6 97.3 69.8 0.05 3.92 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
G+RCU [2] 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 41.9 6.9 47.4 39.0 30.0
SEGCloud [3] 90.1 96.1 69.9 0.0 18.4 38.4 23.1 78.6 70.4 58.4 40.9 13.0 41.1
RSNet [13] 92.5 92.8 78.6 32.8 34.4 51.6 68.1 60.1 59.7 50.2 16.4 44.9 52.0
SPGraph [33] 89.9 95.1 72.0 62.8 47.1 55.3 60.0 73.5 69.2 3.2 45.9 8.7 52.9
KGCN 94.3 93.5 78.4 52.5 35.0 53.7 62.9 64.4 62.0 20.4 51.5 42.0 50.2
KVGCN 94.5 94.1 79.5 53.4 36.3 56.8 63.2 67.5 64.3 23.6 54.3 43.1 53.2

(a) Indoor scenes (b) Groundtruth (c) KGCN (d) KVGCN

Figure 5. Sample segmentation results of the S3DIS dataset. From left to right are the input scenes, groundtruth segmentation,
and results by KGCN and KVGCN. KGCN outputs ambiguous segmentation in easily confused areas and KVGCN achieves
better results, which are denoted by white boxes, while few negative examples are marked by black boxes.

4.4.2. Scannet Dataset

To evaluate the segmentation of the proposed models on the ScanNet dataset without
color information, the 1201 samples out of total 1513 scanned scenes of ScanNet are used for
training, and the other 312 samples are for testing. Table 5 gives the overall accuracy results,
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and Table 6 lists the IoU scores of each semantic class in the dataset. Results in Table 6
reveal that the KGCN outperforms PointNet [11], PointNet++ [12], and RsNet [13] in IoU
of 11 categories (e.g., floor, chair, bathtub, bath curtain, etc.) and maintains comparative
results for the other nine categories, meaning that the local feature encoders in KGCN can
recognize and provide distinctive feature representations in local regions. Then, with the
global aggregation layer NetVLAD combined in the feature encoder, KVGCN obtains richer
semantic features to distinguish different objects. KVGCN promotes the segmentation
IoUs of all classes in this dataset, including several challenging classes (such as sofa, sink,
window, photo, etc.) and gains the best performance in 13 classes comparing to other
methods. The overall results in Table 5 verify the advantages of KVGCN in three metrics
mIoU, oAcc, and mAcc.

Table 5. Comparison of segmentation accuracy (%) on the entire ScanNet dataset.

Method mIoU oAcc mAcc

PointNet [11] 14.3 52.6 18.6
PointNet++ [12] 32.2 73.8 43.1
RSNet [13] 37.5 75.2 46.2
KGCN 38.7 80.7 48.3
KVGCN 40.4 82.3 49.4

Table 6. IoU (%) of per semantic class in ScanNet dataset.

Method Wall Floor Chair Table Desk Bed Bookshelf Sofa Sink Bathtub

PointNet [11] 68.3 86.6 35.4 31.8 1.42 19.3 2.7 30.6 0.3 0.4
PointNet++ [12] 72.1 88.3 60.3 44.7 10.9 48.6 49.1 49.3 28.3 40.3
RSNet [13] 78.4 90.5 61.3 49.9 34.4 51.5 50.3 53.3 32.4 45.6
KGCN 79.3 91.6 63.4 46.1 28.9 47.5 49.3 51.2 28.5 55.4
KVGCN 82.4 94.3 65.1 48.3 30.5 49.1 52.1 56.3 30.3 56.3

Method Toilet Curtain Counter Door Window Showercurtain Refrigerator Picture Cabinet Otherfurniture

PointNet [11] 0 0 4.3 0 0 0 0 0 3.7 0.2
PointNet++ [12] 29.8 31.8 19.5 25.5 3.6 1.8 17.6 0 21.7 1.8
RSNet [13] 53.6 5.8 21.8 27.5 7.3 2.8 36.5 0.6 29.7 17.6
KGCN 56.7 22.2 23.4 33.1 10.1 5.6 35.3 1.6 26.1 18.1
KVGCN 58.3 23.1 24.2 35.2 12.2 6.3 36.2 2.6 26.3 19.2

Intuitive examples are demonstrated in Figure 6. KGCN performs better in semantic
parts with larger data portion, without causing so many mislabeled points comparing
to existing methods. KVGCN gets closer segmentation to the groundtruth in semantic
parts like chairs and walls, as well as in the easily confused regions, such as the joint parts
between chair/desk and floor. KVGCN generates fewer mislabelings on the three examples.
This illustrates that the proposed feature merging encoder in KVGCN is beneficial to
aggregating meaningful global information and improves the semantic segmentation.
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(a) Groundtruth (b) KGCN (c) KVGCN

Figure 6. Sample segmentation results of the S3DIS dataset. From left to right are the input scenes, groundtruth segmentation,
and results by KGCN and KVGCN. KVGCN generates less mislabelings.

5. Discussion

Establishing the local graph structure of the query point and convolving the graph
edges to obtain powerful local features shows great advantage in feature representation. It
can extract sophisticated features from graph structure compared with PointNet directly
capturing single point’s feature, and causes less data loss in comparison to slicing in RNN.
The choice of K in KNN graph construction plays a crucial role in the feature gathering. In
this work, we employ a fix value for K, which could limit the ability of feature learning in
dense area. An adaptive adjusting strategy for K or assuring uniform input points could be
a plausible solution. The similar concern for parameter D in KVGCN also stands.

Another issue is that four feature encoders are assembled in the proposed KGCN and
KVGCN for feature learning. As a general rule, a greater number of encoders implies a
deeper network, meaning that more distinctive features could be learnt. However, too deep
a network may result in gradient explosion or overfitting during network training. In this
work, we determine to use four encoders based on experimental tests. Table 7 gives the
segmentation performance of KGCN on “Area_5” of S3DIS using different number of local
feature encoders. The segmenting metrics lift significantly when more encoders are used,
especially from three to four, and start declining when more than four encoders are utilized.
Therefore, we use four encoders in all evaluations of the proposed KGCN and KVGCN.
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Table 7. The segmentation accuracy (%) of KGCN on “Area_5” of S3DIS dataset for different number
of feature encoders assembled.

Encoders 2 3 4 5 6

mAcc 52.3 54.6 63.5 61.4 59.2
mIoU 47.1 50.6 56.3 53.2 51.7
oAcc 71.2 72.3 83.2 82.1 81.5

Assembling multiple local feature encoders does not guarantee that reliable global
features could be trained. The segmentation of KGCN in object concentrated areas or
easily confused areas is sub-average. To aggregate representative global vectors for mak-
ing full use of the semantic information, the trainable version of VLAD, the NetVLAD
layer, is introduced in our network. Similar to Fisher Vector [39] or other single-vector
representations [40], NetVLAD considers each element of the local features and depicts
fine-grained details without data loss. The most important characteristic of NetVLAD is
that it is amenable to training via back-propagation, which make it pluggable into other
deep learning architectures. By embedding NetVLAD, the proposed KVGCN significantly
improved the segmentation performance. Figures 7 and 8 illustrate more segmentation
results of KVGCN. Comparing to the best network available [41], our network achieves
comparative oAcc and mAcc results, but falls behind on the mIoU metric. As a concrete
manifestation, the separation in shapely similar areas, such as walls, embedded boards,
objects in corners, etc., requires more distinguishable features in model training. However,
NetVLAD has shown its potential power in feature aggregating; the study of exploiting and
enhancing NetVLAD for global feature aggregation could be a promising future direction.
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Figure 7. More segmentation samples of the proposed KVGCN method. The KVGCN result and the groundtruth segmenta-
tion are pairwise illustrated. Upper: segmented results by KVGCN. Lower: groundtruth.
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Figure 8. Another large sample of segmentation results of the proposed KVGCN method. From top to bottom are the
KVGCN result, groundtruth segmentation, and the actual scene of hallway.

6. Conclusions

This work designs a new graph convolutional network architecture that is trained
for semantic segmentation of point cloud data in an end-to-end manner. The input points
and KNN graph topological information are sent into four orderly assembled feature
encoders to train powerful features for semantic segmentation. The encoder performs
edge convolution on each query point and its nearest K neighbors to gain rich details,
outperforming existing methods that only focus on isolated points. Another highlight is that
we introduce the powerful pooling mechanism with learnable parameters that can be easily
trained via back-propagation, NetVLAD layer, in the proposed feature merging encoder to
aggregate global representation from local features. This combination of KNN graph and
NetVLAD layer pays off on the final segmentation. We evaluated the proposed network
on two challenging indoor datasets, and the results show its superiority in segmentation
(better mIoU, oAcc, and mAcc). Based on this work, further research could focus on
designing a network with adjustable parameters and high training efficiency.
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