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Abstract: The meteorological reanalysis data has been widely applied to derive zenith tropospheric
delay (ZTD) with a high spatial and temporal resolution. With the rapid development of artificial
intelligence, machine learning also begins as a high-efficiency tool to be employed in modeling
and predicting ZTD. In this paper, we develop three new regional ZTD models based on the least
squares support vector machine (LSSVM), using both the International GNSS Service (IGS)-ZTD
products and European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data over
Europe throughout 2018. Among them, the ERA5 data is extended to ERA5S-ZTD and ERA5SP-ZTD
as the background data by the model method and integral method, respectively. Depending on
different background data, three schemes are designed to construct ZTD models based on the LSSVM
algorithm, including the without background data, with the ERA5S-ZTD, and with the ERA5P-ZTD.
To investigate the advantage and feasibility of the proposed ZTD models, we evaluate the accuracy
of two background data and three schemes by segmental comparison with the IGS-ZTD of 85 IGS
stations in Europe. The results show that the overall average Root Mean Square Errors (RMSE)
value of all sites is 30.1 mm for the ERA5S-ZTD, and 10.7 mm for the ERA5P-ZTD. The overall
average RMSE is 25.8 mm, 22.9 mm, and 9 mm for the three schemes, respectively. Moreover,
the overall improvement rate is 19.1% and 1.6% for the ZTD model with ERA5S-ZTD and ERA5P-
ZTD, respectively. In order to explore the reason of the lower improvement for the ZTD model with
ERA5P-ZTD, the loop verification is performed by estimating the ZTD values of each available IGS
station. In actuality, the monthly improvement rate of estimated ZTD is positive for most stations,
and the biggest improvement rate can even reach about 40%. The negative rate mainly comes from
specific stations, these stations are located on the edge of the region, near the coast, as well as the
lower similarity between the individual verified station and training stations.

Keywords: zenith tropospheric delay (ZTD); least squares support vector machine (LSSVM); Euro-
pean Center for Medium-Range Weather Forecasts Reanalysis 5 (ERA5); Global Navigation Satellite
System (GNSS)

1. Introduction

The troposphere constitutes most of the mass and water vapor of the entire atmosphere.
The water vapor mainly concentrated in the troposphere below 10-12 km, which is an
important meteorological factor causing climate change. With the rapid development of
Global Navigation Satellite System (GNSS) technique, it has become an indispensable tool
for monitoring water vapor variation [1,2]. When GNSS signals across the troposphere,
these signals will slow down and bend because of the refraction of atmospheric molecules.
The delay is usually described as the zenith tropospheric delay (ZTD) and the mapping
function related to the elevation angle in the processing of GNSS data [3,4], and the water
vapor variation can be retrieved and monitored by using high-precision ZTD values.
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Therefore, the ZTD model with high spatiotemporal resolution has great significance to the
research of global climate change monitoring.

The classic ZTD models were based on the measured meteorological parameters,
such as the Saastamoinen model [5] and the Hopfield model [6]. However, these models
were mostly employed for post-event calculation because the measured meteorological
data were not easy to obtain in some places or in real time. Later, some researchers studied
the temporal and spatial characteristics of meteorological parameters to propose mete-
orological models, such as the University of New Brunswick (UNB) series models [7],
European Geostationary Navigation Overlay System (EGNOS) model [8], and the Global
Pressure/Temperature (GPT) series model [9-11]. In these models, latitude and time infor-
mation were used to express relevant meteorological elements [12]. The user could obtain
the corresponding meteorological parameters at the research area by interpolation and
fitting, and then the ZTD value could be estimated by combining these meteorological
parameters with the classic ZTD models. This way had the advantage to satisfy the needs
of GNSS real-time positioning. However, owning to the complexity of the wet components
in ZTD, it was difficult to establish the ZTD model solely based on fixed physical formulas
to satisfy high precision applications.

Interestingly, machine learning algorithms were emerged to solve the modeling and
prediction problems of nonlinear variation at the end of the 20th century. Among them,
some models were constructed based on the neural network (NN) algorithms to depict
the complex atmospheric parameters and worked well [13-16]. The NN algorithms were
also applied into the modeling of tropospheric path delay. Katsougiannopoulos and
Pikridas [17] employed the NN algorithms to predict ZTD for various time spans of one,
three, and six hours, and the results of their predictions possessed the agreements of
2-3 cm with ZTD derived from the network of continuously operating GNSS in Europe.
In addition, the adaptive neuron fuzzy inference system (ANFIS) algorithm was proposed
to establish the ZTD model based on a single GNSS station, where the input and output
parameters of the model was the surface meteorological data and the estimated ZTD values
at the GNSS station, respectively [18,19]. Moreover, Xiao, et al. [20] optimized the hyper-
parameters of the back propagation neural network (BPNN) algorithm to build the regional
ZTD model in Japan, and this algorithm improved the fitting and prediction accuracy
with Root Mean Square Errors (RMSE) of 7.8 mm and 8.5 mm, respectively. Furthermore,
Zhang, et al. [21] derived an hourly high-accuracy ZTD model in west Antarctica by
combining the BPNN algorithm, the long short-term memory (LSTM) network algorithm,
as well as two blind source separation algorithms. Most existing ZTD models with the
machine learning algorithms were based on the NN algorithms, but the NN algorithms may
lead to a poor stability of performance and may be easy to fall into local minimum value.

The Least Squares Support Vector Machine (LSSVM) algorithm has a strong mathe-
matical theory to support more stable ZTD modeling. Meanwhile, the European Centre
for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data, as a fresh meteorological
reanalysis data, starts to be provided in 2019. Afterward, the accuracy of the ERA5 data be-
gan to be evaluated [22], and the ERA5 data also started to calculate the ZTD values [23,24].
However, there are hardly researches on the ERA5 data to build ZTD model based on
machine learning algorithms, especially for the LSSVM algorithm. In this contribution,
the LSSVM algorithm is introduced to develop three new regional ZTD models by com-
bining both the International GNSS Service (IGS)-ZTD products and the ERA5 data over
Europe throughout 2018. Among them, the ERA5 data is extended to ERA5S-ZTD and
ERA5P-ZTD as the background by the model method and integral method, respectively.
The background data acts as an external constrain of the ZTD modeling by LSSVM algo-
rithm. Depending on different background data, three schemes are designed to construct
ZTD models based on the LSSVM algorithm, including the without background data, using
the ERA5S5-ZTD as background data, and applying the ERA5P-ZTD as background data.
Moreover, we also evaluate the accuracy of the derived two background data, as well as
detailed analysis and discussion for the developed three ZTD models.
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The structure of the article is as follows. Section 2.1 to Section 2.4 present the two
mentioned data sources, the calculation method of two background data, the designed three
ZTD models, and the strategy of accuracy evaluation, respectively. Sections 3.1 and 3.2
evaluate the accuracy of two background data and the three ZTD models, and Section 3.3
analyzes the improvement rate of the two ZTD models based on ERA5S-ZTD and ERA5P-
ZTD in detail. In Section 4, we discuss the dependency of estimated ZTD on the station
distribution, as well as on the output parameters. At last, the overview and outlook are
given in Section 5.

2. Data and Methodology
2.1. Data Source

Since 1998, the IGS center has regularly provided the services of tropospheric error
correction products. The troposphere products are offered in daily files by site for over
350 GNSS stations in the IGS network, which include five-minute estimates of ZTD and
north and east troposphere gradient components, as well as the position of the IGS station.
We can access to these products from IGS center (ftp:/ /igs.ensg.ign.fr/pub/igs/products/
troposphere/, accessed on 1 January 2021).

ERAS data is the fifth-generation global meteorological parameter reanalysis data
updated by the European Centre for Medium-Range Weather Forecasts (ECWMTF) in
January 2019. The ERA5 data is the grid data with a spatial resolution of 0.25° * 0.25° and
is provided with one-hour time resolution. It is divided into two types of data, namely the
hourly data on single level and the hourly data on pressure levels, both of them can be taken
from ECWME center (https:/ /www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era5, accessed on 1 January 2021). The single-level products refer to the meteorological
parameters on the surface of Earth. The pressure-level products divide the atmosphere into
37 pressure layers in vertical and provide meteorological parameters on the surface of each
pressure layer, which enable ERA5 data to describe changes in meteorological parameters
in more detail.

In both types of data, the IGS final product offer ZTD with a temporal resolution of
5 min, while these ZTD values have low spatial resolution owing to the uneven distribution
of IGS stations all over the world. Interestingly, the ZTD values can reach a fixed spatial
resolution of 0.25° * 0.25° with hourly ERA5 data on a global scale. To unify the temporal
resolution of the two types of data, we extract the hourly ZTD values from IGS products,
namely IGS-ZTD in this contribution.

2.2. Two Background Data

By using the model method and the integral method, we derive the ZTD values at
IGS stations as two background data based on the ERA5 data, namely ERA5S-ZTD and
ERAS5P-ZTD, respectively. Our specific calculation steps are as follows:

1. Obtaining original ERA5 data and the position of IGS station. In this study, the ERA5
hourly geopotential (m), 2-meter dewpoint temperature (K), 2-meter temperature (K),
surface pressure (Pa) on single-level data, as well as the ERA5 hourly geopotential
(m), temperature (K), and specific humidity (%) on 37 pressure-level data are uti-
lized. The latitude, longitude and altitude of the IGS stations are extracted from the
tropospheric products.

2. Getting the WGS84 ellipsoid height. Based on the EGM2008 [25], the ERA5 hourly
geopotential of the single-level and the pressure-level products are corrected to
ellipsoid height Hs; and Hp, respectively.

3. Deriving meteorological parameters of the IGS stations using the single-level ERA5
data. According to the latitude and longitude of the IGS station, we detect the
positions of the four nearest grid points of ERA5 data firstly. Then, the temperature
Ts, 2-meter dewpoint Ty, pressure Ps of the IGS stations at the height of H; are derived
through plane interpolation and fitting. Afterwards, these parameters are transformed
from the height of H; to the altitude H of the IGS stations. Among them, the altitude
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difference dH between H; and H are computed. The corresponding meteorological
parameters of the IGS station, T, T; and P are derived by the following equations.
At last, and the water vapor pressure ¢ is calculated using T and Tj.

T=Ts—65xdH "
Ty =Ty —65xdH o
P =P x(1- % « AH)P5 N
e ‘”‘”(W) x 100% )
" Ry x exp(%lg&l@) o
e =Ry x exp(—34.2465 +0.213166 x T — 0.000256908 x Tz) )

where, Rj represents the relative humidity, and the values of R, = 6.112 hpa,
R3 = 17502 K, as well as Ry, = 32.19 K.

Calculating ERA55-ZTD by the model method from T, P and e. These meteorological
parameters are substituted into the Saastamoinen model [5], and then ERA5S-ZTD
values of the IGS stations are obtained using the following equations.

[P+ (125+0.05) x|

ERAS5S — ZTD = 0.002277
25 " 100026 cos(2¢)—0.00028H

(6)

where, ¢ denotes the latitude of the IGS stations.

Interpolating meteorological parameters above the IGS stations by the pressure-level
ERAS5 data. According to the relationship of Hp and H, the pressure-level data
above the IGS stations are retained. Through the plane interpolation and fitting,
the temperature Tp and specific humidity Qp of the IGS stations at retained height of
Hp are derived. The water vapor pressure ep is obtained through Qp and Pp.

Qp X Pp
—_ — 7
v 0.622 @)

where, Pp is the pressure value of each level.

Calculating ERA5P-ZTD by the integral method. The ERA5P-ZTD values of the IGS
stations are obtained by integrating as shown in the following equations [4].

P—e e e
Ng = Kj % +K2XT+K3><T2 (8)
Np— Ky x P2 gy & kg x &2 ©)
=K T 2 T, 3 T2
_| Np
(%]
_¢ [Heop
ERA5SP — ZTD =10 / NdH (11)
H

where, N refers to the atmospheric refractive index at the IGS stations, Np represents
the atmospheric refractive index above the IGS stations, and N contains the Ng and
Np in each IGS station. Kj, K, and Kj are the refractive index constants with the
values of 77.604 K/hPa, 64.79 K/hPa and 377,600 K2/ hPa, respectively.
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2.3. Three Schemes Based on the LSSVM Algorithm
2.3.1. LSSVM Algorithm

The training sets (Xtin_iYirain_i)i=1,2,3..m and testing sets (Xtest_j,Ytest_i)i=1,2,3..n ar€ cON-
structed using known data according to the network structure of different schemes, x and y
represent the input and output vectors, respectively. The numbers of training sample and
testing sample are described as m and n.

For a given training sample (X;y4i, i Ytrain_i), the LSSVM algorithm constructs the special
function, that is combined with the least-squares equation constraint conditions, to obtain
the corresponding Lagrange function equation. The hyper-parameters of optimal model
are obtained through the cross-validation method. The optimal solution conditions and
the Radial Basis Function (RBF) kernel function matrix K are assembled to compose the
LSSVM regression model. These above-mentioned processing is elucidated by the ensuing
equations [26].

Ytrain_i = w' x 4)(xtmin_i) +b+E (12)

minj(w, b, E) = %wTw + C%ET (13)
. N T
L(w/ bE, “) = ]((U, b, E) - Zi:l ;X {ytmin_i {w X (p(xtmin_i) + b] +Ei— 1} (14)

N
Ytrain_i = Zi:l aj X K(xtminfir xtminﬁj) +0b (15)

- P
K(xi, xj) = exp (Zzgzj (16)

where, w represents the weight vector, ¢ denotes the mapping function, « and b are the
model parameters, E refers to the error vector of the model, C refers to the regularization
constant, and ¢ explains the indicator of the kernel function, which is determined by the
cross-validation optimization algorithm. In addition, Table 1 lists the initial parameters
and optimization strategy settings of the LSSVM algorithms in this contribution.

Table 1. Initial parameters setting of the LSSVM algorithm.

Parameter Name Value
C 10,000
o? 2
type ‘function estimation’
kernel ‘RBF_kernel’
preprocess ‘preprocess’
Method of optimization ‘grid search’
Method of testing ‘crossvalidatalssvm’

2.3.2. Three Schemes

Based on the LSSVM algorithm, we design three schemes to establish the ZTD models
according to different background data, namely Scheme 1, Scheme 2, and Scheme 3.
The final ZTD estimations of three ZTD models are regarded as EST-ZTD1, EST-ZTD?2,
and EST-ZTD3 respectively. It should be pointed that, the ZTD data is normalized to [0,1]
when the ZTD data is taken as one of input parameters to directly participate in the ZTD
modeling based on the LSSVM algorithm, in which the ZTD data includes the IGS-ZTD,
the ERA5S-ZTD, as well as ERA5P-ZTD.

Scheme 1: The core of this scheme is employing the LSSVM algorithm to depict
the functional relationship between the station position and the ZTD value, as shown in
Figure 1. The input parameters are the longitude, latitude, altitude of the IGS stations,
and the output elements are the estimated IGS-ZTD at the corresponding IGS stations.
There is no background data involved in the ZTD model. This scheme is also employed
in most ZTD models based on machine learning algorithms. When we verify the trained
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model by testing stations, the EST-ZTD1 at the test station is the output ZTD value of
this model.

Latitude
e

Longitudeo 'Gsf' ID

Altitude
—_—>

Input layer LSSVM Output layer

Figure 1. Network structure of Schemes 1.

Scheme 2: We introduce the ERA55-ZTD as background data in the ZTD model.
The core of this scheme is to estimate the deviation of ERA55-ZTD and IGS-ZTD by the
LSSVM algorithm, the network structure is shown in Figure 2. In this scheme, the longi-
tude, latitude, altitude, and the ERA55-ZTD of the IGS station constitute the input vector.
The corresponding output parameter is the deviation D-ZTDgr5s depicted through the
following equation. In the last, the EST-ZTD?2 of the test station is the summation of the
estimated D-ZTDgrass and the corresponding ERA5S-ZTD.

D — ZTDgrass = IGS — ZTD — ERA5S — ZTD (17)

Latitude
—

Longityde, D-ZTDgrass

Altitude
—

ERA5S-ZTD
>

Input layer LSSVM Output layer

Figure 2. Network structure of Scheme 2.

Scheme 3: Similar as Scheme 2, the ERASP-ZTD replaces the ERA55-ZTD as the
background data in Scheme 3, as shown in the following equation and in Figure 3.

D — ZTDggasp = IGS — ZTD — ERA5P — ZTD (18)

Latitude
—>

Longitgde

Altitude
—_—

D-ZTDegrase

ERA5P-ZTD
=

Input layer LSSVM QOutput layer

Figure 3. Network structure of Scheme 3.
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2.4. Accuracy Evaluation

The IGS-ZTD is adopted as the true value because it can reach a high precision of 4 mm.
Due to the poor data integrity of some stations in a long time period, we divide the year
into 12 months to ensure a sufficient number of samples in the research stage. The monthly
bias and the root mean square error (RMSE) of each experimental IGS station are calculated
by the following equations. The verifications of three ZTD models are evaluated by the
average monthly bias and average RMSE of all testing stations in each month. In addition,
piece-wise evaluations of two different background data are performed at each session.
The evaluation indexes are the same as that of the ZTD model.

. 1 N
Monthly_bias = N Eizl(EST_ZTDi — IGS—ZTD;) (19)

1 N 2
RMSE = \/N Eizl(EST—ZTDi — IGS—ZTD;) (20)
where, N is the monthly number of EST-ZTD values for each available station.

3. Results and Analysis

The ERAS5 hourly data of the European region (32° N-72° N, 15° W—40° E) in 2018
are extended to the ERA5S-ZTD and the ERA5P-ZTD at the positions of 85 IGS stations.
More than 50 IGS stations are available per month, and all of them are employed to
investigate the consistency of the extended ERA5S-ZTD and ERA5P-ZTD with IGS-ZTD.
Moreover, 10 available IGS stations are selected in each month to verify the accuracy of
our three ZTD models, where these models are built by the remaining more than 40 IGS
stations derived from the three schemes. Figure 4 displays the distribution of experimental
IGS stations in January 2018.

Figure 4. Distribution of experimental IGS stations in January 2018. Blue spots represent the training
sites, and 10 testing sites are shown by red points.

3.1. Accuracy of Two Background ZTD

Table 2 shows the monthly bias and RMSE of the ERA55-ZTD and ERA5P-ZTD by
comparison with the IGS-ZTD at all available stations. For the ERA55-ZTD, the average
bias values are in the range of —2.2-15.7 mm, with the corresponding average RMSE
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values of 17.4-42.3 mm. Generally, the higher the absolute value of the monthly bias has,
the bigger the average RMSE value is. The largest average monthly bias is 15.7 mm with
the maximum and minimum values of 68.4 mm and —26.6 mm in August 2018, respectively.
Subsequently, the maximum and minimum values of the corresponding RMSE are 18.8 mm
and 83.7 mm. For the ERA5P-ZTD, all of the average monthly biases are positive values
with the range of 2.1-6.3 mm, and the corresponding average RMSE values are in the range
of 7-14.8 mm. Meanwhile, only several RMSE values exceed 20 mm with the maximum
RMSE value of 27.1 mm in June 2018.

Table 2. Monthly bias and RMSE of the ERA55-ZTD and ERA5P-ZTD by comparison with the
IGS-ZTD at all available stations. Values in brackets refer to the monthly minimal and maximal value
for all available stations. Unit is millimeter.

ERA5S-ZTD ERA5P-ZTD
Monthly Bias RMSE Monthly Bias RMSE
January 2.5[-29.6,32.9] 20.2[10.4,41.1] 3.0[—9.6,12.8] 8.1[4.6,17.1]
February 0.8 [—16.3,25.6] 17.4[8.4,30.6] 2.3[-14.7,11.8] 7.0 [3.4,14.0]
March —2.2[-26.7,15.0] 222[7.2,36.5] 2.1[-122,17.8] 9.5[4.9,19.7]
April 6.2 [—37.0,42.3] 29.0[10.6,547]  3.5[—10.4,21.8] 9.8 [4.7,23.2]
May 9.0 [—53.7,40.4] 35.3[23.060.2]  2.9[-14.1,19.5] 11.5[6.7,22.0]
June 10.6 [—13.9,39.1] 37.7[15.1,68.1]  3.4[—11.9,24.0] 13.1[5.9,27.1]
July 11.0 [-7.5,62.0] 41.8[26.0,81.3]  45[-129,18.7]  14.1[10.0,23.9]
August 15.7 [—26.6,68.4] 423[18.8,83.7]  6.3[—129,21.8] 14.8[6.9,26.1]
September 8.1[—49.1,52.7] 37.1[7.3,66.4] 4.4[-9.1,21.7] 12.5[7.8,24.3]
October 6.1 [—23.3,35.6] 30.7 [16.9,46.6] 4.2[-8.3,24.3] 10.5 [6.2,25.8]
November 3.6 [—24.0,37.3] 259[16546.7]  4.4[-10.8,12.5] 9.6 [5.6,17.0]
December 0.5[—17.7,20.1] 21.9[14.4,33.3] 4.1[-29,21.3] 8.2[4.2,22.3]
Mean 6.0 30.1 3.8 10.7
| —— ERA5S-ZTD —©— ERA5P-ZTD
20 T T T T T T T T T T
_ 15} 4
E
E
2'10r 1
<
=
£ 9 —o
o
=
oF 4
_5 1 1 1 1 1 1 1 1 1 1 1
T T T T T T | T T T T
401 1
E 301 4
£
3
E 2o} .
o {}7~~G'*”’a" O —O-
0 o o6 g 7
1 Q 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 1" 12
Month (2018)

Figure 5. Average monthly bias and average RMSE of ERA5S-ZTD and ERA5P-ZTD in 2018.
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Figure 5 demonstrates the average monthly bias and the average RMSE values of
two background ZTD. The average monthly bias of ERA5S-ZTD is larger than that of
ERA5P-ZTD from March to October 2018, with the more obvious variation. The average
RMSE series of both ERA55-ZTD and ERA5P-ZTD appear the same trend of rising firstly
and then falling over time, and the average RMSE of ERA5S-ZTD is greater than that
of ERA5P-ZTD in each month, especially from May to October. These results imply that
ERAb5S-ZTD has a larger systematic bias with the IGS-ZTD than the ERA5P-ZTD, and the
consistency between ERA5P-ZTD and IGS-ZTD are better than that of between ERA5S-ZTD
and IGS-ZTD. The reasons are caused by both the difference of the grid data and the
processing methods. On one hand, the extended ERA5S-ZTD only uses hourly ERA5 data
on the single-level data, while the hourly data on 37 pressure levels are employed in the
extended ERA5P-ZTD. On the other hand, the ERA55-ZTD is obtained by substituting the
meteorological parameters into the fixed model, which may have certain system errors,
while the ERA5P-ZTD is computed by integrating all the refractive across the path of the
GNSS signals.

Figures 6 and 7 show the RMSE values of all available IGS stations derived from the
ERA5S-ZTD and ERASP-ZTD in January, April, July, and October of 2018, respectively.
This corresponds to winter, spring, summer, and autumn in the northern hemisphere.
The RMSE values of each station in January are relatively small for both the ERA55-ZTD and
ERA5P-ZTD, and the highest RMSE appears for these stations in July. This indicates that the
situation is a common feature of the whole selected region. The value for tropospheric delay
changes with different seasons and latitudes because there are complex meteorological
phenomena in the troposphere [27]. In different seasons, the diverse moisture content
brings the seasonal variation of the ZTD values. When the summer is coming, the change
of the moisture content can get complex and dramatic in a smaller area, while the ability
of minor change capturing is limited for the ERA5 grid data. Moreover, the lower RMSE
values are always distributed in high latitudes and inland areas, as well as the higher RMSE
values mostly appear in low latitudes and coastal regions. It implies that the high heat
and active monsoon activities lead to the large and complex ZTD value in low latitudes
and coastal areas. The ERA5 data does not indicate this variety of ZTD values perfectly,
which brings about this spatial characteristic of RMSE values.

January RMSE:gndm

o GE o QE
0° "q2p o4 ® 0 0° “q2og o4 ¥ 0

Figure 6. RMSE values of ERA5S-ZTD at all available IGS stations in January, April, July, and October
of 2018. These RMSE values of ERA55-ZTD are concentrating in the range of 25-50 mm.
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Figure 7. RMSE values of ERA5SP-ZTD at all available IGS stations in January, April, July, and October
of 2018. These RMSE values of ERA5P-ZTD are always less than 20 mm.

3.2. Accuracy of Three Schemes

We verify the consistency of our three ZTD models by comparison the estimated ZTD
values with IGS-ZTD. Table 3 gives their monthly bias and RMSE values of 10 verification
stations. The overall average monthly bias is 1.1 mm, 0.3 mm, and —1.6 mm for Scheme 1, 2,
and 3, respectively. The mean value of the average RMSE of 12 months is 25.8 mm, 22.9 mm,
and 9.0 mm for Schemes 1, 2, and 3, respectively. Among them, the average monthly bias
of 10 verification stations of Scheme 1 is in the range of —3.5-9.3 mm, the corresponding
average RMSE values are within 16.9-33.9 mm. The maximum monthly bias of 36.7 mm
appears on the individual verification station in August, as well as the maximum RMSE
of 52.3 mm. For Scheme 2, the average monthly bias is relatively small with the range of
—2.4-4.4 mm in 12 months and the average RMSE is concentrated in the 15.3-30.4 mm.
One of 10 verification stations has the maximum monthly bias of 32.4 mm and maximum
RMSE value of 54.2 mm in September. In addition, all of the average monthly biases of
Scheme 3 are negative values from —0.7 mm to —3.5 mm with the corresponding average
RMSE values from 6.1 mm to 12.6 mm.

Table 3. Monthly bias and RMSE values of 10 verification stations. Values in brackets refer to the monthly minimal and
maximal value for 10 verifying stations. Unit is millimeter.

EST-ZTD1 EST-ZTD2 EST-ZTD3
Monthly Bias RMSE Monthly Bias RMSE Monthly Bias RMSE
January —2.7[-17.7,8.9] 21.0[12.1,33.0] 0.2[-10.0,11.1] 15.9 [9.4,21.5] —0.7[-6.8,5.9] 6.6 [4.4,9.4]
February —2.0[—20.6,4.0] 16.9[7.9,35.1] —1.3[—13.6,8.3] 15.3[9.5,27.8] —09[—6.4,5.2] 6.1 [4.0,8.1]
March ~19[-123,133]  18.5[9.529.1] 0.3[—6.9,9.1] 17 [8.0,27.0] —0.9[—6.5,5.1] 7415.2,9.6]
April 52[—4.7,26.6] 21.9[9.7,36.6] 2.2[-5.7,21.0] 19.7 [8.6,33.1] —2.1[-8.5,5.5] 8.3[5.2,114]
May 29[-109,17.1]  29.9[18548.7] —1.1[—17.520.7] 25.7 [17,35] ~1.3[-7.5,5.9] 10[8.5,12.2]
June 5.6 [—9.1,27.5] 33.9[20,48.2] 15[-8,17.1] 28.2 [18,46] ~18[-6.623] 11.1[85,13.2]
July —2.2[-158,15.6] 32.8[22.2,49.1] —2.4[-16.9,9.9] 30.4 [18.2,43.7] —2.3[-7.9,2.6] 12.6 [10.9,14.0]
August 9.3[-11.2,36.7] 33[22.8,52.3] 2.3[-9.7,28.5] 30[17.4,44.2] —1.9[-7.6,2.5] 11.8[7.3,14.9]
September 2.8[—14.4,13.6] 29.2 [15.7,48.9] 441[-8.6,324] 28.7 [13.4,54.2] —1.3[-6.2,64] 10.2[6.7,13.1]
October 0[-11.0,3.9] 26.8 [14.0,40.5] 0.1[—12.6,15.3] 23.9[15.2,35.5] —14[-7.2,6.3] 8.7 [6.5,10.7]
November  —0.1[-9.87.9]  23.4[10.0.40.4] —1[-92,16.8]  21.5[134428] —1.4[—6.4,7.0] 7.7[5.8,10.3]
December ~ —3.5[-21.3,153]  22.1[9.7,31.3] ~17[-9573]  183[11.7238] —3.5[-7.9,0.5] 72[5.19.1]
Mean 1.1 25.8 0.3 229 —-1.6 9.0
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Figure 8 visualizes the average monthly bias and average RMSE per month. All of
the average monthly biases of Scheme 1 and Scheme 2 go up and down around zero
in 12 months; that of Scheme 3 is close to zero. These results illustrate that the overall
systematic errors are small for all three ZTD models based on the LSSVM algorithm.
Interestingly, a near overlap emerges owing to the more negative monthly bias values
of three schemes in July 2018. Meanwhile, a temporal feature emerges for the average
RMSE values of three ZTD models, where the RMSE values grow in size with the coming
of summer. It reflects a common problem that the accumulation of water vapor and
the irregular changes of cyclones in summer lead to more difficulty in modeling ZTD.
Moreover, the average RMSE values of Scheme 3 and Scheme 2 are smaller than that of
Scheme 1, and the value of Scheme 3 is the smallest in each month. It indicates that the
two models with extended ERA5 data as background data have a significant advantage
compared to the model without background data, and the accuracy of the model based
on ERA5P-ZTD is better because the higher consistency occurs between the ERASP-ZTD
and IGS-ZTD.
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Figure 8. Average monthly bias and average RMSE of estimated ZTD values at 10 verifying IGS
stations based on the three schemes.
3.3. Improvement Rate of the Two ZTD Models Based on ERA5S-ZTD and ERA5P-ZTD

To analyze the advantage of the two ZTD models of Scheme 2 and Scheme 3, we com-
pare the RMSE values of the 10 verification stations derived from the two ZTD models
with ERA55-ZTD and ERA5P-ZTD, and their respective improvement rates are calculated
according to the following two equations.

RMSEgRrass—z1D — RMSEEST_7TD2

RMSEgRass—zTD

RMSEgRasp—z1D — RMSEEST_7TD3
RMSEEgRra5p—zTD

Improvement_Scheme2 = x 100% (21)

Improvement_Scheme3 = x 100% (22)
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where, the RMSEgrA55-z1D and RMSEEggasp-z1p refer to the RMSE value of the ERA5S-ZTD
and ERA5P-ZTD in each verified station, respectively. The RMSEgst-z1p2 and RMSEEst-z71D3
represent the RMSE values of Scheme 2 and Scheme 3 at 10 verification stations.

Table 4 lists the statistical result of the improvement rate based on 10 verification
stations. For Scheme 2, the overall average improvement rate reaches 19.1%, with the
monthly average improvement rate of from 12.7% to 26.3%. In these months, the optimal
improvement rate is up to 61.3% at an individual station in July, as well as the worst
rate of —64.7% in June. For Scheme 3, only 1.6% overall average improvement rate is
achieved, and most of the monthly average improvement rates are close to zero. During
those 12 months, the best monthly average improvement rate is 17.5% with the maximum
improvement of 42.5% at one of 10 verification stations in March, and the worst rate is
—12.5% with the rate of —86.1% at an individual station in December. By comprehen-
sively comparing the improvement rate of Scheme 2 and Scheme 3, it clearly stands out
that the LSSVM algorithm has the excellent performance of compensating the errors de-
rived from ERA5S-ZTD, while the situation is not obvious for the ERA5P-ZTD. Even so,
the improvement rate of several stations can also exceed 17% in all 12 months for Scheme 3.

Table 4. Improvement rate of Schemes 2 and 3. Values in brackets refer to the monthly minimal and
maximal improvement rate for 10 verifying stations. Unit is percent.

Improvement- Improvement-
Scheme 2 Scheme 3

January 18.8 [—0.1,48.8] 7.4[—31.4,37.3]
February 12.7 [—19.9,36.4] —0.2[—35.2,35.1]
March 20.7 [—10.0,43.3] 17.5[—-11.2,42.5]
April 26.3 [2.5,50.7] —0.9 [—44.8,22.5]
May 16.8 [—50.0,48.1] —2.2[-32.3,19.0]
June 16.4 [—64.7,45.5] —0.2[—44.1,22.3]
July 18.2 [—28.4,61.3] —1.8[—19.6,17.7]

August 23.9[—10.8,46.3] 0.6 [—29.4,25.1]

September 23.4[—-1.446.2] 5.3[—19.6,23.4]

October 20.6 [—33.8,46.2] 0.4 [—32.3,28.9]

November 17.8 [—3.3,45.3] 5.5[—21.6,38.6]
Dec 13.4[—20.4,49.8] —12.5[—-86.1,33.8]

Mean 19.1 1.6

As a typical, Figure 9 and Table 5 display the result of GLSV site in January, April,
July, and October of 2018, where the GLSV site is one of the 10 verification stations. Among
them, as shown in Figure 9 that significant periodic error signals exist in the bias time series
of ERA5S-ZTD and have significantly improved after modeling with ERA5S-ZTD based
on the LSSVM algorithm, especially in summer. For the bias time series of ERASP-ZTD,
the periodic error signals have a small fluctuation amplitude compared with ERA55-ZTD,
especially for the results in winter. In addition, the improvement effects from Scheme 3 are
not better than that of Scheme 2. As can be seen from the monthly bias in Table 5, EST-ZTD2
model has better correction effect for the obvious systematic errors in ERA5S-ZTD model
compared with the improvement of EST-ZTD3 relative to ERA5P-ZTD. Overall, the LSSVM
algorithm has better performance in correcting periodic bias of the ERA5S-ZTD, and the
extended ERA5P-ZTD by the integral method has good accuracy property, which constrains
the improvement capability of the LSSVM algorithm.
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Figure 9. Bias time series of ZTD estimations at the GLSV site in January, April, July, and October of 2018. The four
subgraphs on the left refer to the bias time series from ERA5S-ZTD and Scheme 2, and four subgraphs on the right for the

ERAS5P-ZTD and Scheme 3.

Table 5. Monthly bias and RMSE of ZTD estimations from ERA5S-ZTD, EST-ZTD2, ERA5P-ZTD and
EST-ZTD3 model at the GLSV site in January, April, July, and October of 2018. Unit is millimeters.

ERA5S-ZTD EST-ZTD2 ERA5P-ZTD EST-ZTD3
RMSE RMSE RMSE RMSE
Monthly Monthly Monthly Monthly
Bias Bias Bias Bias
January —-12.7 24.3 1.7 124 —4.7 7.8 2.1 5.8
April -55 28.8 —44 14.2 -0.7 9.8 —-14 7.7
July -10.1 47.0 -2.2 18.2 -1.3 13.0 -0.8 10.9
October —-0.7 274 —6.8 18.2 —-1.1 8.6 -1.7 7.2

4. Discussion

To further investigate the feasibility and availability of the ZTD model of Scheme 3,
we perform loop verification on each of the all available IGS stations per month. In each
month, each of the available IGS stations is as a testing station in turn to estimate ZTD
values, and all remaining available IGS stations are used to train the ZTD model based
on the LSSVM algorithm. Afterward, the RMSE values of these estimated ZTD values
are evaluated by comparison with IGS-ZTD according to Equation (20), as well as the
calculated improvement rate according to Equation (22). We calculate the percentage of all
available IGS stations per month by dividing them into the accuracy-improved stations
and the accuracy-reduced stations, as well as the overall average improvement rate of their
RMSE values. Among them, the percentage of stations with accuracy-reduced stations can
be subtracted by the percentage of accuracy-improved stations from 100%. As shown in
Figure 10, the percentage of the accuracy-improved stations exceeds 50%, while the overall
average improvement rate of RMSE values is less than 10% per month, with the exception
of March 2018.
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Figure 10. Statistical improvements of Scheme 3 at all stations. The up sub-figure depicts the
proportion of accuracy-improved stations. The average improvement of RMSE at all stations is
shown in the down subfigure.

4.1. Dependency of the Estimated ZTD on the Station Distribution

Figure 11 unfolds the improvement rate of each available IGS station in January, April,
July, and October of 2018. The most red and yellow spots with the improvement rate in
the range of 0-40% are mainly located in the central region of Europe, where the available
IGS stations evenly are distributed and compact. This allows that the information of input
and output parameters can be comprehensively captured with precision in these areas.
The mainly cyan and blue spots with the rate of —40%-0 are located in the edge of the
station network or near the coast, and few stations adjacent to them. Therefore, no enough
samples can be trained by using the LSSVM algorithm, and the stations located in the
coastal area suffer from more drastic climate variability. Specially, several cyan and blue
spots are surrounded by a dense network of stations in the central region, such as the
WTZR site. It implies that good station distribution is not the unique requirement for
the improvement of the estimated ZTD. Therefore, we make a further discussion for the
dependency of estimated ZTD on the output parameters D-ZTDgr5p in the next section.

improvement:%
40

-40

€ I A ) €t !
12°E 24° 12°E 24° 40

0°

Figure 11. Distribution of improvement rate of all available stations from Scheme 3 in January, April,
July, and October of 2018. Red spots refer to the improvement rate of the available IGS stations in the
range of 0-20%, 20%—40% for yellow spots, —20%-0 for cyan spots, and —40%——20% for blue spots.
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4.2. Dependency of the Estimated ZTD on the Output Parameter D-ZTDEgasp

According to the following formula, we calculate the cosine value of the monthly
D-ZTDggasp time series between the vector of the individual verified station and each of
the training station [28].

D— ZTDtrain_i .D — ZTD!est

cos(D — ZTDIEAeh, D — ZTDiffsp ) = ERASP ERASP . (23)
t
|D - ZTDY, |- |D — ZTDigsp

where, i refers to the ith training station, D — Z TDgI’éiZg% denotes the vector of the ith
training station in the monthly D-ZTDgrasp time series, as wellas D — Z TD%"ISQS p for the
individual verified station. In order to express more clearly the similarity of the training
samples with the verified sample, we give the average-cosine value as

— 1 o
cos(D — ZTDJRE, D — ZTDE%SP) == 21 cos(D — ZTDJRE, D — ZTDEE;;SP) (24)
1=

where 7 refers to the number of training stations in each month.

In Figure 12, we divide the available IGS station in January, April, July, and Octo-
ber of 2018 according to the station distribution, the improvement rate < 0, as well as
|average cosine| < 0.2. When |average cosine| < 0.2, the similarity of the training sam-
ples with the verified samples is weak. The overall trend between the average-cosine and
the improvement rate tends to be linear from black spots, where the improvement rate
increases with the rise of the average-cosine value. The average-cosine values of most
stations are more than 0.2 with a positive improvement rate. It implies that the overall
accuracy of estimated ZTD from Scheme 3 is superior to the accuracy of ERA5P-ZTD.
Moreover, the overall improved accuracy is associated with the similarity between training
stations and testing stations.
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Figure 12. Similarity of the improvement rate with average-cosine value for each available station
in January, April, July, and October of 2018. Among them, the black spots refer to the station with
the improvement rate > 0 or |average cosine| > 0.2. The red spots refer to the stations located in
the edge region with the improvement rate < 0 and |average cosine| < 0.2, the blue spots for the
stations located in the central region, and the magenta spots for the stations close to the coast. For the
red, blue, and magenta spots, their corresponding stations are included at least three months in
January, April, July, and October of 2018. The other stations are presented by using the green spots.
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Although the WTZR, OPMT, and LEIJ sites with blue spots are surrounded by a
dense network of stations in the central region as shown in Figure 13, their average-cosine
values are less than 0.2 at least three months in January, April, July, and October of 2018.
The estimated ZTD values of the three sites have a negative improvement rate owing to the
trained stations have lower similarity with them. For the sites with red, magenta, and green
spots, they are always located on the edge of the region or near the coast. On one hand,
their locations are relatively outliers when their ZTDs are estimated, which also leads to
a lower similarity and negative improvement rate. On the other hand, the large change
of air humidity often occurs near the coast, and the accuracy of ZTD modeling become
unstable owing to the influence of the abundant water vapor and active monsoon climate.
Overall, this is a common problem for the ZTD modeling. Even though, the improvement
rate of estimated ZTD is positive for most stations, and the biggest improvement rate from
Scheme 3 can reach about 40%.

720/\/ January
/

. — ot
O e e

Figure 13. Station distribution based on the conditions of improvement rate < 0, and |average cosine| <
0.2. These spots with different color correspond with the colored spots in Figure 12.

5. Conclusions

As a fresh meteorological reanalysis data, the ERA5 data has higher spatial resolu-
tion than the IGS-ZTD. In addition, the LSSVM algorithm has a more stable computing
performance than the traditional BPNN algorithm. In this paper, we combine the ERA5
data with IGS-ZTD by using the LSSVM algorithm. Among them, we extend the ERA5
data to ERA55-ZTD and ERA5P-ZTD based on the model method and integral method,
and design three schemes to build ZTD models.

The consistency of ERA5P-ZTD with IGS-ZTD is better than that of ERA55-ZTD owing
to the integral method, as well as the multiple pressure-level data. The overall average
RMSE value is 30.1 mm and 10.7 mm for ERA5S-ZTD and ERAS5P-ZTD, respectively.
While they have the same trend with the seasonal variation, the RMSE values reach
biggest with the coming of summer. In addition, the stations located in low latitudes
and coastal regions have always higher RMSE values owing to the high heat and active
monsoon activities.

For the three ZTD models, the overall average monthly bias is 1.1 mm, 0.3 mm,
and —1.6 mm, with the corresponding mean value of average RMSE values of 25.8 mm,
22.9 mm, and 9.0 mm for Schemes 1, 2, and 3, respectively. Hardly any systematic errors
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exist for all three ZTD models based on the LSSVM algorithm, and the ZTD modeling
accuracy is significantly improved when the ERA5 data is added, especially for the ZTD
model with ERA5P-ZTD. Meanwhile, the seasonal characteristics still exist owing to the
accumulation of water vapor and the irregular changes of cyclones in summer, as well as
the accuracy limitation of ERA5S5-ZTD and ERA5P-ZTD.

To investigate the advantage of the combination of ERA5 data using the LSSVM
algorithm, the improvement rates are analyzed and discussed in detail. The overall im-
provement rate has 19.1% for the ZTD model with ERA5S-ZTD, and 1.6% for the ZTD
model with ERA5P-ZTD. The LSSVM algorithm shows excellent performance in correcting
systematic and periodic errors of ERA5S-ZTD, while the overall improvement effect is
weak for the ZTD model with ERA5P-ZTD.

Moreover, we perform loop verification of each available IGS station to explore the
reason for the lower improvement for the ZTD model with ERA5P-ZTD. The dependency
of estimated ZTD on the station distribution and the output parameters D-ZTDgr45p are
discussed. On one hand, the improvement rate is positive for most stations located in the
central region of the regional network, and the biggest monthly improvement rate can
even reach about 40%. On the other hand, the improvement rate is negative for several
stations. They are always located on the edge of the region, or near the coast. Additionally,
they suffer from both the scare training samples and more drastic climate variability around
them. Furthermore, a few stations are surrounded by a dense network of stations in the
central region with a negative improvement rate, which is mainly caused by the lower
similarity between the individual verified station and training stations. Overall, the two
discussed dependencies are the common problem for the ZTD modeling, and it is important
to refine the strategies of multisource combination based on the excellent machine learning
algorithms in the near future.
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