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Abstract: We analyzed the Corine Land Cover 2018 (CLC2018) dataset to reveal the correspondence
between land cover categories of the CLC and the spectral information of Landsat-8, Sentinel-2
and PlanetScope images. Level 1 categories of the CLC2018 were analyzed in a 25 km x 25 km
study area in Hungary. Spectral data were summarized by land cover polygons, and the dataset
was evaluated with statistical tests. We then performed Linear Discriminant Analysis (LDA) and
Random Forest classifications to reveal if CLC L1 level categories were confirmed by spectral values.
Wetlands and water bodies were the most likely to be confused with other categories. The least
mixture was observed when we applied the median to quantify the pixel variance of CLC polygons.
RF outperformed the LDA’s accuracy, and PlanetScope’s data were the most accurate. Analysis
of class level accuracies showed that agricultural areas and wetlands had the most issues with
misclassification. We proved the representativeness of the results with a repeated randomized test,
and only PlanetScope seemed to be ungeneralizable. Results showed that CLC polygons, as basic
units of land cover, can ensure 71.1-78.5% OAs for the three satellite sensors; higher geometric
resolution resulted in better accuracy. These results justified CLC polygons, in spite of visual
interpretation, can hold relevant information about land cover considering the surface reflectance
values of satellites. However, using CLC as ground truth data for land cover classifications can be
questionable, at least in the L1 nomenclature.

Keywords: Landsat; Sentinel; planet; CLC2018; Recursive Feature Elimination; validation; representativeness;
Random Forest; Linear Discriminant Analysis

1. Introduction

Land use/land cover (LULC) mapping is one of the most important tasks of envi-
ronmental assessments and environmental monitoring [1,2]. LULC mapping is based on
remotely sensed images and has a history stretching back about 40 years [3]. Land cover
categories can be identified with automatic image classification using machine learning
algorithms using training data to develop a model, which provides the best fit for the
known data points; another alternative is a visual interpretation and land cover patch
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vectorization [4]. Image classification can use non-supervised or supervised techniques,
which have extensive literature: the various types of LULC classification of remotely sensed
images is a very popular research topic, e.g., [5-7]. The final model is tested with indepen-
dent data, and the classification error depends on the reliability of the training data. On
the other hand, visual interpretation can exclude misclassifications since the interpreter
can identify texture, patterns and objects [8,9]; however, it is a subjective approach, it is
time-consuming, slow and needs appropriate financial support due to its demand for active
labor [10]. Moreover, accuracy depends on the interpreter’s expertise and local knowledge
of the area, and as there are many interpreters with different skills, the product quality
is heterogeneous.

Corine Land Cover (CLC) data are a popular dataset for a wide range of researchers in
geography, ecology, remote sensing or forestry, and many other fields with diverse research
goals [11], and its production varies by country: most countries apply visual interpretation,
but some apply semi-automatic techniques (see Section 2.1). When performing LULC
classification, it is a frequent method to use validation data in general [12-14] or published
LULC databases for validation [15]. There are several publications where validation relied
on CLC [16-19] or used the unified application of CLC with any other data sources in
order to analyze environmental topics [20]. There are examples where the classification
is performed with the intention of matching the CLC categories [21] because the CLC
category scheme provides a thorough and detailed category nomenclature.

Freely available (e.g., Landsat and Sentinel) and commercial satellites (e.g., SPOT,
WorldView and PlanetScope) provide efficient input data for land cover mapping, but the
availability (i.e., revisit of the satellites, cloud-free images, funding) is a relevant question.
Both the Landsat and Sentinel images are widely used in studies, and the PlanetScope,
with its daily revisit and the availability for research purposes, through the Planet Research
and Education program (https://www.planet.com/markets/education-and-research/,
accessed on 24 February 2021), has an increasing interest. In comparison, regarding the
efficiency, several studies proved that all satellites could be efficient, but the resolution
can be a limit. Dalponte et al. [22] found that Sentinel-2 and PlanetScope satellites were
suitable to detect windthrows as forest damages, but the date of the images was important.
Although the spatial resolution is worse for Sentinel-2, the number of spectral bands
can improve the accuracy. Messina et al. [23] performed a comparison among Sentinel-2,
PlanetScope and UAV surveys of a Parrot Sequoia multispectral camera in onion crop
monitoring and found that the most reasonable solution is to combine all the three data
sources and to decrease the cost with freely available Sentinel-1 and Sentinel-2 images.
However, their motivation was to provide an alternative solution against CLC maps.

Previous studies did not deal with the relationship between CLC categories and pixel
characteristics or the category mixtures of various satellite imaging sets; furthermore, CLC
maps were used as reference (i.e., ground truth) data, it is crucial to know how the land
cover classes can be classified from satellite images.

This study aims to: (i) examine the images of three satellites with the same capturing
date regarding the difference of reflectance values among the CLC L1 classes; (ii) compare
machine-learning algorithms to classify the L1 classes using basic statistical parameters of
CLC polygons; (iii) develop a method to calculate the class level thematic accuracy with
repetitions; (iv) develop a method to confirm data representativity to ensure generalization
of the sample data.

2. Materials and Methods
2.1. Datasets

CLC datasets are widely used in land change monitoring and related applications [24].
These datasets were distributed by the European Environment Agency and then by the
Copernicus Land Monitoring Service [25]. The CLC program was initiated in 1985, and
the first dataset was named CLC1990. Subsequently, four more datasets were released:
CLC2000, CLC2006, CLC2012 and CLC2018. Although the minimum mapping unit (MMU)
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is 25 ha, land cover polygons reflect better accuracy: CLC1990 was the first product; since
then, the change layers have been produced with 5 ha MMU, and only the changes are
implemented in the actual mapping using the last revised version of the CLC map (in 2018
the CLC2012 was updated) [26]. CLC has a detailed hierarchical nomenclature on three
levels. The most detailed level is Level 3, with a maximum of 44 categories. Level 2 has
a maximum of 15 categories, and it aggregates the detailed categories to a less detailed
system. Level 1 has a maximum of 5 categories. The three levels are connected to each other
since the level 1 nomenclature is a hierarchical stepwise aggregation of level 2 and level 3
categories [27]. We used the most up-to-date CLC2018 dataset, which was based on 2017
and 2018 satellite images (mainly interpreted from Sentinel-2 images), and we compared
the pixel characteristics of CLC polygons with satellite images (Landsat-8, Sentinel-2 and
PlanetScope) from 2018 and analyzed the L1 categories: artificial surfaces (Art), agricultural
areas (Agr), forests and semi-natural areas (F), wetlands (Wet) and water bodies (Wat).

We obtained the satellite images for 20 August, 20 August and 23 August 2018 taken
by three different satellites: Landsat-8 [28], Sentinel-2B [29] and PlanetScope Dove [30],
respectively. The close dates of captures (a few days of difference) were the most important
prerequisite to exclude differences of changes in the phenophase of vegetation or land
cover change. August is the driest month in Hungary and, according to the meteorological
data [31], there was no rain in the region in the studied period between 13 and 23 August
(i-e., there was no rain even in the period preceding the images; thus, reflectance values
were not biased by the weather). All images were cloud-free.

Landsat-8 images were downloaded from Nasa Earth Explorer (US Geological Survey,
https://earthexplorer.usgs.gov/, accessed on 24 February 2021), Sentinel-2 images from
Copernicus Open Access Hub (European Space Agency, https:/ /scihub.copernicus.eu/,
accessed on 24 February 2021) and PlanetScope images from Planet’s website (Planet,
https://planet.com/, accessed on 24 February 2021). These satellites take images with
different spatial resolutions: Landsat has a spatial resolution of 30 m, Sentinel-2 of 10 m (as
well as 20 and 60 m) and PlanetScope of 3 m. All images were atmospherically corrected
surface reflectance products (Landsat-8: L2, Sentinel-2: L2A and PlanetScope: L3A) and
were multispectral with several bands; however, we used only those which were available
for all satellites: the visible (red, green, blue) and the near-infrared bands (Figure 1).
Furthermore, we calculated the Normalized Difference Vegetation Index (NDVI) as a
robust index of vegetation greenness [32,33], widely-used for characterizing land cover
types [34-36] or specifically used for the analysis of time-series datasets [37-39].

2.2. Study Area

The study area was a 25 x 25 km area in the surroundings of the town of Tokaj,
NE-Hungary. The main purpose was to examine an area where as many CLC categories
are present as possible. This area contained 19 level 3 categories out of the possible 44.
Thus, the area represented a heterogeneous landscape mosaic concerning the landscape
elements (i.e., patches), as it is located at the junction of five different microregions with
various land types of different characteristics, including floodplains along the Tisza and
Bodrog rivers, the hilly areas of the Tokaj hill in the center of the study area, and the sandy
plains in the southeast part of the study area [40]. We aggregated the categories in the area
into 5 main categories according to the CLC level 1 nomenclature [27] (Figure 2).
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Figure 1. Bandwidth of satellite image bands. L: Landsat-8, P: PlanetScope, S: Sentinel-2, NIR: near-infrared.

Figure 2. Study area location and Corine Land Cover level 1 (CLC L1) categories.
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2.3. Image Processing

The workflow started with the tasks related to GIS processing: reprojection of the
CLC2018 vector dataset from the ETRS89 to the UTM34N coordinate system and clipping to
match the study area extent. Then we extracted the descriptive statistical values (minimum,
mean, median, maximum, standard deviation (STD)) of the pixels of each satellite band
(blue, green, red (RGB), near-infrared (NIR) bands and the calculated NDVI layers) covered
by CLC polygons. This resulted in 15 variables (3 sensors x 5 layers). This part of the
workflow was performed in QGIS 3.10 [41].

2.4. Statistical Analysis

The extracted dataset was processed with R software [42] using “ggplot2” [43] and
“multcomp” [44] packages. Distributions of the variables were tested for normality with
the Shapiro-Wilk test. We applied the -2-way ANOVA test based on 20% trimmed values
to test the median of the reflectance values (dependent variable) against two independent
variables. In addition to nominal factors (the independent variables: CLC categories,
satellites), we also included the analysis of interactions to reveal if a factor is influenced
in the function by another factor [45]. Satellites had different spatial resolutions; thus, in
increasing order, it was suitable for the main effect and the abscissa of the interaction plot,
while the land cover categories formed the other main effect.

We applied General Linear Modeling (GLM) to determine the most important biasing
factors of the reflectance values. Independence of data was ensured by using the aggregated
values (i.e., mean and STD) of the CLC polygons, variance homogeneity was checked by
the Levene test, and the normal distribution was checked by the Shapiro-Wilk test. We
performed two GLMs; in the first model, the median of the reflectance was the dependent
variable, while in the second model, the STD, the independent variables were the following
factors: land cover category (L1), the satellite type (SAT) and the band of the satellites
(band). We also determined the effect size (w?) to estimate the contribution of the given
factors to the variance of the dependent variable [46]; the effect can be categorized as small
(w?: 0.01-0.06), medium (w?: 0.06-0.14), or large (w? > 0.14) [45]. Thus, we were able to
evaluate the significance and contribution of the given influencing factors and the statistical
interactions. GLMs were conducted in jamovi 1.2.16 [47].

We conducted classifications to reveal whether the CLC L1 level classes can be discrim-
inated by the spectral values of satellite bands and the NDVI. We applied a traditional and
parametric method, the Linear Discriminant Analysis (LDA), and a robust nonparametric
classifier, the Random Forest (RF).

LDA is a popular method in multivariate statistical analysis and is powerful but has
several assumptions. It requires a balanced set of cases within different categories and
multivariate normal distribution [48-50]. Accordingly, if there are outlier data within the
categories, the number of misclassifications will increase. The RF algorithm works with
hundreds of classification decision trees: the dataset is sampled as many times as the
number of decision trees with bootstrapping (i.e., the same data can be used in the same
dataset several times). The number of variables is the square root of the total number of
variables. As a consequence of the procedure, there are no limitations or prerequisites;
moreover, the approach is efficient [48,51].

We performed the classifications involving all variables, and we then repeated all
classifications with the most important variables determined by the Recursive Feature
Elimination (RFE). Fewer variables can result in good accuracy and help to avoid overfitting.
The RFE works as follows: we need to specify an algorithm (e.g., LDA or RF), and the
RFE performs a classification; next, the classification runs again, omitting one variable
and recording the validation loss. The variable omission is repeated until all variables
are omitted and, based on the contribution of the variables, a rank is produced [52]. The
RFE was conducted with the RF algorithm with repeated 5-fold cross-validation with
10 repetitions (i.e., based on 50 models) using the “caret” package of R [53].
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2.5. Analysis of Data Representativeness

The representativeness of data is always among the main questions in all studies.
Although we had 984 CLC polygons, the water body category had only 39 cases. We aimed
to reach 85% accuracy (OA) with 5% allowable error, which requires at least 200 cases
according to Foody [54] (Equation (1)), practically 50 cases per CLC-class. We aimed to
use a balanced design with the same data size, so we omitted the water category from
this analysis. Accordingly, we performed an analysis using stratified random sampling
(10 random datasets) and 2-fold cross-validation with 25 repetitions for all random samples;
therefore, all randomizations were based on 50 models:

. z2P(100 — P) )

2
where 7 is the required number of data, z is the standard error associated with the chosen
level of confidence, P is the planned value of accuracy (%), and # is the allowable error (%).
In our test z was 1.96 (95% confidence), P was 85%, and h was 5%.

We applied only the RF classifier, including all variables, and applied complete random
models (samples came from random sampling, and the RF models were also randomized,
as R makes it possible to ensure similar or different model runs). The models” OA values
were evaluated by satellites using ANOVA. Our Hy was that the means of different RF
models based on random samples were equal. The Tukey-test was used in the post hoc
analysis. We supposed that if the model means were equal, data representativeness is
ensured, as reflected in the 10 randomized models; therefore, the results can be general
and be true for other areas as well.

2.6. Accuracy Assessment

Classification accuracy was tested with two methods. Overall Accuracy (OA) was
tested with a repeated 5-fold cross-validation with 10 repetitions (RCV) [55]. Here, we
had split the whole dataset into five subsets and used 4 of them as train data and 1 as a
test set; then, another subset was used as the test set and the rest 4 as a train. The process
was concluded when all subsets were used as a test set, and the whole procedure was
repeated 10 times. Finally, we obtained 50 models, and we could calculate the medians,
quartiles, minimums, and maximums of OAs for each model. Classification accuracy on
the category level was evaluated using the traditional approach of Congalton [13], based
on the confusion matrices and the derived accuracy metrics: User’s Accuracy (UA) and
Producer’s Accuracy (PA). We used the 10 randomizations of data representativeness to
determine the ranges of UA and PA (instead of reporting only one confusion matrix).
Classification accuracy was determined with the “caret” package of R [53].

3. Results
3.1. Differences of Spectral Characteristics of CLC Categories

The spectral bands of different satellites had significant differences (p < 0.05 according
to Tukey’s test), i.e., CLC polygons of the same category were represented by different
statistical parameters.

Regarding the visual bands, the median and minimum of the blue and the minimum
of the red bands in the PlanetScope image had significantly higher (p < 0.05) values
compared to the other two sensors. In either blue, green or red median graphs, artificial
and agricultural categories showed significantly higher values with all sensors than the
forest, wetland and water bodies categories. STDs were significantly higher (p < 0.05) in
the case of Sentinel-2 data for almost all categories in RGB bands (Figure 3).
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Figure 3. Distribution of the blue, green and red band pixel values of each sensor for the median
(MED), minimum (MIN) and standard deviation values (STD) in each Corine Land Cover (CLC)
polygon of CLC level 1 categories (median, quartiles, outliers).

3.2. Reflectance Values and Nominal Factors

The 2-way ANOVA revealed that both satellite type (SAT) and land cover category
(L1) had significant effects in all cases. Furthermore, there was a significant interaction
effect in the case of red, NIR bands and NDV], i.e., CLC categories were affected by the
satellite sensors differently in these cases (Table 1; Figure 4). Regarding the visible bands,
the agricultural and artificial areas and the water, wetland and forest categories formed
groups. In the case of the NIR band, the groups were almost the same, but the highest
values were found in the forests and wetlands, and water was placed at the bottom of
the diagram (Figure 4). Regarding the NDVI, agricultural, artificial and water categories
were in one group with lower values and forests and wetlands in another group with
higher values.

Table 1. Differences between the reflectance values regarding the satellites (SAT) and Corine Land Cover (CLC) categories
(L1) and their statistical interaction (SAT: L1) based on the two-way factorial ANOVA. NIR: near-infrared, NDVI: Normalized
Difference Vegetation Index.

Mean Square F Value p (Significance)
SAT L1 SAT:L1 SAT L1 SAT:L1 SAT L1 SAT:L1
Blue 3,486,511 2,126,014 6485 566.633 345.523 1.054 <0.001 <0.001 0.393
Green 132,930 3,269,793 14,691 14.815 364.426 1.637 <0.001 <0.001 0.11
Red 1,235,635 8,846,234 136,225 53.362 382.032 5.883 <0.001 <0.001 <0.001
NIR 3,659,005 20,970,015 228,477 34.800 199.442 2173 <0.001 <0.001 0.027
NDVI 0.4460 3.0034 0.0451 41.224 277.630 4.166 <0.001 <0.001 <0.001
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Figure 4. Interaction plot of reflectance values by satellites and Corine Land Cover (CLC) categories. L: Landsat, S: Sentinel,

P: PlanetScope; LC: land cover, Art: artificial, Agr: agricultural, F: forest, Wet: wetland, Wat: water, NIR: near-infrared,
NDVI: Normalized Difference Vegetation Index.

GLMs revealed that the variance of reflectance values” medians and STDs could
be explained by the independent factors involved. When medians were the dependent
variable (Table 2), the adjusted R? was 0.972, and all factors and their interactions were
significant (p < 0.001). Satellite bands made the largest contribution to the explained
variance; the next largest was the interaction of the bands and land cover classes (L1), and
the L1 alone also made a small contribution. The model with the STD as the dependent
variable was also strong; the adjusted R? was 0.895 (Table 3). Regarding the contributions,
similarly to medians, satellite bands had the largest effect, and the interaction of bands and
LCs (band x L1) and the LCs alone (L1) was also in the second and third place. However,
in this case, the satellite type (SAT) and its interaction with the bands (SAT x bands) had a
small effect.
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Table 2. Summary of General Linear Model (GLM) performed with medians calculated from CLC
polygons. SS: sum of squares, df: degrees of freedom, F: F-statistic, p: significance, w?: effect size; L1:
land cover class; SAT: satellite type; band: satellite bands.

SS df F p w?

Model 4.84 x 10° 74 2281.66 <0.001 0.972

Band 2.07 x 10° 4 18,055.72 <0.001 0.416

SAT 1.55 x 106 2 27.01 <0.001 0.000

L1 2.80 x 107 4 243.67 <0.001 0.006

Band x SAT 6.24 x 100 8 27.19 <0.001 0.001

Band x L1 1.13 x 108 16 245.97 <0.001 0.023

SAT x L1 718,073 8 3.13 0.002 0.000

Band x SAT x L1 2.37 x 10° 32 258 <0.001 0.000
Residuals 1.39 x 108 4845
Total 498 x 10° 4919

Table 3. Summary of General Linear Model (GLM) performed with standard deviations calculated
from CLC polygons. SS: sum of squares, df: degrees of freedom, F: F-statistic, p: significance, w?:

effect size; L1: land cover class; SAT: satellite type; band: satellite bands.

SS df F p w?

Model 2.64 x 108 75 562.59 <0.001 0.895

Band 1.52 x 108 5 4850.22 <0.001 0.515

SAT 1.44 x 106 2 115.10 <0.001 0.005

L1 2.77 x 100 4 110.65 <0.001 0.009

Band x SAT 1.43 x 106 8 28.58 <0.001 0.005

Band x L1 1.12 x 107 16 111.86 <0.001 0.038

SAT x L1 325,839 8 6.52 <0.001 0.001

Band x SAT x L1 411,950 32 2.06 <0.001 0.001
Residuals 3.03 x 107 4845
Total 2.94 x 108 4920

3.3. CLC Categories as Reflected in Classification Algorithms

Classifications revealed that the best classification accuracies (OAs) belonged to the
PlanetScope satellite, while the Landsat provided the worst; however, the medians of
50 models (for each algorithm and satellite data from the 10-fold cross-validation with
5 repetitions) ranged between 71.1% (LDA with Landsat data) and 78.5% (LDA with
PlanetScope data; Figure 5). Although LDA provided the best median of OAs, RF was
only 1% worse; furthermore, the median was only one parameter: the minimum value
was 65.1% for LDA, and 69.2% for RF and the maximums were equal (86.5%). In the case
of Sentinel, the medians of OAs were almost equal: 75.3% (LDA) and 76.1% (RF), but
the RF’'s minimum and maximum were both higher than the same parameters of LDA.
Classification with Landsat data showed the worst performance, and this was especially
true of the LDA models where the maximum (79.1%) was worse than the upper quartile of
REs, LDA.p and REp (Figure 5).
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Figure 5. Overall accuracies by satellites and classification algorithms. LDA: Linear Discriminant
Analysis, RF: Random Forest, p: PlanetScope, s: Sentinel-2, 1: Landsat-8.

We repeated the analysis with all available bands in the case of Landsat-8 and Sentinel-
2, and the OAs improved by 3-6%. We observed the largest (6%) increase of medians in
the case of Sentinel-2 classified with LDA, but for Landsat-8, the increase was only 2%
(Table 4).

Table 4. Overall classification accuracies of the common bands (RGB + NIR) and all available bands
using all statistical layers. LDA: Linear Discriminant Analysis, RF: Random Forest; : Landsat-8, s:
Sentinel-2; LQ: lower quartile, UQ: upper quartile; RGB: bands of the visible range, NIR: near infra-red.

Models Min LQ Median Mean uQ Max
4-band input (RGB + NIR)
LDA1 0.59 0.68 0.71 0.71 0.74 0.79
RFI 0.66 0.71 0.74 0.74 0.76 0.82
LDA.s 0.61 0.72 0.75 0.75 0.77 0.82
REs 0.65 0.75 0.76 0.77 0.80 0.87
All available bands
LDA. 0.66 0.71 0.74 0.75 0.79 0.88
RF1 0.66 0.72 0.76 0.75 0.79 0.88
LDAs 0.67 0.78 0.81 0.81 0.83 091
RFEs 0.68 0.75 0.78 0.78 0.80 0.88

Class level accuracy measures revealed a heterogeneous result (Figure 6). PAs in-
dicated greater accuracies (~90%) for agricultural areas and forests; artificial areas had
moderate accuracies (about 60%), while the performance of wetlands was the poorest (even
below 40%). Usually, PAs were similar regarding the satellites; the only divergent case
occurred in the artificial areas where the models running with Landsat data had the lowest
values. UAs were larger than PAs even in the case of the poorest results, which belonged
to the agricultural areas (75-55%). Artificial areas and wetlands had the highest values
(about 90%), and forest UAs were around 80%. Regarding the satellites, agricultural areas
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and wetlands had decreasing accuracy as they moved towards coarser spatial resolution
(i.e., from the PlanetScope to Landsat). Two-way ANOVAs where the UA and PA were
the dependent and the L1 and satellite type were the independent variables showed that
the main effect of L1 was significant (F = 17.105, df = 3, p < 0.001), but the main effect of
satellites was insignificant (F = 0.642, df = 2, p = 0.527); furthermore, their interaction was
also insignificant (F = 0.789, df = 6, p = 0.579).

PA UA
1.0+ P
l » ? 1 i
- I . A :
o ® A
08 I ] R
> 1 -
o : Agr
3 i i 4 Art
9061 i A
b4 . - F
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A
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Figure 6. Median + quartiles of User’s and Producer’s Accuracies (UA and PA, respectively)
of 10 randomized Random Forest classifications. P: PlanetScope, L: Landsat; S: Sentinel; Agr:
agricultural areas, Art: artificial areas, F: forest, Wet: wetland.

We also investigated the classifications from the perspective of the variables involved.
The RFE method revealed that of the 20 available variables (4 bands and the NDVI with
minimum, maximum, median and STD), the best performance could be gained with
14 variables (Figure 7). Accordingly, the most important variables in decreasing order were
the following: (1) GREEN_med, (2) RED_med, (3) NDVI_med, (4) NIR_med, (5) BLUE_std,
(6) NIR_std, (7) BLUE_med, (8) NDVI_std, (9) RED_std, (10) GREEN_std, (11) GREEN_max,
(12) BLUE_max, (13) NIR_min and (14) BLUE_min. Besides the means, standard deviations
also changed with the number of variables: up to five variables had STDs above 0.045,
while for between 7 and 10 variables, it decreased to <0.03; however, after involving more
than 10 variables, the SD increased again. Thus, the best outcomes occurred when using
the first ten variables.



Remote Sens. 2021, 13, 857

12 of 23

0.81

0.7

Mean of OAs (cross-validated)

0.59

0 5 10 15 20
Number of variables

Figure 7. Means and standard deviations of overall accuracies. 30 models: 10-fold cross-validation
with 3 repetitions, the red circle indicates the model with 10 involved variables.

3.4. Data Representativeness

A crucial question is how the data represent the study area. Our randomized sam-
pling, using randomizations combined with 50 classifications per satellite (10 x 50 x 3,
1500 models), showed that results had minor differences (Figure 8). Our hypothesis was
that if the OA means of 50 models do not differ significantly by randomizations, the results
are representative because input data do not influence classification accuracy. In the case of
Landsat and Sentinel satellites, classification accuracies were statistically equal in 7 cases
out of the 10 randomizations. Landsat had two groups (7 and 3 randomizations), and
the difference between the best and worst OA medians was 10% (L.4 and L.8 according
to Figure 8). The difference between the statistically different groups (i.e., the threshold)
was 3.3%. Sentinel had 3 groups, and the difference between the poorest and the best
performance was 7.8%. Although the difference was significant (p < 0.05) between S.8 and
S.9 (according to Figure 8) in statistical terms, the difference between OA medians was
only 1.42%; therefore, the effect (the magnitude of differences) was low. Regarding the
other threshold (between S.5 and S.1), the difference of medians was only 0.2. In the case of
PlanetScope, differences were more enhanced, as the 10 randomizations formed 4 groups.
The differences between the best and worst model were the highest among the satellites,
reaching 14.4%; however, differences between the two sides of the thresholds were 2.9%
(P9 vs. P3),1.1% (P4 vs. P.2) and 2.2% (P.8 vs. P.1). A change in the minimums regarding
P.4 and P.2, from 51.1% to 46.4%, can explain the statistical difference; the remaining groups,
however, had theoretical relevance.
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Figure 8. Overall accuracies of different random samplings by satellites. Boxplot: minimum, lower
quartile, median, upper quartile, maximum, blue circle: outliers; red dashed line: the threshold
between significantly different groups.

4. Discussion
4.1. CLC Classes and the Mixture of Spectral Features

CLC maps were visually interpreted, and the reported thematic overall accuracy (OA)
was >85% [56]. However, OA, as a general index, cannot express the errors on the level
of categories. Although validation data of photointerpretation is available [57], it is also
important to verify whether CLC categories have a direct relation to LC maps derived
from satellite images. Although there is only limited information about the class level
accuracy on CLC classification, several studies use it as ancillary reference data, e.g., [58,59].
However, other studies used the CLC directly as reference data. Gudmann et al. [19]
performed a LULC classification using Sentinel-2 and Landsat-8 images combined with
OBIA (object-based image analysis) and the landscape metric approach [60] and found
good correspondence. Their study relied on the accuracy assessment with the CLC2018;
thus, this research had the most similarity to our work. The OAs of the two study areas
were higher in a homogenous area (91%) and almost the same (76%) in the case of the
complex one. Although their approach was exactly the inverse of our research question
(i.e., they classified images and used the CLC as a reference, while we intended to justify
classes of CLC polygons using the reflectance values of satellites), the final result of the
classification was almost the same in case of the complex area having the most similarities
with our study area. Reyes et al. [61] also used the CLC maps as reference data, and they
gained 85.3% OA with OBIA, combining the image classification with landscape metrics.
Ceccarelli et al. [62] reported 87-88% OAs for two areas with segmentation and spectral
indices and textural information. OAs of our classifications were almost as good as in
these studies, but we used the CLC polygons, which was a relevant difference. Verde
et al. [63] elaborated a national-level land cover mapping scheme for ecosystem services.
They applied superpixel segmentation and, similarly to our approach, used the RF classifier
and their best result was an OA of 79%.

Previous studies did not analyze how well CLC polygons are represented by re-
flectance values of satellite images as LULC classes; instead, pixel or segmentation-based
classification was performed on the images. Although these studies had valuable results,
their approach was only similar to ours: segments are based on pixel similarity [64], the
variance inside the segments is minimal related to the neighboring segments, while CLC
polygons are not segments but products of a visual interpretation. Thus, while segments
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represent homogenous pixel groups [64] (can be regarded as raw data), CLC polygons
show real information about the delineated areas.

The CLC Technical Report [57] confirmed that 78% of all classification errors occurred
on Level 2 and 3 nomenclatures; thus, the most simplified level 1 was the most accurate.
The report also stated that most misclassifications occurred between “agricultural” and
“forest and semi-natural” categories. However, a comprehensive accuracy assessment for
the CLC2018 map is not available yet. OA of CLC2012 was 90.5% in the L2 and 89.5% in the
L3 nomenclature [65]. We demonstrated the issues identified in a smaller part of the study
area (Figure 9) in detail. Water bodies (rivers and lakes) are delineated without aiming to
find the edges, i.e., trees on the shorelines are also included in the patches. In our example,
an oxbow lake (Figure 9/al) was shown where the aquatic vegetation cover was relevant
due to the eutrophic state of the lake [66], and the PlanetScope image was the most efficient
to show it. Aquatic vegetation with the surrounding trees can relevantly bias the statistical
parameters of this polygon of the “water” class, which can be observed both in the case of a
fishpond (Figure 9/a2) and the Tisza River (Figure 9/a3). The wetland areas #b1 and #b2 in
Figure 9 were also oxbow lakes, but in the next phase of the succession, the proportion of
open water was lower, and according to the CLC classification, these lakes were interpreted
as wetlands (as these smaller lakes can run dry during dry summers [67], the classification
can be accepted). The wetland area #b3 (Figure 9) was a set of swales and point bars (i.e.,
negative and positive fluvial forms) with different water cover and height of vegetation,
where the reflectance pattern can be similar both to grasslands and eutrophic lakes [68,69].
The wetland area #b4 (Figure 9) was also a set of swales and point bars (consisting of two
different parts, of which the northern part was the older with transformed forms), while the
fifth wetland area (Figure 9/b5) was a floodplain lake with its surroundings (open water
with aquatic vegetation and marshlands). This means that there were five wetlands, with
four types of appearance, i.e., with different patterns, and suffering from varying errors
regarding the right patch contours. In addition, the agricultural areas were mostly pastures
within the floodplain (Figure 9/c1-2), but the #c2 patch, for example (in the triangle formed
by #b1-#b3-#b5, Figure 9), was also a set of swale-point bar series with lesser water cover
related to wetlands #b1, #b2 or #b3, with water patches and mixed with bushes and trees.
In dry summers, all wetlands run dry; thus, when this happens, the difference between
these pastures and wetlands is small. While #c1 and #c2 were grasslands (coded as 231 in
CLC), #c3 and #c4 were intensive agricultural areas (coded as 211 according to the CLC
nomenclature), with different spectral features with bare soil among the plants (or even
harvested in August), but also consisting of dense plant cultures. Even the forests were
different: #d1 was a semi-natural floodplain forest, the patch of #d2 was a plantation with
regular rows and smaller density. Settlement patches also represented varying land cover,
while #el (Figure 9) was a village (Rakamaz), #e2 was only a resort area with some summer
houses and many trees and grassland areas. These issues arose from the fact that CLC in
some cases is a land-use map rather than a land cover one; the MMU of 25 ha is also a
limitation, and the aim of the mapping is to provide a consistent map of a whole country
(and finally of the EU). Accordingly, we cannot state that the CLC-interpretations were
wrong but merely different from a satellite-based land cover classification. LC classes
can be mixed without the problem of the CLC polygons due to similar pixel values and
patterns, but these identified issues can help to understand the mixture of reflectance values
of the CLC classes: differences are not significant, and the classifications never reach 85%.
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Figure 9. Land cover classes of the Corine Land Cover (CLC) database and their appearance in
pseudo-color (near-infrared-red-green) satellite image composites in a smaller part of the study area.
a: water, b: wetland, ¢: agricultural areas, d: forests, e: settlements.

The visually interpreted polygons cover different surfaces, and as the MMU is 25 ha,
there are patches smaller than the MMU, and these should be merged into larger patches.
That was the case with the smaller oxbow lakes along the Tisza and Bodrog Rivers: instead
of water bodies, the lakes were categorized as wetlands with their surroundings. Further-
more, interpretation of CLC classes does not require an accurate delineation, and pixels at
the edge of neighboring patches can be mixed. The best examples were the rivers and lakes:
aquatic vegetation and floodplain forests were mixed into the water category, and this
caused higher maximums in the case of the NIR band and NDVI. According to the CLC2018
validation documentation, the overall thematic accuracy is above 85%, and spatial accuracy
is better than 100 m for the whole dataset [56], but regarding the category-level thematic
accuracies, the only available documents refer to other European countries, not Hungary
(e.g., Finland: [70]). A possible 100 m shift could cause serious errors with satellite images
even with a 30 m spatial resolution related to reference land cover, but our visual analysis
showed a very good fit among the CLC and the images; inaccurate patch contours had a
larger bias in the analysis.

NDVI layers experienced much less category mixture in the case of minimum, stan-
dard deviation and maximum values. Due to the fact that the NDVIis a widely-used robust
index for distinguishing main land cover classes [71-74], it may have become helpful in
separating the main CLC categories. Miomir et al. [75] investigated opportunities for a
good practice of updating the national forest inventory in Serbia by comparing CLC and
NDVI-based solutions based on Landsat images from different years. They performed
comparisons both with CLC forest areas (based on various CLC categories) and forest
areas derived from NDVI maps to official statistical forest data, where they identified a
much larger difference in the case of CLC products. Diaz-Pacheco and Gutiérrez (2014) [76]
examined the accuracy of CLC products through the analysis of local study areas focusing
on urban land cover classes and found that CLC is not appropriate for local studies but
rather for global and regional scale analyses. We also found that in our dataset, the artificial
class showed a mixture in the case of minimum values with all other categories and in the
case of median values, characteristically with the agricultural class. In order to make more
detailed land cover datasets even using CLC, there are initiatives to produce new variations
of land cover databases [77,78]. There are examples of the use of the CLC data solely to
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perform land change analysis [79], where the real thematic accuracy of the dataset is less
important since the changes are derived from the comparison of consecutive CLC datasets.

4.2. CLC Classes in the Light of Statistical Tests

The two-way ANOVA revealed that both the L1 level CLC categories and the satellite
types had significant differences. This is important, but the interaction effect is also
important because if the two main effects have a common influence, differences in surface
reflectance values are determined by both, i.e., in the case of blue and green bands, there is
no difference; thus, input data from the satellites do not have an influence on the reflectance
values delineated by the CLC categories. However, in the case of red, with the NIR and the
NDVI, the interaction effect was significant; thus, the satellite data type can be considered
important from the perspective of land cover representation. GLM also pointed to the
relevance of bands and interactions with the LCs, but there was a magnitude difference in
the contributions. In the case of medians, dependent variable bands had an w? of 0.416,
while the interaction of bands and LCs was only 0.023. STDs as dependent variables had
a similar result, but the w? was 0.515 for the bands and 0.009 for LCs, and there was a
w? of 0.005 for the interaction of satellites and bands. This means that medians are less
biased by the satellite types, but STD can point to the differences among the sensors. On
one hand, this may be the reason for the details determined by the spatial resolution.
Especially on Landsat images, details can disappear, e.g., in the case of the oxbow lake
(Figure 9/al), aquatic vegetation hardly appears, but PlanetScope revealed that there was
a relevant amount of floating aquatic vegetation on the water surface. Thus, PlanetScope
can show a more realistic picture of the area because of its 3 m resolution. Due to this
high spatial resolution, new biasing factors become visible, including the shadows of
trees and buildings. On the other hand, the wavelength ranges of the bands also differ
according to the satellite. Sentinel-2 has the narrowest band ranges (usually a half or a
third compared to PlanetScope), except for the NIR band, where it was almost three times
the Landsat’s range. As the NIR range is important to identify vegetation, it can make
Sentinel-2 better in finding forest and agricultural areas, which confirms the results of a
class level accuracy assessment (Figure 6) with high PA and low UA values. Sentinel-2
data resulted in a lower error of omission and a higher error of commission regarding the
vegetation, as under similar circumstances, it collects more photons than other sensors in
the NIR range, influencing the outcomes of classifications. However, the effects of spatial
resolution and the wavelength ranges cannot be separated with statistical tests: ranges
have only 12 combinations (3 satellites x 4 bands), which is equivalent to the results of the
2-way ANOVA test and GLM. Both tests justified the common effect (interaction), but this
proves that the bands involved (RGB + NIR) have different effects according to satellite,
and the effect derives from the different spatial resolution and the band reflectance values,
which also vary by the wavelength ranges.

4.3. CLC Classes and Classification Algorithms

Based on the classifications, the OAs reflected the fact that ~70% accuracy can be
reached using five level 1 CLC categories. LDA as a classifier with several presumed
prerequisites did not perform relevantly worse than the robust RF, at least regarding the
same satellite data: differences were even below 3% in the worst case (Landsat) for all
descriptive statistics except for the minimum (LDA’s minimum was 7% worse than RF’s).
Furthermore, LDA, although it did not have all prerequisites ensured, outperformed the RF
in the case of PlanetScope data’s classification. We experienced several cases in which LDA’s
performance was high in the OA level, but on a class level, it was not so effective [48,51],
and the error of commission was especially high. Moreover, LDA had a worse performance
with Sentinel and Landsat data, and it reflected the general observations that RF performs
well with any kind of training data [80-82]. The repeated k-fold cross-validation was a
powerful tool to assess classification efficiency, as 30-50 models can provide enough data
to have a distribution of the outcomes and to determine the range of outcomes’ accuracy.



Remote Sens. 2021, 13, 857

17 of 23

In our case, the numerous models indicated that in the case of LDA, the worst models
could perform with an OA of at least 59.1%, while in the case of RF, the lowest accuracy
was 65.1%. This 6% difference can be important; therefore, we suggest using the robust RF
for this kind of classification.

Better OAs belonged to higher geometric resolution: 71.1% was the median OA for
Landsat and 78.5% for the PlanetScope when we applied the overlapping spectral bands.
However, both Landsat-8 and Sentinel-2 have more bands in the infra-red range, and
involving these bands into the classification, OAs increased, and Sentinel-2 overperformed
the best OA of PlanetScope, i.e., better spectral resolution helped to overcome the disadvan-
tage of coarser geometric resolution. Szabo et al. [82] and Underwood et al. [83] also came
to a conclusion to the importance of spectral information, but with the remark of aims of
given studies and the involved images (i.e., both hyperspectral and Landsat-8 images can
provide eligible outcomes for given purposes, but a very high-resolution hyperspectral
image is always a better input for specified tasks).

Randomized sampling from the whole dataset resulted in worse classifications; min-
imum OAs were between 40 and 44%, medians between 60 and 66% and maximums
between 82 and 89%. However, the rank changed compared to the previous results when
all data had been used for the classifications: PlanetScope data provided the lowest accura-
cies, and the Landsat, with coarser spatial resolution, had the best results. The difference
between the results was the number of cases in the input data; the omission of the water
category could also have an effect on the accuracies and the fact that only 50 data were used
per category to train the models. Water body is a usually well distinguishable land cover
class [84-86], but due to the low number of cases, we excluded it from the analysis, which
could reduce the OA by having fewer true positive polygons. The other possible reason is
that the different spatial resolutions could also have a bias through the number of pixels
involved in a given CLC-category: statistical parameters were calculated by polygons with
9 times more data with the Sentinel and with 100 times more with the PlanetScope satellites
compared to Landsat. As previous studies found that finer resolutions should contain
spectrally clearer pixels, which have a lesser influence on heterogeneous areas [1,87,88], we
can suppose a considerable effect for the missing water category and the lower number of
training polygons.

UA and PA values can provide further clues, highlighting that there were large com-
mission errors in the case of agricultural areas and large omission errors in wetlands and
artificial areas, which corresponded to the statistical analysis of spectral bands (Section 3.1).
Both types of errors can be understood when we are aware of the advantages of visual inter-
pretation: interpreting personnel can make decisions based on several other options than
the spectral features, such as the extent/size, relative situation, texture, and pattern of a
given object. In this study, we were able to involve only the spectral characteristics, and the
classifications were within an acceptable range. There can be relevant intermixing among
agricultural areas, grasslands, and forests, and even with wetlands in special situations [36].
Furthermore, artificial surfaces contain built-in areas (buildings, roads, pavements, parking
lots), parks (relating to forests or grasslands) and even water features (fountains and lakes,
sometimes streams, rivers), so this category can intermix with several natural categories,
too. Spectral features are naturally similar in these spectral ranges; thus, we cannot expect
clear discrimination. In this study, we supposed that better resolution provides better
classifications, but it was true only in the case of OAs; according to the two-way ANOVA
conducted on the UA and PA, the satellite type (i.e., the spatial resolution and the different
wavelength ranges of the bands) had no influence on the class level accuracy measures of
the final products. This finding can only be explained by the visual interpretations and
limitation of the MMU size.

Regarding the variables, RFE with the repeated k-fold cross-validation effectively
pointed to the relevance of medians (the first four variables in the models) and that
green and red bands were more important than NIR and NDVI Similarly, Chiang and
Valdez (2019) [89] also found that green and red bands of Landsat-8 were important in
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identifying tree species. However, Puletti et al. [90] found that blue and green bands of
higher wavelengths, red-edge and NIR, were the most important in the classification of
Mediterranean forests. The source of the differences may be that we applied a method,
which can be regarded as a special segmentation approach with a different statistical-based
technique; furthermore, Puletti et al. [90] applied several dates to gain the best accuracy,
while in our study, we used only one. Grabska et al. [91] also found that red-edge, blue
and green bands were among the first four most relevant variables. Both studies dealt with
forests, and in our case, a further reason for the difference can be found in the categories:
artificial areas, agricultural areas, wetlands, water bodies require different sets of involved
bands. Sentinel performed 3—-6% better when involving all possible bands (red edge and
middle-infrared), but in the case of Landsat, the increase of OAs was only 1-2%.

A final major question is how the results can be generalized. Our randomization
with 10 randomized sub-samplings showed that not all classifications were similar. The
ANOVA model using Tukey’s test as a post hoc test revealed that 3 of the 10 models were
different in both Landsat and Sentinel, which may be the basis for concluding a possible
generalization. Although statistical tests can find significant differences, the magnitude
of the differences may be small (i.e., the differences are not relevant; [92]). Furthermore,
Tukey’s test is more liberal (i.e., it finds more statistical differences than other post hoc
tests [93]). In this study, median differences between the groups of accuracies were only
1-2%; thus, statistics did not show a real picture. In the case of PlanetScope, models can be
divided into four groups; nevertheless, with no great differences in the OAs, two groups
can be distinguished with a relatively larger (4%) difference. Thus, the results suggest that
PlanetScope’s reflectance values can provide different accuracies when different training
datasets are used; CLC polygons and the generalization were not as successful as in the
case of Landsat’s and Sentinel’s data.

Validation of remotely sensed data using CLC datasets as a reference may be a mis-
leading step due to the conclusions drawn in contemporary literature concerning the usage
recommendations for the data. Our results revealed that the main categories of CLC could
not have been discriminated spectrally from each other in satellite images. However, by
paying attention to the descriptive statistics, it is possible to involve this information in
a classification that takes pixel statistics into consideration [94,95], and it may provide
helpful information to know the mixture of categories in the image we intend to use as an
input for the classification. Accordingly, it is critical to know the possible mixing behavior
of the categories in order to achieve a successful classification.

5. Conclusions

We analyzed the polygons of the CLC2018 database with respect to pixel information
derived from PlanetScope, Sentinel-2 and Landsat-8 images. We calculated median, mini-
mum, maximum and standard deviation for all polygons of the CLC2018 concerning the
visible and near-infrared bands and a calculated NDVI layer for the three satellites.

- Medians of CLC polygons provided the least mixture among the LC classes, while the
maximums were the worst input parameters without significant differences. Wetlands
and water bodies categories were the most frequently mixing categories of CLC based
on reflectance values;

- Bivariate statistical tests cannot provide enough information to conclude on the
spectral separability of LC classes, but classification algorithms involving several
variables can be efficient techniques. Generally, LDA and RF classifiers had similar
OAs, but in the case of coarser resolutions (Sentinel and Landsat), RF outperformed
the LDA. Data derived from PlanetScope provided 7% better OAs (78%) than those of
Landsat (71%) regarding the model medians; thus, better spatial resolution ensured
better classification performance. >80% OA was gained with using all available bands
of the Sentinel-2; accordingly, more spectral information in the infra-red range can
counterbalance the coarser geometric resolution;
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- We applied a randomization-based technique to gain 10 repetitions of class-level
metrics (UA and PA), which showed that satellites had no direct effect on the accuracy.
UAs were the lowest in agricultural areas, while PAs were the lowest among wetlands;

- Variable importance of statistical parameters showed that usually the medians were
the most important statistical layers, and the green, red and near-infrared bands were
the first three most important bands;

- We provided an approach to prove the possibility of the generalization of the results
with multiple randomized subsampling and found that the results of Landsat and
Sentinel data can be generalized, but in the case of PlanetScope, a larger area with
more CLC polygons would be desirable;

- Generally, using the overlapping bands (RGB + NIR) of Landsat-8, Sentinel-2 with the
PlanetScope, the best OAs were >70% OAs, but the most accurate was the PlanetScope
with the highest spatial resolution (78.5%). Higher OAs (~80%) have also been ac-
quired with the higher spectral accuracy of the Sentinel-2, which means a cost-efficient
solution in spite of the coarser spatial resolution;

- As we found several studies where CLC maps were used as ground truth data to
quantify thematic accuracy, 70-80% OAs do not seem satisfactory. Nevertheless,
our experiment was performed with the CLC L1 classes; further investigations can
reveal if CLC is more appropriate for ground truth with the more detailed L2 or
L3 nomenclature.

CLC maps have many features limiting their use as validation data. The 25 ha MMU
size creates several issues, which influence validation by satellite images: land cover
polygons do not follow the exact borders of patches, smaller objects are merged into larger
ones to reach the 25 ha area, and even the supposedly homogenous patches also have a
nonhomogeneous texture (e.g., lakes, rivers).
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