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Abstract: Visual navigation is developing rapidly and is of great significance to improve agricultural
automation. The most important issue involved in visual navigation is extracting a guidance path
from agricultural field images. Traditional image segmentation methods may fail to work in paddy
field, for the colors of weed, duckweed, and eutrophic water surface are very similar to those of
real rice seedings. To deal with these problems, a crop row segmentation and detection algorithm,
designed for complex paddy fields, is proposed. Firstly, the original image is transformed to the
grayscale image and then the treble-classification Otsu method classifies the pixels in the grayscale
image into three clusters according to their gray values. Secondly, the binary image is divided
into several horizontal strips, and feature points representing green plants are extracted. Lastly,
the proposed double-dimensional adaptive clustering method, which can deal with gaps inside a
single crop row and misleading points between real crop rows, is applied to obtain the clusters of
real crop rows and the corresponding fitting line. Quantitative validation tests of efficiency and
accuracy have proven that the combination of these two methods constitutes a new robust integrated
solution, with attitude error and distance error within 0.02◦ and 10 pixels, respectively. The proposed
method achieved better quantitative results than the detection method based on typical Otsu under
various conditions.

Keywords: visual navigation; paddy field; image segmentation; crop row detection; Otsu method

1. Introduction

Autonomous navigation for agricultural robots is essential for promoting the au-
tomation of modern agriculture, especially in ways to reduce labor intensity and enhance
operation efficiency [1,2]. As a branch of autonomous navigation, visual navigation has
developed rapidly in recent years, due to the improvements of computer calculation speed
and visual sensors [3]. The most important issue of visual navigation primarily concerns
extracting a guidance path according to the environment. When the drainage, light, and
field management in the process of rice cultivation taken into account, rice is usually
planted in rows, especially when transplanted by machines. Therefore, many researchers
have tried extracting the guidance path for unmanned agricultural machinery utilizing
this feature.

Typically, most of the methods proposed for crop row detection in recent years share
the same architecture consisting of four steps, which are image grayscale transformation,
image binarization, feature point extraction, and crop row identification. The excess green

Excess green graying method, which was reported to yield good results by Woebbecke
et al. [4], is the most widely used grayscale transformation method due to its excellent
performance in distinguishing green plants and background under a wide range of illumi-
nation conditions. Once the grayscale transformation is completed, the Otsu method [5],
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a kind of nonparametric and unsupervised method of automatic threshold selection for
image binarization, can be applied. The principle of the Otsu method is to select an optimal
threshold by the discriminant criterion, thereby maximizing the separability of the resultant
classes in gray levels. As for feature point extraction, the horizontal strip method combined
with the vertical projection method serves as the most common solution. Søgaard and
Olsen [6] divided a grayscale image into 15 horizontal strips, and then computed the verti-
cal sum of gray values in each strip, with the maximum denoting the center of crop row in
each strip. Lastly, crop rows are detected by the center points. On the basis of horizontal
strips, Sainz-Costa et al. [7] developed a strategy for identifying crop rows through the
analysis of video sequences. Hough transformation [8] is one of the most commonly used
machine vision methods for identifying crop rows [9]. Least squares fitting has become
another commonly used method to identify crop rows since the separation of weeds and
crops has improved. Billingsley and Schoenfisch [10] used least squares fitting on the basis
of information from three row segments to detect crop row guidance information. This
image processing architecture attached with these classical methods makes it possible to
detect crop rows, especially in some simple and specific circumstances.

Various studies on crop rows detection focused on making improvements in some
steps of this general architecture. To further distinguish crops and weeds after the binariza-
tion using the typical Otsu method, Montalvo et al. [11] designed a method called double
thresholding. Considering the crop row arrangement is known in the field, as well as the
extrinsic and intrinsic camera system parameters, Guerrero et al. [12] proposed an expert
system based on the geometry, and a correction was applied through the well-tested and
robust Theil–Sen estimator in order to adjust the detected lines to the real ones. Guoquan
Jiang et al. [13] constructed a multi-region of interest method, which integrates the features
of multiple rows according to a geometry constraint. In order to enhance the robustness
of crop row detection, García et al. [14] divided crop row identification into three steps:
extraction of candidate points from reference lines, regression analysis for fitting polyno-
mial equations, and final crop row selection. The method could deal with uncontrolled
lighting conditions and unexpected gaps in crop rows. Many scholars have applied crop
row detection algorithms to visual navigation systems and conducted field experiments.
Guerrero et al. [15] designed a computer vision system involving two modules. The first
module aimed to estimate the crop rows as accurately as possible, while the second module
used the crop rows to control the tractor guidance and the overlapping. Basso et al. [16]
proposed a crop row detection algorithm featuring Hough transform of an embedded
guiding system for unmanned aerial vehicle (UAV). Tenhunen et al. [17] proposed a method
for recognition of plantlet rows by means of pattern recognition. Li et al. [18] designed a
pipeline-friendly crop row detection system using field programmable gate array (FPGA)
architecture to reduce the resource utilization and balance the utilization of different on-
board resources. Rabab et al. [19] proposed an efficient crop row detection algorithm which
functions without the use of templates and most other prior information. The studies
mentioned above mainly focused on crop row detection and visual navigation in dry fields.

However, it is difficult to achieve satisfying results of image segmentation in some
complex agricultural environments, especially in paddy fields. A paddy field is a kind of
open and complex environment, often accompanied by weed and duckweed, especially
in areas without proper management. Some typical images in paddy fields are shown in
Figure 1. Weed and duckweed are floating on the water, showing a green color similar to
the color of the rice seedings. In addition, after fertilizing the paddy field, eutrophication
often occurs, which can also cause the water surface to appear with a color similar to the
color of the rice seedings. These are the reasons for the significantly increased difficulty
in distinguishing crops from background. In this case, the typical Otsu method tends
to bring a lot of noise, which totally disturbs the subsequent extraction of the crop row
lines. Thus, the traditional architecture of crop row detection does not function well in
paddy fields, attributed to the undesirable results of image binarization. Several studies
were devoted to identifying crop rows without image segmentation. Aiming at a visual
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navigation algorithm for a paddy field weeding robot, Zhang et al. [3] applied the smallest
univalue segment assimilating nucleus (SUSAN) corner detection method directly after
obtaining the grayscale image without image binarization. This strategy cleverly bypasses
the problem of segmentation for paddy field images, but it increases the extent of time-
consuming calculation.
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Figure 1. Typical images in paddy field: (a) duckweed around the rice seeding; (b) eutrophication
after fertilizing.

In addition to the general architecture, stereo vision and neural networks have also
been tested to detect the crop rows when the heights of the weeds and crop plants above
ground are highly visible and when the weeds and crop plants differ in height [20]. Kise
and Zhang [21] developed a stereo-vision-based crop-row tracking navigation system for
agricultural machinery. Zhai et al. [1] developed a multi-crop-row detection algorithm to lo-
cate the three-dimensional (3D) position of crop rows according to their spatial distribution.
Fue et al. [22] utilized stereo vision to determine 3D boll location and row detection, and
the performance of this method showed promise as a method to assist with the real-time
kinematic global navigation satellite system (RTK-GNSS) navigation. Adhikari et al. [23]
trained a deep convolutional encoder decoder network to detect crop lines using semantic
graphics. Ponnambalam et al. [24] designed a convolution neural network to segment
input images based on red, green and blue color system (RGB) into crop and non-crop
regions. Although these approaches achieved good results, there is still no superiority of
stereo vision and deep learning over traditional architecture in terms of time consumption,
and this will cause a significant burden for computation devices. Therefore, there is still
a long way to go for the industrialization of crop row detection using stereo vision and
neural network.

Although the abovementioned algorithms were proposed for crop row detection,
the technical issue of image binarization of paddy fields still remains, which leads to the
dilemma that traditional crop row detection methods based on image segmentation may
fail to work in a paddy field environment. All these factors demonstrate that the crop
row detection method of paddy fields should be originally designed in order to minimize
the disturbance caused by the paddy field environment. Guijarro et al. [25] proved that
distinguishing objects with different color characteristics by image segmentation is feasible.
Thus, in this paper, to reduce the disturbance caused by weed and duckweed, the treble-
classification Otsu method and double-dimensional clustering method for paddy fields
are proposed, which improve the robustness of separating crop rows from complex paddy
fields. The method proposed in this paper is improved on the basis of previous work,
such as the typical Otsu method and clustering method. The purpose of this work is to
meet the needs of low-price, lightweight computing and real-time performance of the
unmanned system in paddy fields. The establishment of a flexible and reliable unmanned
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system is of great significance for the realization of large-scale paddy field intelligent
unmanned management.

2. Materials and Methods

The method proposed in this paper mainly comprises three modules: image segmen-
tation, feature point extraction, and crop row detection, as described below.

2.1. Image Segmentation
2.1.1. Grayscale Transformation

The original chromatic image contains a large amount of information, the effective part
of which is only the location of the green plant. This means that directly processing chromatic
images will lead to unnecessary calculations due to information redundancy. To emphasize
the living plant tissue, which is the basis of the subsequent steps, and weaken the rest of
image [13], existing information needs dimensionality reduction processing. Thus, once the
images are captured in the RGB color format, the first step is grayscale transformation.

Color is one of the most common indices used to discriminate plants from background
clutter in computer vision [26]. A pixel where the predominant spectral component is the
green is considered vegetation [12]. Through this strategy, color index-based approaches are
resorted to achieve grayscale transformation. Generally, common green indices methods
include normalized difference index (NDI) [27], excess green index (ExG) [4], color index
of vegetation extraction (CIVE) [28], and vegetative index (VEG) [29].

The original images are obtained from the paddy field. Because of the water situation,
it is necessary to take into account the reflections that frequently appear on the water
surface. When only the intensity of the light source changes, the components of the light
reflected on the surface of the same material are the same. Hence, the following formula
is defined:

I1 = CI2, (1)

where I1 is the reflection intensity of the water surface under strong light, I2 is the reflection
intensity of the water surface without strong light reflection, and C is a constant greater
than 1.

For the same water surface, the reflective components under strong light reflection
and the reflective components without strong light reflection are the same, where only the
intensity differs. Thus, for each RGB color channel, the following formula is defined:

∆R
R

=
∆G
G

=
∆B
B

=
I1 − I2

I2
= C− 1, (2)

where ∆R, ∆G, and ∆B are the changes in the RGB channels due to changes in light
intensity, respectively. R, G, and B are the values of RGB channels without strong light
reflection, respectively.

This means that if the values of color channels can be expressed in the form of rates,
the green index will not be bothered by the intensity of light. Under the same light source
conditions, the reflection intensity of the water surface in the paddy field is much greater
than that in the upland field. Although the above methods are all equipped with robustness
to various lighting conditions, CIVE and VEG will fluctuate within a certain range as the
reflected light intensity changes because the channel values of RGB cannot be expressed in
the form of rates [13,30]. Therefore, the two methods of CIVE and VEG were eliminated
from the candidate list. Additionally, the result of NDI is a near-binary image [26] with
little capability to cope with the separation of weed and duckweed from rice seedings.
Therefore, after comparing the above green indices, the ExG index was selected to process
the images of paddy fields.
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2.1.2. Thresholding with Treble-Classification Otsu Method

After the grayscale transformation is completed, large amounts of invalid information
still remain in the image, while only the green plant tissues need to be considered. In
addition to multi-channel color information, it is also necessary to refine the grayscale
information. Therefore, image binarization, which means to reduce a multi-value digital
signal into a two-value binary signal [31], is the second step of image segmentation. The
Otsu method [5] is one of the best thresholding techniques for image binarization. The
basic idea of the Otsu method is to dichotomize the pixels into two classes (background
and objects) using a selected optimal threshold. This binarization method has been proven
to be adaptively effective in different studies related to image segmentation between crop
and background [32,33]. However, the dichotomy between objects and background is too
rough to distinguish the real crops and green distractors, which will be both identified as
objects in a binary image, especially in complex conditions such as paddy fields.

For the paddy field environment, the existence of green distractors can be explained
as weed, duckweed, and cyanobacteria [3]. Furthermore, the water in the paddy field
undergoes eutrophication after fertilization, resulting in a green paddy field environment.
According to the above issues, the typical Otsu method needs to be improved in order to
deal with the separation of real rice seedings and green distractors, rather than simply
classify them as objects. To further classify the objects which include both rice seedings
and green distractors, the typical Otsu method based on dichotomy was improved to be
based on the trichotomy.

The pixels of a given greyscale image can be represented in L gray levels [0, 1, · · · , L− 1].
The number of pixels at level i is denoted by ni, and the total number of pixels is denoted by
N = n1 + n2 + · · ·+ nL. To simplify the discussion, the gray-level histogram is normalized
and regarded as a probability distribution [5].

pi =
ni
N

, pi ≥ 0,
L

∑
i=1

pi = 1. (3)

Now, suppose that two thresholds k1 and k2 are selected, which divides the pixels into
three classes C0, C1, and C2 (background, green distractor, and crop). C0 denotes pixels
with levels [0, · · · , k1], C1 denotes pixels with levels [k1, · · · , k2], and C2 denotes pixels with
levels [k2, · · · , L− 1]. Then, the probabilities of class occurrence and the class mean levels,
respectively, are given by

P0(k1, k2) =
k1

∑
i=0

pi. (4)

P1(k1, k2) =
k2

∑
i=k1

pi. (5)

P2(k1, k2) =
L−1

∑
i=k2

pi. (6)

According to the Bayes theorem, the mean levels of the pixels assigned to classes are
given by

m0(k1, k2) =
k1
∑

i=0
iP(i/C0)

=
k1
∑

i=0
iP(C0/i)P(i)/P(C0)

= ∑k1
i=0 ipi/P0(k1, k2)

= µ0(k1, k2)/P0(k1, k2),

(7)
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m1(k1, k2) = ∑k2
i=k1

iP(i/C1)

= ∑k2
i=k1

iP(C1/i)P(i)/P(C1)

= ∑k2
i=k1

ipi/P1(k1, k2)

= µ1(k1, k2)/P1(k1, k2),

(8)

m2(k1, k2) = ∑L−1
i=k2

iP(i/C2)

= ∑L−1
i=k2

iP(C2/i)P(i)/P(C2)

= ∑L−1
i=k2

ipi/P2(k1, k2)

= µ2(k1, k2)/P2(k1, k2),

(9)

where the total mean level of the grayscale image is

µ0(k1, k2) =
k1

∑
i=0

ipi, (10)

µ1(k1, k2) =
k2

∑
i=k1

ipi, (11)

µ2(k1, k2) =
L−1

∑
i=k2

ipi. (12)

The following relationships can be easily verified for any combination of k1 and k2:

P0(k1, k2)m0(k1, k2) + P1(k1, k2)m1(k1, k2) + P2(k1, k2)m2(k1, k2) = mG, (13)

P0(k1, k2) + P1(k1, k2) + P2(k1, k2) = 1, (14)

where mG is the total mean level of the greyscale image, defined as

mG =
L−1

∑
i=0

iPi. (15)

Referring to the evaluation of “goodness” of the threshold at a selected level in the
Otsu method, the discriminant criterion is introduced.

η = σB
2/σG

2, (16)

where σG
2 is the total variance, defined as

σG
2 =

L−1

∑
i=0

(i−mG)
2Pi, (17)

and σB
2 is the between-class variance, defined as

σB
2 = P0(k1, k2)(m0 −mG)

2 + P2(k1, k2)(m1 −mG)
2 + P2(k1, k2)(m2 −mG)

2. (18)

Considering that the total variance σG
2 is a constant once the image is defined, the only

way to maximize η is to maximize σB
2. Equation (18) can be converted into the following

form using Equations (14) and (15):

σB(k1, k2)
2 = µ0(k1, k2)

2/P0(k1, k2) + µ1(k1, k2)
2/P1(k1, k2)

+µ2(k1, k2)
2/P2(k1, k2)−mG

2.
(19)
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Thus, the issue of maximizing discriminant criterion η is reduced to an optimization
problem to search for a combination of k1 and k2 that maximizes between-class variance
σB

2. The optimal threshold combination of k1
∗ and k2

∗ is

σB( k1
∗, k2

∗)2 = max σB( k1, k2)
2, 0 ≤ k1 ≤ k2 ≤ L− 1. (20)

The processing steps of the treble-classification Otsu method are as follows:

1. Calculate the normalized histogram of the input greyscale image, and record the
minimum gray value and the maximum gray value as kmin and kmax.

2. Traverse k1 from kmin to kmax, and calculate P0(k1, k2) and µ0(k1, k2).
3. Traverse k2 from kmin to kmax, and calculate P2(k1, k2) and µ2(k1, k2).
4. Traverse k1 from kmin to kmax − 1, then traverse k2 from k1 to kmax, and calculate

P0(k1, k2), µ0(k1, k2), and σB(k1, k2)
2.

5. Record k1
∗, k2

∗, which maximize σB(k1, k2)
2. If the combination of k1

∗, k2
∗ is not

unique, calculate the mean value of k1
∗, k2

∗.

2.1.3. Filtering Operations

Generally, the initial binary image obtained using the thresholding method does
not clearly represent the original information of the crop row. Some noise pixels are
distributed among the crop rows in the form of islands, leading to interference with crop
row detection. Although subsequent algorithms are not sensitive to the noise pixels of
small island shapes, it is a wise choice to remove as much noise as possible that may
cause interference. According to the theory in this research, all of the white pixels should
represent the position of the crops, rather than the islands of noise. Therefore, to remove
the small, discrete, and insignificant white patches, an extra filtering process is applied
after image binarization. In this paper, isolated connected domains are traversed, and those
with an area less than 30 pixels should be eliminated.

Figure 2a displays a typical image of a paddy field with duckweed. Figure 2b displays
the result of grayscale transformation by applying the ExG index in Figure 1a. After image
binarization through a treble-classification Otsu method, green crops are identified as white
pixels and green distractors are significantly removed, as shown in Figure 2c. Lastly, the
filtering operation is performed, and the result is as shown in Figure 2e. In contrast, the
result of image binarization through the typical Otsu method is shown in Figure 2d, and
the result of the filtering operation after the typical Otsu method is shown in Figure 2f.

2.2. Feature Point Extraction

In the process of image processing, every step is applied to refine the information
attached to the image. The essence of refinement is to ensure that the remaining information
is effective and the useless information is eliminated. Until now, the binary image obtained
after morphological operation, in which the white connected domain represents green
crops, has already roughly displayed the position of the crop rows. To further determine
the location of the crop rows through quantitative assessment, the white connected domain
should be identified as a serial of feature points with exact coordinates, which is called
feature point extraction.

Considering that the noise attached to the obtained binary image is not significant,
the horizontal strip method [6], which determines the feature points by investigating the
number of white pixels on each horizontal strip, is applied. The size of the binary image is
assumed as H ×W, where H denotes the height of the image while W denotes the width
of the image, and the binary image is divided into N strips. In order to appropriately
reduce subsequent calculations, the size of each horizontal strip can be expressed as h×W,
where h denotes the height of the strip and h = H/N. According to Zhang et al. [34],
30 horizontal strips can provide a good result for a wide variety of conditions. In this paper,
to match 30 horizontal strips, h was adopted as 20. For each point of the binary image,
Gv(i, j)(i = 1, . . . , W and j = 1, . . . , H) denotes the gray value of point (i, j). For the points
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on the medial horizontal line in each horizontal strip, the number of white pixels at each
column i is denoted as Sk(i) [34], as shown in Equation (21).

Sk(i) =
k(h−1)

∑
j=kh

Gv(i, j), k = 1, 2, . . . N, (21)

where k denotes the index of horizontal strips.
Remote Sens. 2021, 13, 901 8 of 25 
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Theoretically, if Sk(i) > 0, it means that the set of pixels in the i-th column on the
k-th horizontal strip shows implicit crop information, but the feature point cannot be
determined accordingly. The small patches of white pixels actually representing noise
may be mistaken for feature points, since the area of the horizontal strip where only noise
exists would also provide a positive Sk(i). Thus, some restrictions should be imposed on
the judgement of feature points. To prove that it is reliable to recognize a certain area as
a feature point, the information of green crops attached to the area should be relatively
bigger; thus, the Sk(i) of the area should be higher than a given threshold T(k), as shown
in Equation (22).

T(k) = µ ∗ h ∗ ek/100, (22)

where µ is the thresholding coefficient with value µ = 0.3, and e is the natural logarithm.
Due to the clairvoyant principle of three-dimensional space, the densities of crop rows

above and below the image are slightly different. To make the threshold T(k) adaptive to
every horizontal strip, T(k) is constructed as a monotone increasing function, for the crop
row in the upper part of the image is narrower while the lower part is wider. Through the
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threshold T(k), each column of pixels in the k-th horizontal strip is traversed, but the result
is a series of intervals, not points. The next step is to find the starting and ending points of
these intervals, and the midpoints between the starting and ending points are the feature
points. A judge function Jk(i) is defined to search the boundary points of these intervals,
as shown in Equation (23).

Jk(i) =
{

1, Sk(i− 1) < T(k), Sk(i) ≥ T(k)
−1, Sk(i− 1) ≥ T(k), Sk(i) < T(k)

. (23)

If Jk(i) = 1, the abscissa of the starting point of a certain interval in the k-th horizontal
strip is i. If Jk(i) = −1, the abscissa of the ending point of a certain interval in the k-th
horizontal strip is i. Each start point and the next adjacent end point form an interval, and
the midpoint of them can be identified as a feature point. In Figure 3, all steps mentioned
to extract feature points are illustrated.
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Figure 3. Feature point extraction: (a) original image of paddy field; (b) strip from the original image;
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(f) feature point extraction; (g) feature point locations in the original image.

2.3. Crop Row Detection

The feature points extracted from the binary image are scattered; hence, the next step
is their classification based on coordinate information. In order to sort out these scattered
feature points and dig out information of crop row position as accurately as possible, the
proposed double-dimensional adaptive clustering algorithm is applied.

According to the principle and results of feature point extraction, it can be found that,
in each horizontal strip, a single crop row may be identified with more than one feature
point. That is, the feature points belonging to the same crop row have both horizontal
and vertical extensions. Therefore, it is difficult to take the information of all these feature
points into account at the same time if only the horizontal or vertical traversal is applied
for clustering analysis. Additionally, there may be gaps in the distribution of feature points
from the same crop row or pseudo feature points caused by green information distractors
between two adjacent crop rows. In this case, the adoption of traditional clustering analysis
will easily lead to over-clustering which means the feature points on the same crop row
are divided into multiple clusters, or under-clustering which means the feature points that
do not belong to any crop row are classified into a cluster of crop row. In the proposed
double-dimensional adaptive clustering algorithm, firstly, a horizontal clustering analysis is
performed, through which feature points in each horizontal strip are clustered according to
their abscissa, and then a vertical clustering is performed to assign the horizontal clustering
results to each corresponding crop row. This clustering method is proposed according
to the relative positions between the feature points and the approximate direction of the
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crop rows in the image; therefore, prior knowledge about the number of crop rows is
not required.

In horizontal clustering, a horizontal strip formed in the feature point extraction step
is used as a unit to traverse. Initially, each feature point in a horizontal strip represents a
single cluster. Now that the number of feature points in the k-th horizontal strip is assumed
to be nk (k = 1, 2, . . . n), and Pk,m (m = 1, 2, . . . nk) denotes the m-th feature point of the k-th
horizontal strip, then the distance between adjacent feature points in the same horizontal
strip can be expressed as dk,m (m = 1, 2, . . . nk − 1), and the average distance between all
these adjacent feature points is expressed as dk,avg, as shown in Equation (24).

dk,avg =
nk−1

∑
m=1

dm/(nk − 1). (24)

The number of clusters in the k-th horizontal strip is assumed as nck (k = 1, 2, . . . n).
Ck,l (l = 1, 2, . . ., nck ) denotes the l-th cluster of the k-th horizontal strip. nk,l denotes the
number of feature points in Ck,l , and Pk,l,m (m = 1, 2, . . . nk,l) denotes the m-th feature point
in Ck,l . The distance between adjacent feature points in Ck,l can be expressed as dk,l,m
(m = 1, 2, . . . nk,l − 1) and the average distance between all these adjacent feature points is
expressed as dk,l,avg, as shown in Equation (25).

dk,l,avg =
nk,l−1

∑
m=1

dm/(nk,l − 1). (25)

All the feature points are scanned from left to right in each horizontal strip, and the
horizontal strips are scanned from top to bottom. In each horizontal strip, all feature
points are traversed and, according to the relative position, feature points that meet the
clustering conditions are merged. The above process is repeated until there is no incomplete
clustering. The procedures of the horizontal clustering method are shown in Figure 4. The
specific steps of the horizontal clustering method are as follows:

1. Initialize k = 0.
2. For the k-th horizontal strip, determine the value of nk. If nk = 0, skip to step 9. If

nk ≥ 0, calculate dk,avg.
3. For the first feature point Pk,0 in each horizontal strip, initialize Ck,0, make nk,0 = 0,

and push Pk,0 into it. Make nk,0 = nk,0 + 1. Make m = 0, l = 0.
4. Define Pk,m as the current feature point. Define Ck,l as the current cluster. Calculate

the distance dk,m between Pk,m and the next adjacent feature point Pk,m+1. If dk,m <
α∗dk,avg, push Pk,m+1 into Ck,l and make nk,l = nk,l + 1. If dk,m ≥ α∗dk,avg, make
l = l + 1, initialize Ck,l , push Pk,m+1 into Ck,lm and make nk,l = nk,l + 1. Practical
experience has shown that 0.8 is suitable for α.

5. Make m = m + 1. If m < nk, return to step 4. If m = nk, the first round of the k-th
horizontal clustering is completed. Record l at this time as nck,l . Make l = 0.

6. If l > nck , skip to step 9. Define Ck,l as the current cluster, and then calculate dk,l,avg. If

dk,l,avg ∗
(

nck,l − 1
)
< H/10, make l = l + 1 and repeat step 6. If dk,l,avg ∗

(
nck,l − 1

)
≥

H/10, make m = 0 and define Pk,l,m as the current feature point. Initialize a = 0.
7. Calculate the distance dk,l,m between Pk,l,m and the next adjacent feature point Pk,l,m+1.

If dk,l,m < α∗dk,l,avg, push Pk,l,m+1 into Ck,l and make nck = nck + 1. If dk,l,m ≥
α∗dk,l,avg, make a = a + 1, initialize Ck,nck,l+a, make nk,nck,l+a = 0, push Pk,m+1 into
Ck,nck,l+a, and make nk,nck,l+a = nk,nck,l+a + 1. Practical experience has shown that 0.8
is suitable for α.

8. Make m = m + 1. If m < nk,l , return to step 7. If m = nk,l , make nck = nck + a.
Return to step 6.

9. Make k = k + 1. If k ≤ n, return to step 2. If k > n, the horizontal clustering
method ends.
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Figure 4. Schematic diagram of the processing steps in horizontal clustering.

In this manner, the feature points on each horizontal strip are clustered on the basis of
their relative position of the abscissa, and the mean value dk,l,avg of the abscissa of feature
points in Ck,l is regarded as the abscissa of a new feature point, as shown in Figure 5. After
the horizontal clustering, feature points belonging to the same crop row are merged into
new feature points horizontally. For each crop row, there is nearly only one new feature
point remaining in each horizontal strip, and the current distribution of new feature points
makes the crop rows appear clearer.

Vertical clustering is applied to new feature points, i.e., the results of horizontal
clustering. Since the pitch angle of the camera is 60◦, the closer to the top of the image, the
closer the distance between crop rows, and the closer to the bottom of the image, the farther
the distance between crop rows. For each cluster, the selection of an initial feature point is
pivotal. To achieve better results at the initial stage, the vertical clustering is performed
from bottom to top.
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Figure 5. Crop row detection steps: (a) original feature points in binary image; (b) horizontal
clustering of original feature points; (c) result of horizontal clustering; (d) result of vertical clustering;
(e) crop row detection based on valid clusters; (f) final result presented in original image.

Make nl denote the number of clusters, and make Cl (l = 1, 2, . . . , nl) denote the
l-th cluster of crop row. In vertical clustering, once a new feature point is pushed into
Cl , the fitting line parameters of the feature points in Cl need to be calculated using the
least square method. Make npk denote the number of feature points of the k-th horizontal
strip, and make Pk,m (m = 1, 2, . . . , npk ) denote the m-th feature point of the k-th horizontal
strip. Make dpk,m,l denote distance between Pk,m and the last point in Cl , and make dlk,m,l
denote distance between Pk,m and the fitting line of Cl . The thresholds of dpk,m,l and dlk,m,l
are represented as Tp and Tl . If the ordinate distance between the current feature point
and the last point in Cl is greater than h, this situation is defined as a gap. The basic
judgment of vertical clustering is divided into two cases according to whether or not a
gap is encountered. If a gap is encountered, dlk,m,l

is the judging criterion. If there is no
gap, dpk,m,l is the judging criterion. If dlk,m,l

< Tl or dpk,m,l < Tp, the current feature point
is pushed into the current cluster Cl . For a feature point, after traversing all the existing
clusters and finding that none meets the judgment criterion, initialize a new cluster and
push this feature point into it. Lastly, filter out those clusters with fewer than six feature
points. The process of the vertical clustering method is shown in Algorithm 1, and the flow
chart is shown in Figure 6.
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Algorithm 1. The process of the vertical clustering method.
Input: n which denotes the number of horizontal strips.
npk (k = 1, 2, . . . , n) which denotes the number of feature points of the k-th horizontal strip.
Pk,m

(
k = 1, 2, . . . , n; m = 1, 2, . . . , npk ) which denotes the collection of feature points.

Outputs: Horizontal clusters Cl (l = 1, 2, . . . , nl ).

1: initialize l = 1, nl = 0, Cl = ∅
2: for k = n: 1
3: for m = 1: npk

4: for l = 1: nl
5: if gap
6: if dlk,m,l

< Tl
7: push Pk,m into Cl
8: continue
9: else
10: if dpk,m,l < Tp
11: push Pk,m into Cl
12: continue
13: nl = nl + 1,
14: push Pk,m into C nl

Remote Sens. 2021, 13, 901 13 of 25 
 

 

 
Figure 6. Vertical clustering flow chart. 

Algorithm 1. The process of the vertical clustering method. 
Input: 𝑛 which denotes the number of horizontal strips. 𝑛  (k = 1,2, … , 𝑛)which denotes the number of feature points of the 𝑘-th horizontal strip. 𝑃 ,  (k = 1,2, … , 𝑛; 𝑚 = 1,2, … , 𝑛 ) which denotes the collection of feature points. 
Outputs: Horizontal clusters 𝐶  (l = 1,2, … , 𝑛 ). 
1:    initialize l = 1, 𝑛  = 0, 𝐶 = ∅ 
2:    for k = n:1 
3:       for m = 1: 𝑛  
4:       for l = 1: 𝑛  
5:          if gap 
6:             if 𝑑 , , 𝑇  
7:                push 𝑃 ,  into 𝐶  
8:                continue 
9:          else 
10:             if 𝑑 , , 𝑇  
11:                push 𝑃 ,  into 𝐶  
12:                continue 
13:      𝑛 = 𝑛 + 1, 
14:      push 𝑃 ,  into 𝐶  

Figure 6. Vertical clustering flow chart.

3. Experimental Results
3.1. Image Acquisition

In the experiments of image acquisition, an industrial camera (DFK-23U445, IMAG-
ING SOURCE) was selected to capture images. The proposed algorithm was developed us-
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ing Microsoft Visual C++ and the free computer vision library OpenCV 4.1.0. Furthermore,
the digital images were stored as 24 bit color images with resolutions of 1280 × 960 pixels
and saved in RGB (red, green, and blue) color space in the JPEG format. The camera
settings were as follows: pitch and roll angles of 60◦ and 0◦ with the camera placed at a
height of 1.5 m from the water surface of the paddy field. To verify the effectiveness of the
proposed method under different conditions, several representative kinds of experimental
images were captured at the China National Rice Research Institute in August 2020, the
experimental field in the west area of Zhejiang University in June 2020, and Zhejiang
Province (Xiaoshan) Modern Agriculture Innovation Park in October 2020. A total of
100 experimental images, including strong interference with eutrophication, moderate
interference with disturbed weed or gaps, and weak interference, were selected to test the
accuracy, efficiency, and reliability of the proposed method.

The ultimate purpose of crop row detection is to provide a guiding basis for automatic
navigation; thus, the real-time requirement of common automatic navigation systems must
be considered. In order to improve the real-time performance of image processing, the
amount of calculation required should be reduced. Hence, downsampling processing was
performed on the image, and then the image size was shrunk to 640 × 480 pixels.

3.2. Validation of Image Segmentation

In this paper, image segmentation based on treble-classification Otsu method is the
most important step. A paddy field is a kind of open and complex environment, in which
the water surface always presents a color close to that of rice seedings because of the
existence of weed, duckweed, and eutrophication. The proposed treble-classification Otsu
method should dig out the crop information be as little disturbed by the complex paddy
field environment as possible. Thus, the performance of the proposed treble-classification
Otsu method is crucial during the whole image processing. To validate the capability of
the treble-classification Otsu method, accuracy validation tests and efficiency validation
tests were conducted.

3.2.1. Accuracy Validation Tests of the Treble-Classification Otsu Method

In order to verify the accuracy performance of the proposed treble-classification Otsu
method under various interference environments, several representative images of paddy
fields were randomly selected for a validation test. Figure 7a displays the eutrophication in
a paddy field, which mostly occurs after fertilization and in the early growth stage of the rice
seeding. Early rice seedlings have smaller leaves and lighter colors, which are more likely to
be confused with the color of the eutrophic water surface. Firstly, grayscale transformation
was performed on Figure 7a, and the result is shown in Figure 7b. Subsequently, the
treble-classification Otsu method and typical Otsu method were applied to Figure 7b, and
the results are shown in Figure 7c,d, respectively. From the images shown in Figure 7, it
can be observed that the proposed treble-classification Otsu method eliminated most of the
interference information caused by eutrophication and left a small amount of noise, while
the typical Otsu method could hardly distinguish between eutrophic water surface and
real crops.

Figure 8a displays the disturbed weed located in crop rows. Some weeds that are not
rice seedings appeared in the crop rows, which could interfere with the identification of the
real rice crop row direction. Figure 8b displays the result of grayscale transformation which
was performed on Figure 8a, while Figure 8c,d display the results of the treble-classification
Otsu method and typical Otsu method, respectively. From the images shown in Figure 8,
it can be observed that the leaves and overall shape of the disturbed weed were almost
totally preserved and adhered together to form a connected domain. This means that it is
difficult to remove these interference regions through filtering or morphological processing.
Compared to the typical Otsu method, the treble-classification Otsu method adopted a
higher threshold. The white area representing the crop in the binary image was significantly
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more refined. The pixels of the weed were almost filtered, merely leaving some isolated
noise, which reduced the interference of weeds on crop row identification.
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Figure 9a displays an image of a paddy field with little duckweed and eutrophica-
tion and without weeds. Under an environment with weak interference, the processing
results of grayscale transformation and binarization are shown in Figure 9b–d, respectively.
It is evident that the two methods all performed well in extracting the crops from the
background. The treble-classification Otsu method eliminated green distractors, and the
white area representing the crop in the binary image was slightly more refined, which is
consistent with the conditions of weak interference. In summary, under conditions with
weak interference, the treble-classification Otsu method could obtain more refined crop
information than typical Otsu method, although the results of both met all the requirements
of image segmentation.

As the result of Figure 2, it can be observed that the treble-classification Otsu method
removed most of the noise caused by duckweed, while the typical Otsu method retained
almost all noise presented in the grayscale image. The aim of image binarization is to
lay the foundation for the subsequent steps to achieve the final detection of crop rows.
Therefore, after comparing the results of image binarization, the filtering results of binary
image need to be further compared and discussed. After the filtering operation, crop
information is well preserved in the binary image obtained using the treble-classification
Otsu method, and the noise is almost completely eliminated. However, a large amount of
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noise still remains in the binary image obtained using the typical Otsu method even after
the filtering operation.
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3.2.2. Efficiency Validation Tests of the Treble-Classification Otsu Method

To verify the efficiency of the treble-classification Otsu method, 100 original images
under various conditions were used for testing. Firstly, all the original images were trans-
formed to grayscale images. Subsequently, these grayscale images were processed using
the treble-classification Otsu method and typical Otsu method. Strictly speaking, the com-
plete binarization algorithm can be divided into two steps: calculating the threshold and
binarizing the image. Once the threshold is obtained, the subsequent image binarization
steps of treble-classification Otsu method and typical Otsu method are the same. Therefore,
only the time consumed in calculating the threshold should be recorded in this validation
test. After testing the 100 original images, the results of the efficiency validation test were
as shown in Table 1. As can be seen, the average value of time consumed in calculating
the threshold through treble-classification Otsu was 2.89 ms, while that of typical Otsu
was 2.07 ms. When the size of the image was 1280 × 960, the average deviation of time
consumed through the two methods was 0.82 ms, which would have little effect on the effi-
ciency requirements of common autonomous navigation systems. During the experiments
of image processing, original images were downsampled to the size of 640 × 480. When
the size of the image was 640 × 480, the average deviation of time consumed through the
two methods was further reduced to 0.41 ms.

Table 1. Time consumed using treble-classification Otsu method and typical Otsu method (ms).

Binarization Method Average Value of Time
Consumed 1280×960 (ms)

Average Value of Time
Consumed 640×480 (ms)

Treble-classification Otsu
method 2.89 0.93

Typical Otsu method 2.07 0.52

3.3. Results of Crop Row Identification

During the visual navigation, image segmentation lays the foundation for the sub-
sequent crop row detection. To further verify the function and significance of the treble-
classification Otsu method, validation experiments of crop row identification were also
carried out. Figure 5 shows the result of detected crop rows tested in Figure 2a. As shown
in Figure 5a, the binary image obtained using treble-classification Otsu method was divided
into a series of horizontal strips to extract feature points, and the feature points extracted
clearly and accurately represented the location of the green plants. The original feature
points were clustered twice, and the process of horizontal clustering is shown in Figure 5b.
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Figure 5c shows the result of horizontal clustering, from which it can be seen that feature
points which were relatively close horizontally were clustered and the position of the
cluster center could adequately represent the crop center. A slight defect in this process
is that if the feature points in a horizontal strip are in the same cluster, they are forced
into several clusters, such as the situation displayed at the bottom of Figure 5b. However,
the interval of feature points that should have been in the same cluster is relatively small;
thus, even if they are forced into several clusters, the vertical clustering can still filter
out a suitable one and push it into the correct cluster. The result of vertical clustering is
shown in Figure 5d. Owing to the appropriate selection criteria during vertical clustering,
some feature points located between the crop rows representing duckweed or weed were
eliminated. To ensure the accuracy of the fitting line and ensure that clusters represent real
crop rows, the clusters with fewer than six feature points were eliminated. Thus, the final
clusters with their fitting line are shown in Figure 5e, and the result of crop row detection
in the original image is shown in Figure 5f. Clustering results and detection results of five
illustrative original images under various conditions are shown in Figure 10. Due to errors
in transplanting, some gaps may occur inside a single crop row or a rice seeding may be
located between two crop rows. As shown in Figure 10, the proposed double-dimensional
adaptive clustering method is not disturbed by gaps or misleading crops.
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4. Discussion

From the results of accuracy validation tests of the treble-classification Otsu method,
it is clear that crop information is better distinguished and preserved in the binary image
using treble-classification Otsu method. Under paddy field environments with strong
interference, the grayscale image actually comprises three kinds of objects: background
(non-green parts such as clear water), green distractors (duckweed, light-green weeds, and
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the water surface during eutrophication), and real rice seedings. Due to their different
degrees of green color, these three kinds of objects obtain different degrees of gray values.
Thus, the treble-classification Otsu method divides the pixels in the greyscale image into
three clusters according to their gray value, in order to distinguish the green distractors and
real crops. The typical Otsu method only divides the pixels into two clusters: foreground
and background; therefore, the green distractors will mix into the real crops, together in
the foreground. The experimental results and analyses mentioned above verified that,
under various interference environments, the treble-classification Otsu method has superior
performance to the typical Otsu method.

During the efficiency validation tests of the treble-classification Otsu method, the av-
erage value of time consumed in calculating the threshold through the treble-classification
Otsu method was slightly larger. By analyzing the theories of the two methods, it can be
found that treble-classification Otsu requires more nested loops compared to typical Otsu;
hence, the amount of calculation is larger, which will inevitably lead to lower efficiency.
From the results in Table 1, it can be concluded that, when the size of images matches the
industrial requirements for visual navigation [34], although the efficiency of the treble-
classification Otsu method is inevitably lower, the deviation of time consumed through
the two methods is small enough and can definitely meet the efficiency requirement of
visual navigation.

Under the perspective of qualitative analysis, the crop row detection method achieved
good visual results, as shown in Figure 10. However, the quantitative measurement of the
detection accuracy is not quite straightforward because it is difficult to get true position
and direction for the center lines of crop rows due to natural variations in the crop growth
stage [13]. To establish a quantitative evaluation standard, a simple evaluation method
is proposed.

A schematic diagram of the mechanism is given in Figure 11. In an image, assume that
line l1 is a straight line which has been detected and line l2 is a known correct line of the
same crop row. The straight line l1 intersects the upper and lower boundaries of the image
at two points T1 and B1, while l2 intersects the upper and lower boundaries of the image at
T2 and B2. In order to rigorously evaluate the similarity between these two line segments,
the evaluation of both angle and distance should be considered. Make θ denote the angle
between l1 and l2. Make d1 denote the distance between T1 and l2. Make d2 denote the
distance between B1 and l2. The linear equations of l1 and l2 are assumed as follows:

l1 : y = k1x + b1, (26)

l2 : y = k2x + b2, (27)

where k1 and k2 are the slopes of l1 and l2, respectively, and b1 and b2 are the y-intercepts
of l1 and l2, respectively. Then, the calculation formula of θ can be expressed as

θ = arctan

(
|k2 − k1|∣∣1 + k1k2

∣∣
)

. (28)

θ is used to evaluate the similarity of postures of l1 and l2. A smaller value of θ denotes
more similar postures of l1 and l2. The calculation formulas of d1 and d2 can be expressed as

d1 =

∣∣∣∣∣ k2xT1 − yT1 + b2√
k22 + 1

∣∣∣∣∣, (29)

d2 =

∣∣∣∣∣ k2xB1 − yB1 + b2√
k22 + 1

∣∣∣∣∣, (30)

where xT1 and yT1 are the horizontal and vertical coordinates of respectively, and xB1 and
yB1 are the horizontal and vertical coordinates of B1, respectively. In order to combine the
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results of d1 and d2, make d denote the average of d1 and d2. A smaller d denotes that l1
and l2 are closer in the distance scale. The calculation formula of d can be expressed as

d =
d1 + d2

2
. (31)Remote Sens. 2021, 13, 901 20 of 25 
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Due to the complexity of a paddy field, traditional methods do not work well for crop
row detection. Thus, the known correct crop lines can be drawn by experts to establish
accuracy criterion. The quantitative evaluation method can be used to compare the results
of the proposed crop row detection method and the results of an expert. As a comparison,
experiments of crop row detection using the method based on typical Otsu were also
conducted. The method based on typical Otsu used an image processing flow similar to
the proposed method. The only difference between the two methods was the binarization
process, whereby the proposed method used treble-classification Otsu and the traditional
method used typical Otsu.

The comparison results and accuracy of the proposed method and detection method
based on typical Otsu in eutrophication condition are presented in Figure 12 and Table 2.
The average value of θ and the average value of d of each crop row detected under
eutrophication conditions are presented. Obviously, the proposed method was better than
the traditional method in terms of the quantitative accuracy index. From the images of crop
row detection based on valid clusters, it can be found that the proposed method finished
the clustering process by fewer valid points than the method based on typical Otsu. The
method based on typical Otsu retained more valid feature points, but these valid points
were not enough to represent the position information of the crop rows. Thus, the final
results of traditional method were relatively poor. However, since the proposed method
has higher screening requirements, when the image quality is not high enough and the
number of feature points that can be screened out is small, the detection accuracy is likely
to be greatly reduced. In contrast, the method based on typical Otsu can retain more feature
points; therefore, the detection accuracy is relatively stable.

The comparison results and accuracy of the proposed method and detection method
based on typical Otsu with disturbed weed are presented in Figure 13 and Table 3. The
average value of θ and the average value of d of each crop row detected with disturbed
weed are presented, and the proposed method is shown to be better than traditional
method in terms of the quantitative accuracy index. From the images of crop row detection
based on valid clusters, it can be found that feature points of the traditional method
were more susceptible to interference by disturbed weed. The area where the disturbed
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weed was located was mixed with the crop row area, which affected the accuracy of crop
row detection.
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Figure 12. Comparison results of proposed method and detection method based on typical Otsu
under eutrophication condition: (a) crop row detection based on valid clusters using proposed
method; (b) crop row detection based on valid clusters using detection method based on typical Otsu;
(c) detection result using proposed method; (d) detection result using detection method based on
typical Otsu.

Table 2. Accuracy of the proposed crop row detection method and method based on typical Otsu
under eutrophication conditions.

Detection Accuracy Proposed Method Detection Method Based on Typical Otsu

θ (◦) 0.0125 0.0608
d (pixel) 5.12 19.99

The comparison results of five illustrative images under various conditions are shown
in Figure 14. In this research, to get more convincing results, 60 images of three different
conditions were tested, and the results are shown in Table 4.

In Table 4, the average value of θ and the average value of d of each crop row detected
under three different conditions are presented. Through quantitative analysis, it can be
seen that the detection accuracy under weak interference was the highest among all three
conditions, and this is consistent with our expectation. For a total of 60 images, the average
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values of θ and d were within 0.02◦ and 10 pixels, respectively. The results of the detection
method based on the typical Otsu method are also shown in Table 4. For the traditional
method, although good results could be achieved under weak interference, the accuracy
increasingly declined when interference increased. The proposed method performed better
than traditional method especially under strong interference.
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Table 3. Accuracy of the proposed crop row detection method and method based on typical Otsu
with disturbed weed.

Detection Accuracy Proposed Method Detection Method Based on Typical Otsu

θ (◦) 0.0115 0.0561
d (pixel) 4.21 19.48
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Table 4. Accuracy of the proposed crop row detection method and method based on typical Otsu under three different conditions.

Detection Accuracy Weak Interference Moderate Interference Strong Interference

The proposed method θ (◦) 0.0117 0.0125 0.0169
d (pixel) 4.53 5.12 7.09

Traditional method
θ (◦) 0.0196 0.0248 0.0552

d (pixel) 8.49 13.27 17.13

Compared with previous studies [3,34], the proposed method does not require prior
knowledge about the number of crop rows and does not occupy a lot of computing
resources. As a result of the proposed method, the screening criteria for feature points
are indirectly improved. Therefore, the field of view of the image to which this method is
applicable should not be too narrow; otherwise, it would be more susceptible to interference
from local extreme values than traditional methods. In short, it can be inferred from
the quantitative results that, after applying the treble-classification Otsu method, the
proposed feature point extraction method and the clustering algorithm could achieve better
performance than the method based on typical Otsu under various interferences.

5. Conclusions

This work presented the proposal of a new integrated solution of crop row detection to
deal with complex paddy field conditions. In this paper, an improved treble-classification
Otsu method which can distinguish the green distractors and real crops was applied in im-
age segmentation, and a designed double-dimensional clustering method was proposed to
arrange feature points belonging to each crop row. The combination of these two methods
constituted the new integrated solution. The performance of the proposed method was
tested using a set of illustrative images. The efficiency validation tests showed that, when
the image size was 640× 480, the proposed treble-classification Otsu method only con-
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sumed 0.41 ms more time than the typical Otsu method. The proposed treble-classification
Otsu method was verified to meet the efficiency requirements of common autonomous
navigation systems. The accuracy validation tests of the proposed method showed that the
average values of θ and d were within 0.02◦ and 10 pixels, respectively, which verified that
the proposed method performed better than traditional method under various conditions.
In the future, this integrated solution will be developed within an embedded system to
extract the guidance line for visual navigation of unmanned agricultural vehicles working
in complex paddy fields. With this crop row detection solution, the robustness of visual
navigation systems in paddy fields could be enhanced.
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