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Abstract: The building damage status is vital to plan rescue and reconstruction after a disaster and is
also hard to detect and judge its level. Most existing studies focus on binary classification, and the
attention of the model is distracted. In this study, we proposed a Siamese neural network that can
localize and classify damaged buildings at one time. The main parts of this network are a variety of
attention U-Nets using different backbones. The attention mechanism enables the network to pay
more attention to the effective features and channels, so as to reduce the impact of useless features.
We train them using the xBD dataset, which is a large-scale dataset for the advancement of building
damage assessment, and compare their result balanced F (F1) scores. The score demonstrates that the
performance of SEresNeXt with an attention mechanism gives the best performance among single
models, with the F1 score reaching 0.787. To improve the accuracy, we fused the results and got the
best overall F1 score of 0.792. To verify the transferability and robustness of the model, we selected
the dataset on the Maxar Open Data Program of two recent disasters to investigate the performance.
By visual comparison, the results show that our model is robust and transferable.

Keywords: building damage; disaster; remote sensing image; Siamese neural network; U-Net;
attention mechanism; change detection

1. Introduction

In the past 20 years, natural disasters have claimed one million lives and caused more
trauma, displacement and loss of families and livelihoods [1]. Building damage is the main
type of disaster damage, which is used to estimate the location distribution of the affected
population [2] and essential for emergency management professionals, helping them direct
the rescue teams in a short time to the right locations [2]. It has been proven that remote
sensing data are able to derive accurate building damage in a short time [2–4], with low
cost and a wide field of view.

Remote sensing (RS) is utilized widely for disaster assessment and the detection of
damaged buildings [2,3,5–12]. Frequently used remote sensing images are mainly optical
and synthetic aperture radar (SAR) data. SAR data is less affected by weather conditions
and has been gradually used for emergency and disaster assessment. Both of the backscatter
products and phase data of SAR can be used to detect damaged buildings [8,13]. Compared
with optical images, the processing of SAR data is more complicated. Although it is not
susceptible to interference from shadows and cloud information, it has many noise, blurry
boundaries, no color and less information than multispectral images [14].

Optical remote sensing images can directly reflect the real surface information and are
the primary data source in the early stage of remote sensing seismic damage assessments.
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Most of the research data that uses optical images for disaster exploration are bitemporal
(before and after the disaster) optical images [11]. As known, disasters will cause specific
changes to the building, and its characteristic form in the optical remote sensing image
often changes significantly. Collapsed buildings become ruins, and the regular geometric
shape disappears. The area of the ruins formed is usually larger than the outline area
of the original buildings. The disappearance of the geometric shapes causes the shadow
of the building to no longer exist, and the texture feature distribution is irregular, or the
obvious law is broken. It was found that the spatial features of texture and structure are
more critical than spectral information in the algorithm classification [4]. Since a very high
resolution (VHR) remote sensing image can provide more detail of the structure and spatial
characteristics of the damaged target [15], with the development of RS technology, the
spatial resolution of optical images can reach the centimeter level, and the efficiency of
image acquisition has also been greatly improved. The detection algorithms of damaged
buildings using VHR images include image enhancement, post-classification comparison
and machine learning. The image enhancement method of the optical image combined
with bitemporal data is to mathematically calculate and compare the pixel value [16]. The
post-classification comparison method compares two independent classification results
before and after the disaster. Most of them are object-based detection methods. The
main advantage of this type of method is minimizing the influence of the radiation dif-
ference between two datasets; however, the accuracy depends on the initial classification
results [17].

Using VHR images to generate building damage maps, automation and visualization
methods are commonly adopted [18]. With technological innovation, numerous scholars
have used machine learning to detect damaged buildings and carried out much fruitful
work. A. Cooner et al. used a multilayer feedforward network to detect damaged buildings
and achieved an error rate of less than 40% [4]. M. Ji et al. optimized the data balance
strategy, using the Convolutional Neural Network (CNN) to improve the overall accuracy
of detecting collapsed buildings from satellite images [15]. R. Liu et al. proposed an end-to-
end network framework combining the CNN and Recurrent Neural Network (RNN) [19].
The CNN is used to extract the spectral spatial features of bitemporal images, while the
RNN can effectively analyze the time dependence of bitemporal images and transfer the
image features. D. Duarte et al. used residual connections with dilated convolutions
that expanded the receptive field; the overall satellite image classification accuracy of
the damaged building improved nearly 4% [12]. However, most of these studies only
classify buildings into two categories. In order to more accurately assess the damage
to buildings after a disaster, some studies have also classified the degree of damage to
buildings. E. Weber et al. used Fast-RCNN on the xBD dataset to set the localization and
classify at one time to grade the damage of buildings after a disaster, and their overall F1
score reached 0.741 [9].

The U-Net based on a fully convolutional network is considered as one of the standard
CNN structures for change detection tasks [20]. The U-Net combines high-level information
that can be used to distinguish categories and high-resolution information that provides an
accurate positioning and segmentation basis that is suitable for detecting disaster-damaged
buildings. Y. Zhan et al. proposed a U-Net-based network that used two-phase SAR
images to detect new building structures [21]. S. Ghaffarian et al. used a U-Net with
residual connections to detect the statuses of buildings, such as the extinction, addition
and expansion, so as to update the building database automatically [22]. Y. Sun et al.
proposed a multitask change detection model based on a deep full convolutional network
(FCN) to extract the building changes [23]. These studies used many different variants of
the U-Net, and all achieved good results; however, they may have a loss of the detailed
spatial characteristics. X. Yang et al. proposed the RCNN-U-Net, which can exploit the
spatial context and the rich low-level visual features [24]. RCNN was the first to segment
the region of interest (ROI) and then perform feature extraction on the region of interest
(ROI), but U-Net’s feature extraction is for the entire image. In the scene of detecting
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damaged buildings, it is undeniable that the global feature of the image contributes to
the classification task, because the scale of disaster is larger than that of building. At
the same time, according to the first law of geography [25], the part closer to the target
building should get more attention when judging the target type. The embodiment of this
idea is the attention mechanism. The attention mechanism was proposed in 2014 [26]. It
pointed out that human beings selectively focus their attention on each part of the visual
space to obtain information at the required time and place and combine the information
from different gazes over time to establish an internal representation of the scene. The
attention mechanism utilizes this human trait in neural networks. Informally, the attention
mechanism provides a neural network with the ability to focus on a subset of its inputs
(or features): it selects specific inputs. This helps the model reduce the impact of useless
information and increases the contribution of useful information to the results. Attention
can be categorized into hard and soft attention, and it is a general idea that does not
depend on a specific framework but is currently mainly used in combination with the
Encoder-Decoder framework. R. Liu et al. introduced the attention mechanism in change
detection and gave weight to features of different times to enhance the changed information
of the images, which significantly improved the results [19]. H. Hao et al. proposed the
Siam-U-Net-Attn model, which achieved a 0.70 damage F1 score and 0.73 localization F1
score on the xBD dataset [27]. In the task of classification of a hyperspectral remote sensing
image, by adding the spectral attention module to the CNN, L. Mou et al. made the model
selectively emphasize the useful band and suppress the less useful band [28].

In this paper, we added a soft attention mechanism to Siamese U-Net for exploring
the model’s performance of different backbones on the degree of building damage. There
were three objectives of this study:

1. Explore the performance of multi-artificial neural networks on detecting different
damage levels of buildings using both present and post satellite data.

2. Compare the fusion results of different networks and the result of a single network.
3. Evaluate the transferability and robustness of the total model.

For objectives 1 and 2, the xBD dataset [29] is used. As the distribution of four damage
level samples are imbalanced, two balancing strategies are adopted, including random
under-sampling and a cost-sensitive strategy, which are introduced in Section 2.2.3. For
evaluation, the F1 score was used in this study. For objective 3, datasets of Beirut explosion
and hurricane Laura are used. The rest of this paper is organized as follows. Section 2 gives
the descriptions of all datasets and proposed method. Section 3 presents the experimental
results, and the discussion is in Section 4. Finally, the conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Data
2.1.1. xBD Dataset

xBD is a large-scale dataset of building damage assessment used to advance research
on humanitarian assistance and disaster recovery. It contains 850,736 building annotations
and covers 45,362 km2 of images [29]. xBD provides building polygons, labels of damage
levels (Figure 1) and satellite images before and after various disaster events.

However, the number of class samples in the xBD dataset is seriously unbalanced.
After counting the post-disaster data of the training set (including train and tier3), the
proportion of each class in relation to the category of Destroyed Buildings is shown in
Table 1. For this, we preprocessed the data before training; the specific operation is in
Section 2.2.3.
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In the process of adjusting the model, the xBD train and tier3 datasets were used for 
training. Since we wanted to ensure more training samples and more validation data, this 
will take up more training time. Taking these factors into account, the dataset was ran-
domly divided into 90% training data and 10% validation data, and the test dataset in xBD 
was used for verification. 

Figure 1. Damage levels and their descriptions [29]. 

Table 1. Proportion of each category. 

Class Proportion
Not Building 539.721 

No Damage Building 12.963 
Minor Damage Building 1.433 
Major Damage Building 1.493 

Destroyed Building 1 

2.1.2. Instance Data 
For verifying the transferability and robustness of the model, we selected two disas-

ters out of xBD for applying our method. The reason we chose these two disasters is that 
the date of occurrence were relatively new, the data was available and they are two dif-
ferent types of disasters. In particular, the explosion in Beirut was further evaluated by 
The Copernicus Emergency Management Service (CEMS). The buildings affected were 
divided into four categories, and the classification mapping to xBD was as shown in Table 
2. The details of these two disasters and the image data involved are shown in Table 3.
The remote sensing image data is provided by the Maxar/DigitalGlobe Open Data Pro-
gram (https://www.maxar.com/open-data (accessed on 24 November 2020)) [30].

Table 2. Level of correspondence between xBD and Copernicus Emergency Management Service 
(CEMS). 

xBD Level CEMS Level 
No Damage Possible Damage 

Minor Damage Moderate Damage, Possible Damage 
Major Damage Severe Damage, Moderate Damage 

Destroyed Destroyed, Severe Damage 

Table 3. The two disasters’ detail information. 

Disaster Location Date Pre-Image Date Post-Image
Date 

Beirut Explosion Beirut, Lebanon 

Hurricane Laura Parts of Louisiana and far-
eastern Texas 

04/08/2020 09/06/2020 05/08/2020 

27/08/2020 03/06/2019 27/08/2020 

Damage Level Structure Description 
0 (No Damage) Undisturbed. No sign of water, structural or shingle damage, or burn 

marks. 
1 (Minor Damage) Building partially burnt, water surrounding structure, volcanic flow 

nearby, roof elements missing, or visible cracks 
2 (Major Damage) Partial wall or roof collapse, encroaching volcanic flow, or surrounded by 

water/mud. 
3 (Destroyed) Scorched, completely collapsed, partially/completely covered with 

water/mud, or otherwise no longer present. 

Figure 1. Damage levels and their descriptions [29].

Table 1. Proportion of each category.

Class Proportion

Not Building 539.721
No Damage Building 12.963

Minor Damage Building 1.433
Major Damage Building 1.493

Destroyed Building 1

In the process of adjusting the model, the xBD train and tier3 datasets were used
for training. Since we wanted to ensure more training samples and more validation data,
this will take up more training time. Taking these factors into account, the dataset was
randomly divided into 90% training data and 10% validation data, and the test dataset in
xBD was used for verification.

2.1.2. Instance Data

For verifying the transferability and robustness of the model, we selected two disasters
out of xBD for applying our method. The reason we chose these two disasters is that the
date of occurrence were relatively new, the data was available and they are two different
types of disasters. In particular, the explosion in Beirut was further evaluated by The
Copernicus Emergency Management Service (CEMS). The buildings affected were divided
into four categories, and the classification mapping to xBD was as shown in Table 2. The
details of these two disasters and the image data involved are shown in Table 3. The
remote sensing image data is provided by the Maxar/DigitalGlobe Open Data Program
(https://www.maxar.com/open-data (accessed on 24 November 2020)) [30].

Table 2. Level of correspondence between xBD and Copernicus Emergency Management Service
(CEMS).

xBD Level CEMS Level

No Damage Possible Damage
Minor Damage Moderate Damage, Possible Damage
Major Damage Severe Damage, Moderate Damage

Destroyed Destroyed, Severe Damage

Table 3. The two disasters’ detail information.

Disaster Location Date Pre-Image Date Post-Image Date

Beirut Explosion Beirut, Lebanon 04/08/2020 09/06/2020 05/08/2020

Hurricane Laura Parts of Louisiana
and far-eastern Texas 27/08/2020 03/06/2019 27/08/2020

https://www.maxar.com/open-data
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The preprocessing of the data is as follows. First, the two images before and after the
disaster are geo-referenced. Second, they are cut according to the area of interest. In the
selection of the area of interest, we try to avoid the clouds. Third, because the resolutions
of the two images before and after the disaster are different, they are resampled to the
resolution of the images before the disaster (0.3 m× 0.3 m) to ensure the correspondence
of the pixel positions in space. Fourth, crop the two images to a size of 1024 × 1024.

2.2. Methods

Convolutional neural networks can process data in the form of multiple arrays [31].
For classifying a pixel, the CNN-based segmentation method uses pixel blocks in a fixed
size window centered on the pixel as the input of the CNN. This method has several
disadvantages. Firstly, the storage space required is large. Secondly, the calculation
efficiency is low. Thirdly, the window’s size limits the extent of the perceptual field.
Usually, the window’s size is much smaller than the whole image’s. Only some local
features can be extracted, which leads to the limited performance of classification. In order
to overcome the above shortcomings, a full convolutional network (FCN) come into being.
The FCN is a special type of CNN and can recover the category of each pixel from the
abstract features. That is, it extends from image-level to pixel-level classification. In this
paper, U-Net [32] is used as a kind of FCN. Essentially, convolution is feature fusion of
a local area that fuses features from spatial dimensions and channel dimensions. For a
convolutional neural network, its core calculation is a convolution operator that learns a
new feature map from the input feature map through the convolution kernel. Different
backbones are used to try to strengthen our model. All backbones used are the residual
network and its variants.

2.2.1. Proposed Framework

This section introduces the details of the overall framework. As shown in Figure 2, the
architecture of the proposed model is a Siamese neural network that is divided into two
parts, and both share the same weight. One part with the pre-disaster images is used to
localize buildings, and the other part is used to classify the buildings’ damage levels. While
training, the localization part is trained first and as the pre-training weight of two parts.
This step is marked as 1© in Figure 2. Then, the image pairs contained pre- and post-disaster
are augmented and input into the network for training simultaneously. This step is marked
as 2© in Figure 2. Finally, we get an end-to-end damaged building detection network. This
is an example of transfer learning. The training model of one problem can be reused as
the initialization of another model of a similar problem [33]. For further improving the
accuracy, we process the results of the end-to-end network data, use the building mask
generated by the building localization network and remove some nonbuilding pixels in the
result. This step is marked as 3© in Figure 2. The whole process is shown in Figure 2.

2.2.2. Attention U-Net

The attention mechanism means that, when selecting information, it calculates the
weighted average of the N input information and then passes it on to the next block. The
decoder part of our U-Net adds the attention mechanism. The specific architecture is shown
in Figure 3.

In the decoder part of U-Net in Figure 3, the previous decoder layer’s output is
originally directly spliced with the output of the corresponding encoder layer as the input
of the next decoder layer. After adding the attention block, the input will be processed by
the attention gate, which is shown in Figure 4, and then enter into the next decoder layer to
express the spatial attention.
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of the 3D data block. xl , the feature map from the encoder layer, is scaled with the attention coefficients (α), which are
computed by xl and g. The previous decoder features in g are added to xl to determine the focus regions; then, the value of
the attention coefficients is between 0 and 1 throughout training.

2.2.3. Data Augmentation

In machine learning algorithms, the ideal situation is that the number of samples in
each class is roughly the same. However, in most real scenes, the category distributions
are uneven [35]. This research uses a variety of data balancing strategies. The first is the
under-sampling strategy. The 1024 × 1024 image is randomly cropped multiple times,
and the crop size is 512 × 512. The cropping scheme with the largest sum of pixel values
is selected to reduce the sampling frequency of non-buildings. Secondly, a cost-sensitive
strategy is adopted. When constructing the loss function, the loss of each category and the
total loss are combined, and at the same time, they are given different weights by referring
to the proportion of the categories.

In addition, for enhancing the robustness of the model, we also randomly flip, rotate,
translate, side view and zoom on the input images; adjust their saturation, contrast and
brightness; convert the color space and band order and add Gaussian noise and filtering
operations randomly.

2.2.4. Backbones

• ResNet-34 backbone

The first backbone used is ResNet-34 [36], belonging to the residual network (ResNet)
pre-trained on the ImageNet [37] dataset. The ability of CNN to retrieve relevant informa-
tion from images is enhanced with the increase of the network depth [38]. However, if the
network is too deep, it will lead to gradient explosion and network degradation. Resid-
ual connections [36] solved this problem by feeding a given layer into the previous one.
Figure 5 is the structure of a residual connection.
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• Squeeze-and-Excitation Networks (SENet) backbone

For convolution operations, a large part of the work is to improve the receptive field—
that is, to fuse more features spatially or to extract multi-scale spatial information, such
as the multi-branch structure of the Inception network [39]. For the feature fusion of the
channel dimensions, the convolution operation basically defaults to fusing all channels of
the input feature map. The Group Convolution and Depth-wise Separable Convolution
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in the MobileNet network group channels mainly make the model more lightweight and
reduce the amount of calculation. The innovation of the SENet network is to focus on
the relationship between channels, hoping that the model can automatically learn the
importance of different channel features; the SENet can be regarded as the channel-wise
attention mechanism. To this end, SENet proposes the Squeeze-and-Excitation (SE) module,
as shown in Figure 6.
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Figure 6. Squeeze-and-Excitation (SE) module [39]. The module is mainly composed of three parts:
squeeze, excitation and scale. Fsq(·) represents the squeeze transformation, Fex(·, w) represents the
excitation transformation and Fscale(·) represents the scale transformation.

The core module of SENet is divided into three parts: squeeze, excitation and scale.
The squeeze part is used to compress features to 1 × 1 × channels in the spatial dimension,
which represents the channels’ global distribution. The excitation part is reassembled at
the gating mechanism, which produces channel-wise weights W ∈ Rc2×c2 . The scale part
uses the learned weights to reweigh the importance of each channel to build attention on
the channel.

• SEResNeXt backbone

SEResNeXt is a model obtained by applying the SE module to the residual block in
ResNeXt. In fact, in the block of ResNet, one residual path becomes multiple residual paths.
The success of the Visual Geometry Group Net (VGGNet) [40] and ResNet shows that the
method of stacking blocks of the same shape can reduce the number of hyperparameters
and achieve state-of-the-art (SOTA) results. The practice represented by GoogleNet and
Inception also shows that a fine network design through the split–transform–merge strategy
can also achieve very good results. ResNeXt’s idea is to combine these two good ideas.
ResNeXt does not perform split–transform–merge like the GoogleNet series but simply
repeats the same substructure, as shown in Figure 7, so that the split–transform–merge is
done; at the same time, there is not much increase in the hyperparameters.
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Figure 7. ResNeXt structure [41]. In the figure above, the structure of (a) is the original structure of ResNeXt, and (b,c) are
equivalent representations of the structure of (a) in an actual implementation, the structure of (c) which is relatively simple
to implement, and the basic block of ResNeXt is realized through the form of grouped convolution.

SEResNeXt is obtained by adding the SE module to the residual block in ResNeXt.
The structure of a single residual block combined with the SE module is shown in Figure 8.
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linear units (ReLU) and activation block (Sigmoid).

• Dual Path Net (DPN) backbone

DPN is a new convolutional network structure that combines the advantages of the
ResNet and Dense Convolutional Network (DenseNet). By revealing the equivalence of
the ResNet and the Dense Convolutional Network (DenseNet), the author found that
ResNet supports element reuse, while DenseNet supports new element exploration. In
order to integrate the benefits of these two path topologies, DPN aggregates the functions
of the two.

In Figure 9, the phase results of the Dense Net on the left and ResNeXt on the right
are added together. The added result is then processed by 3 × 3 convolution and 1 × 1
dimension transformation operations; finally, its channels are divided into two parts. The
left part is merged with the original input on the left, and the right part is added with
the original input on the right. The operation, in this way, is a block formed in which the
original input can be the input that entered the network at the beginning or the input of
the previous stage.

2.2.5. Fusion

Each model uses three different random seeds for training, so each network has three
training weights and its optimal overall F1 score while training. After using the three
training weights to predict the verification set, three prediction results can be obtained.
Then, the optimal overall F1 score is used as the weight of each result for the fusion based
on the weighted average. Finally, the preliminary results of localization and classification
are obtained. When fusing the results of different models, the same method is used, except
that the weighted results are changed from 3 to 12. Since the localization task network is a
single target network, it is more targeted than the classification network, which has two
targets in the localization task. We used the localization result to mask the classification
result and removed the non-building pixels to get the results. The weighted average
method is also used for the fusion of different networks with or without attention.
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2.3. Metric

In a classification task, a confusion matrix is frequently used to evaluate the accuracy
of the information and the performance of a model [43], and accuracy indicators such as
precision and recall provide a summary of the information in it. Each row of the confusion
matrix represents a prediction category. Each column represents an actual category to
which the pixel belongs. TP (True Positive) is the number of pixels that are correctly
predicted as this category. FP (False Positive) is when the number of pixels that belong to
other categories are wrongly classified as this category. FN (False Negative) is when the
number of pixels that belong to this category are mistakenly classified as another one. TN
(True Negative) is the number of pixels that are correctly classified as other categories.

The measure of accuracy using the portion of TP and TN does not distinguish between
different categories; thus, the overall performance of a multi-class model is not well-
described when dealing with an unbalanced dataset. By contrast, the measures of precision
and recall reflect the true classification performance, and the F1 score is balanced between
the two indicators.

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

. (3)

The evaluation metrics we used is the F1 score calculated by a weighted average of
the localization f1 score (lf1) and the damage f1 score (df1), which was provided by xView2
Challenge [29].

Overall F1 = 0.3 ∗ l f 1 + 0.7 ∗ d f 1, (4)

The localization f1 score is the normal F1 score, which is the harmonic mean of
precision and recall [44] used to assess the effectiveness of building identification, which is
a binary classification task.

l f 1 = F1. (5)
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Our model classifies pixels into four labels, so df1 is a score of multi-class F measures.
The macro-averaged F1 score is a popular performance score that is computed by averaging
the per-category scores [45]. It adapts to a large-scale dataset. As the global arithmetic
mean of each, it does not adequately represent the performance of the classifier in each
category. Our damage F1 score is calculated by taking the harmonic mean of the 4 f1 scores
calculated for each damage level [29]. It behaves differently compared to the macro F1
score, as it gives a larger weight to lower numbers.

d f 1 = 4/ ∑
[nodamage f 1

, minordamage f 1
, major_damage_ f 1, destroyed_ f 1]

f 1
1

( f 1 + epsilon)
. (6)

For reference, we also used the Mean Intersection over Union (MIoU) [46] to evaluate
the performance of the model.

MIoU =
TP

TP + FP + FN
. (7)

Localization MIoU = MIoU (8)

Classi f ication MIoU

= 4/
[nodamageMIoU

, minordamageMIoU
, majordamageMIoU

, destroyed MIoU]

∑
MIoU

1
(MIoU+epsilon)

(9)

2.4. Training Implementation

Considering both the resources and efficiency, Adam [47] with a learning rate of 0.0002
is chosen as the optimization algorithm, which has strong robustness in the selection of
super parameters. While training the localization task, the training data batch size is set
to 16, and 100 epochs are trained on the network. When two tasks are trained at the same
time, the training data batch size is set to 10, and the network is trained for 24 epochs. The
implementation of the framework network is based on pytorch [48], and two NVIDIA GTX
1080ti GPUs with 8G memory are used for training and verifying. We used the weights of
networks trained with ImageNet provided by pytorch to initialize the network.

3. Results
3.1. Compare Models

We trained a total of two groups of U-Net models with eight different backbones—
namely, the group with the attention mechanism and the group without. The different
backbones used were introduced in Section 2.2.4. Under the premise that the data is divided
into a training set and validation set using random seeds, each model used three different
random seeds for training. As shown in Tables 4 and 5, the results of each model of the
verification set are shown. The classify result index uses the overall F1 score introduced in
Section 2.3, the localization result index uses the ordinary F1 score and the overall index is
a 0.3 localization F1 score and 0.7 classify F1 score.

Table 4. Indicators of different models without the attention (w/o A) mechanism. MIoU: Mean Intersection over Union.

Backbone
Type (BT)

Overall
F1 (OF1)

LocalizationF1
(LF1)

ClassificationF1
(CF1)

No
Damage

Minor
Damage

Major
Damage Destroyed

Localization
MIoU

(LMIoU)

Classification
MIoU

(CMIoU)

resNet 0.636 0.856 0.541 0.863 0.351 0.474 0.789 0.748 0.371
SEresNeXt 0.755 0.860 0.710 0.916 0.502 0.741 0.834 0.754 0.551

DPN 0.739 0.735 0.741 0.920 0.553 0.742 0.865 0.581 0.589
SENet 0.772 0.863 0.734 0.912 0.544 0.741 0.857 0.759 0.579
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Table 5. Indicators of different models with the attention (w A) mechanism.

BT OF1 LF1 CF1 No Damage Minor Damage Major Damage Destroyed LMIoU CMIoU

resNet 0.744 0.856 0.696 0.880 0.501 0.719 0.818 0.748 0.533
SEresNeXt 0.787 0.868 0.752 0.920 0.583 0.750 0.847 0.767 0.603

DPN 0.781 0.870 0.742 0.919 0.553 0.759 0.852 0.769 0.590
SENet 0.779 0.859 0.745 0.903 0.569 0.751 0.853 0.753 0.594

As can be seen from Tables 4 and 5, SENet and SEresNeXt both show better overall
performances without and with the attention. For the classification task, their performances
with the attention mechanism are better than those without the attention mechanism. In
the task of building localization, DPN with the attention mechanism shows the best
performance, reaching an F1 value of 0.870. Observation shows that whether the attention
mechanism is added has no uniform impact on the localization accuracy, but it will improve
the accuracy of the classification. In order to further observe the results of each model, we
selected three sample images in the verification set to compare the results, as shown in
Figures 10–12.
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As can be seen from Tables 4 and 5, SENet and SEresNeXt both show better overall 
performances without and with the attention. For the classification task, their perfor-
mances with the attention mechanism are better than those without the attention mecha-
nism. In the task of building localization, DPN with the attention mechanism shows the 
best performance, reaching an F1 value of 0.870. Observation shows that whether the at-
tention mechanism is added has no uniform impact on the localization accuracy, but it 
will improve the accuracy of the classification. In order to further observe the results of 
each model, we selected three sample images in the verification set to compare the results, 
as shown in Figures 10–12. 
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Figure 10 was chosen to observe the discrimination of minor-damaged buildings. It 
can be seen that the model has a low detection accuracy for minor damage. The minor 
damage building in the lower left corner of Figure 10 is classified as major damage in most 
models; only in Figure 10j is it judged as minor damage. In Figure 10a,b, the observation 
directions are different, so the location of buildings in the two images cannot be com-
pletely overlapped, which may cause an error of judgment. The error is also related to the 
degree of damage that is continuous but is artificially divided into discrete levels. The 
appearance of minor-damaged buildings is not obvious and diverse. For example, the 
damaged parts are on the sides of the buildings, which cannot be observed by remote 
sensing images. 

 

 

Figure 10. Hurricane-michael_00000256 in the verification set. (a) A pre-disaster image, (b) a post-disaster image, (c) the
ground truth (GT) and (d) the legend. (e) The result of ResNet (w/o A or without attention), (f) the result of SEresNeXt
(w/o A), (g) the result of DPN (w/o A), (h) the result of the Squeeze-and-Excitation network (SENet) (w/o A), (i) the result
of ResNet (w A or with attention), (j) the result of SEresNeXt (w A), (k) the result of DPN (w A) and (l) the result of SENet
(w A).



Remote Sens. 2021, 13, 905 13 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 22 
 

 

 

 
Figure 10. Hurricane-michael_00000256 in the verification set. (a) A pre-disaster image, (b) a post-disaster image, (c) the 
ground truth (GT) and (d) the legend. (e) The result of ResNet (w/o A or without attention), (f) the result of SEresNeXt 
(w/o A), (g) the result of DPN (w/o A), (h) the result of the Squeeze-and-Excitation network (SENet) (w/o A), (i) the result 
of ResNet (w A or with attention), (j) the result of SEresNeXt (w A), (k) the result of DPN (w A) and (l) the result of SENet 
(w A). 

Figure 10 was chosen to observe the discrimination of minor-damaged buildings. It 
can be seen that the model has a low detection accuracy for minor damage. The minor 
damage building in the lower left corner of Figure 10 is classified as major damage in most 
models; only in Figure 10j is it judged as minor damage. In Figure 10a,b, the observation 
directions are different, so the location of buildings in the two images cannot be com-
pletely overlapped, which may cause an error of judgment. The error is also related to the 
degree of damage that is continuous but is artificially divided into discrete levels. The 
appearance of minor-damaged buildings is not obvious and diverse. For example, the 
damaged parts are on the sides of the buildings, which cannot be observed by remote 
sensing images. 

 

 

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 11. Palu_00000004 in the verification set. (a) A pre-disaster image, (b) a post-disaster image and (c) the ground truth 
(GT). (d) The result of ResNet (w/o A), (e) the result of SEresNeXt (w/o A), (f) the result of DPN (w/o A), (g) the result of 
SENet (w/o A), (h) the result of ResNet (w A), (i) the result of SEresNeXt (w A), (j) the result of DPN (w A) and (k) the 
result of SENet (w A). 

Figure 11 is used to observe the discrimination of nondamaged and major-damaged 
buildings. It can be seen that the performance of each model in the detection of nondam-
aged buildings is stable, but when distinguishing major-damaged buildings, it is easy to 
make misjudgments. For the buildings circled in Figure 11c, there are misjudged pixels in 
nearby buildings, which can be seen in every model’s results. As can be seen from Figure 
11b, the part of the building in the red circle has changed in texture and color compared 
to Figure 11a. Its appearance may have changed due to various factors, but the building 
itself does not reach the level of minor damage. This is related to the limitation of optical 
image data, which is easily inferred by the color information, and false changes are de-
tected. Compared with the result without the attention mechanism, the result with the 
attention mechanism is more accurate in the detection of major-damaged buildings. 

 

 

 
Figure 12. Palu_00000181 in the verification set. (a) A pre-disaster image, (b) a post-disaster image and (c) the GT. (d) The 
result of ResNet (w/o A), (e) the result of SEresNeXt (w/o A), (f) the result of DPN (w/o A), (g) the result of SENet (w/o A), 

Figure 11. Palu_00000004 in the verification set. (a) A pre-disaster image, (b) a post-disaster image and (c) the ground truth
(GT). (d) The result of ResNet (w/o A), (e) the result of SEresNeXt (w/o A), (f) the result of DPN (w/o A), (g) the result of
SENet (w/o A), (h) the result of ResNet (w A), (i) the result of SEresNeXt (w A), (j) the result of DPN (w A) and (k) the
result of SENet (w A).

Figure 10 was chosen to observe the discrimination of minor-damaged buildings. It
can be seen that the model has a low detection accuracy for minor damage. The minor
damage building in the lower left corner of Figure 10 is classified as major damage in most
models; only in Figure 10j is it judged as minor damage. In Figure 10a,b, the observation
directions are different, so the location of buildings in the two images cannot be completely
overlapped, which may cause an error of judgment. The error is also related to the degree
of damage that is continuous but is artificially divided into discrete levels. The appearance
of minor-damaged buildings is not obvious and diverse. For example, the damaged parts
are on the sides of the buildings, which cannot be observed by remote sensing images.

Figure 11 is used to observe the discrimination of nondamaged and major-damaged
buildings. It can be seen that the performance of each model in the detection of nondam-
aged buildings is stable, but when distinguishing major-damaged buildings, it is easy to
make misjudgments. For the buildings circled in Figure 11c, there are misjudged pixels
in nearby buildings, which can be seen in every model’s results. As can be seen from
Figure 11b, the part of the building in the red circle has changed in texture and color
compared to Figure 11a. Its appearance may have changed due to various factors, but the
building itself does not reach the level of minor damage. This is related to the limitation of
optical image data, which is easily inferred by the color information, and false changes are
detected. Compared with the result without the attention mechanism, the result with the
attention mechanism is more accurate in the detection of major-damaged buildings.
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Figure 12. Palu_00000181 in the verification set. (a) A pre-disaster image, (b) a post-disaster image and (c) the GT. (d) The
result of ResNet (w/o A), (e) the result of SEresNeXt (w/o A), (f) the result of DPN (w/o A), (g) the result of SENet (w/o A),
(h) the result of ResNet (w A), (i) the result of SEresNeXt (w A), (j) the result of DPN (w A) and (k) the result of SENet (w A).

Figure 12 is used to observe the judgment of destroyed buildings. It can be seen that
the location and classification of the damaged area for each model are basically the same,
but the details are different. For example, all models have detected that the large area above
the image is destroyed, but the detection results of the state of the lower right house are
inconsistent. Compared with the ground truth, Figure 12g,i shows a better performance,
which is the results of SENet (w/o A) and SEresNeXt (w A). As shown in Figure 12f,h,
DPN (w/o A) and resNet (w A) perform poorly. In the localization task, except for the poor
performance in Figure 12f, which is the result of DPN (w/o A), the classification effects of
other models are similar. Among them, the boundary is the clearest, and the least sticky is
Figure 12h, which is the result of ResNet (w A).

3.2. Fusion Results

In pursuit of high precision, we try to explore whether the fusion results of different
networks would be more accurate than the result of a single network. For this reason, we
divide the models into two groups according to whether we added attention and integrate
the building localization and classification results of four networks. In the fusion process,
the four network contribution weight ratios are 1:1:1:1, and the fusion results are shown in
Figure 13 and Table 6.
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Figure 13. The fusion result of hurricane-michael_00000256, palu_00000004 and palu_00000181.
(a) The GT of hurricane-michael_00000256, (b,c) the results of the model w/o A and model w A of
hurricane-michael_00000256, (d) the GT of palu_00000004, (e,f) the results of the model w/o A and
model w A of palu_00000004, (g) the GT of palu_00000181 and (h,i) the results of the model w/o A
and model w A of palu_00000181.

Table 6. Fusion result indicators.

Group OF1 LF1 CF1 No
Damage

Minor
Damage

Major
Damage Destroyed LMIoU CMIoU

Without
Attention 0.769 0.862 0.728 0.914 0.527 0.751 0.855 0.758 0.573

With Attention 0.792 0.871 0.758 0.916 0.582 0.768 0.859 0.771 0.611

Comparing Figure 13 and Table 6, the fusion results of the model with the attention
mechanism had an increase in the overall accuracy compared with the results of the single
model, which increased by 0.005 compared with the highest overall accuracy of the single
model. The result of fusion without the attention mechanism is lower than the highest
overall accuracy of single model but only 0.003 lower than SENet. Comparing the accuracy
of the two groups, the group with the attention mechanism was higher, indicating that the
attention mechanism had a certain effect on improving the overall accuracy of the model.
Comparing Figure 13b,c,e,f,h,i, respectively, the fusion results showed a stable classification
result. However, they had some differences in the details. As in the circled part in
Figure 13, the fusion results of the model with the attention mechanism detected more
accurate damage areas than the results of the model without the attention mechanism.
In terms of localization, the fusion results of the model the with attention mechanism
had clearer boundaries and fewer adhesions between multiple buildings than without
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the attention mechanism. In summary, the fusion of multiple models with the attention
mechanism is beneficial to the improvement of the accuracy.

3.3. Transferability and Robustness

For verifying the robustness and transferability of model, two disasters not in the train-
ing and verification set were selected. One was the explosion accident in Beirut, Lebanon
on 4 August 2020, and the other was Hurricane Laura, which occurred on 27 August 2020;
see Section 2.1.2 for the specific introduction. We selected one region of interest for the
explosion in Beirut and one for Hurricane Laura. The pre- and post-disaster images of each
disaster were input into our model, and the results are shown in Figures 14 and 15.

In the case of the Beirut explosion, for the classify task, the results in Figure 14 are
more accurate in detecting the destroyed area. However, in the upper left part of all results,
a piece was detected as nondamaged or major-damaged. The original satellite image
Figure 14a shows that there is a shed here, and the roof still exists after the explosion in
Figure 14b, but the wall under it may have collapsed completely, which makes it impossible
to detect this situation from a top view. These situations generally occur when the building’s
upper layer collapses directly to the bottom floor [49]. This shows that the optical satellite
image has limitations in building damage detection. Compared with the ground truth in
Figure 14m, almost all the results do not accurately classify the disaster damage grade of
pixels in the lower right corner, and they tend to overestimate it.

In the localization task, the dense buildings in the lower right corner of the image
are not recognized. This part of the building is high, showing the effect of side shooting
in the image, and there are large areas of shadows, which limits the model’s recognition
of the buildings. In the red circle of Figure 14a, there are ships docked at the port, which
are identified as buildings in Figure 14k with no attention mechanism. But in Figure 14l
with the attention mechanism, it is excluded from the building localization. This proves
that the attention mechanism is helpful for localization tasks to distinguish between ships
and buildings.

Since there is no public official ground truth of Hurricane Laura, we manually label
the ground truth (seen in Figure 14m) following the rules of xBD. Compared to Beirut’s
explosion, the image of Hurricane Laura is covered by thin clouds, and the texture is more
blurred. Unlike the Beirut port, the scale of the buildings is smaller. From the results of
Hurricane Laura in Figure 15, the difference between the fusion results with and without
the attention mechanism is very small, and both models present similar interpretation levels
for each house. By comparing all the results, there is not much difference in the building
localization tasks. Some tiny buildings or buildings covered by trees are likely to be missed.
As shown in Figures 14 and 15 for determining the level of damage, compared with the
existing disasters in the training set, the performances of the two disasters’ classification
tasks are poor. However, it is basically possible to distinguish between damaged and
nondamaged buildings, and the error in determining the level of damage is mostly within
one level.
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In the case of the Beirut explosion, for the classify task, the results in Figure 14 are 
more accurate in detecting the destroyed area. However, in the upper left part of all results, 
a piece was detected as nondamaged or major-damaged. The original satellite image Fig-
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14b, but the wall under it may have collapsed completely, which makes it impossible to 
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not recognized. This part of the building is high, showing the effect of side shooting in the 
image, and there are large areas of shadows, which limits the model’s recognition of the 
buildings. In the red circle of Figure 14a, there are ships docked at the port, which are 
identified as buildings in Figure 14k with no attention mechanism. But in Figure 14l with 
the attention mechanism, it is excluded from the building localization. This proves that 
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Figure 14. Results of Beirut explosion. (a) A pre-disaster image, (b) a post-disaster image, and (m) the GT. (c) The result of
ResNet (w/o A), (d) the result of SEresNeXt (w/o A), (e) the result of DPN (w/o A), (f) the result of SENet (w/o A), (g) the
result of ResNet (w A), (h) the result of SEresNeXt (w A), (i) the result of DPN (w A), (j) the result of SENet (w A), (k) the
fusion result without the attention mechanism and (l) the fusion result with the attention mechanism.



Remote Sens. 2021, 13, 905 18 of 22
Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 22 
 

 

 

 

 

 
Figure 15. Hurricane Laura interest area 1. (a) A pre-disaster image, (b) a post-disaster image and (m) is the GT. (c) The 
result of ResNet (w/o A), (d) the result of SEresNeXt (w/o A), (e) the result of DPN (w/o A), (f) the result of SENet (w/o 
A), (g) the result of ResNet (w A), (h) the result of SEresNeXt (w A), (i) the result of DPN (w A), (j) the result of SENet (w 
A), (k) the fusion result without the attention mechanism and (l) the fusion result with the attention mechanism. 

Since there is no public official ground truth of Hurricane Laura, we manually label 
the ground truth (seen in Figure 14m) following the rules of xBD. Compared to Beirut’s 
explosion, the image of Hurricane Laura is covered by thin clouds, and the texture is more 
blurred. Unlike the Beirut port, the scale of the buildings is smaller. From the results of 
Hurricane Laura in Figure 15, the difference between the fusion results with and without 

Figure 15. Results of Hurricane Laura. (a) A pre-disaster image, (b) a post-disaster image and (m) is the GT. (c) The result of
ResNet (w/o A), (d) the result of SEresNeXt (w/o A), (e) the result of DPN (w/o A), (f) the result of SENet (w/o A), (g) the
result of ResNet (w A), (h) the result of SEresNeXt (w A), (i) the result of DPN (w A), (j) the result of SENet (w A), (k) the
fusion result without the attention mechanism and (l) the fusion result with the attention mechanism.

4. Discussion

It can be seen from the indicators in Section 3.1 that the U-Net with the SE module
maintains better performance in the group with or without the attention mechanism, which
may be due to the characteristics of the SE module; that is, the attention mechanism of
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the channel. The SE module can let the network know what channels are more important
for the current task. Indeed, compared to images with dozens of channels, our data does
not seem to have much need to choose important channels, but it does not mean that this
operation is completely meaningless. It turns out that it can improve the accuracy. At
the same time, we can expect that, when the number of channels increases, the attention
mechanism on the channels will have a greater effect.

In addition to the band attention mechanism, we also added the spatial attention
mechanism. The accuracy of the network with the attention mechanism on the localization
task did not change much. However, the accuracy on the classification task improved. For
the task of building localization, the spatial attention mechanism was not very helpful,
and the original convolutional neural network was enough to achieve good results. For
classification tasks, the changes in the global characteristics of the image may affect the
classification results of its disaster types. According to Tobler’s First Law [25], “Everything
is related, but nearby things are more related than distant things”. The environment around
a building can also be used as one of the basis for determining its damage level. As defined
in Figure 1, if a house is surrounded by water/mud, no matter how it looks on the outside,
it will also be classified as damaged.

The localization and classification of disaster-damaged buildings is a technology that
supports post-disaster rescue. For this reason, the performance of the network on untrained
disaster images is critical. Therefore, we conducted research on the transferability and
robustness of the model. See Section 3.3. It can be concluded that our model performs
well on different types of disasters that have not been trained, but there is still room for
improvement. At the same time, the pre-trained model on the xBD dataset can be used
as the basis for future building disaster detection research without the need to train the
model from scratch. When using the trained model to process a pair of 1024 × 1024 images,
it takes no more than one second to get the result and can save valuable time during
disaster relief.

Tables 4 and 5 showed that the accuracy of minor damage in the four categories is
the lowest, which is related to the fact that the remote sensing image does not contain
information on the side of the building, such as the surrounding walls. The misjudgment
caused by this lack of information is also reflected in the disaster of the Beirut explosion. If
the related street view or oblique photographic image can be added, the accuracy of the
model can be further improved. Regarding the reasons for restricting the best accuracy, we
think there are roughly three points. One is the limitation of data; that is, the viewing angle
of the remote sensing image is limited as mentioned above. The second is the limitation of
the method; that is, the method used in this article is not perfect to adapt to this problem.
The third is the problem of level classification. Even experts can hardly determine the
damage level to some houses, because the damage itself is difficult to divide, leading to
errors in data calibration.

In terms of accuracy assessment, evaluating the disaster damage level is not based
on each pixel of the building as a unit but mostly based on an entire building as a unit.
Therefore, the indicators and loss values used during model training can be improved, such
as calculating the loss with a single building as a unit and training model with the loss.

5. Conclusions

Neural networks have been widely used in damaged building detection after disas-
ters [4,13,16,17,32,43,47]. However, most of the studies focus on the binary classification
about whether buildings collapsed or not, and most models give the same attention to each
feature, which makes it more difficult for some important features to play a full role. In
order to make the model focus on more important part for disaster-damaged building clas-
sifications, in this study, we described a variety of U-Nets using different backbones with
the attention mechanism. These networks can automatically detect damaged buildings in
satellite images and assess their level. We trained different networks using xBD and com-
pared their F1 scores on the verification set. Among them, the performance of SEresNeXt
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with the attention mechanism on two dimensions is the best, the overall F1 score reaching
0.787. For further improving the accuracy, we fused the results of four models and got
better results on the fusion model with the attention mechanism than all the other models,
and the overall F1 score reached 0.792. This result proves that the attention mechanism
is helpful for the detection of damaged buildings. In order to verify the performance of
models on untrained disasters, two disasters not in the training and verification sets were
selected to verify the model’s portability and robustness. The results showed that our
model had good robustness and portability on localization and classification tasks, but
there is still space for improvement.

A future research direction should consider specialized network training according to
disaster types to improve the accuracy of different types of disasters. The classification of
a building object can also be considered, which is more in line with the actual situation.
We plan to consider more types of disasters, especially large-scale and high-frequency
disasters. We also plan to study some technologies to make the model adapt to different
data sources, such as lower resolution remote sensing data, street view data from different
perspectives, etc.
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