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Abstract: In today’s oil industry, companies frequently flare the produced natural gas from oil wells.
The flaring activities are extensive in some regions including North Dakota. Besides company-
reported data, which are compiled by the North Dakota Industrial Commission, flaring statistics
such as count and volume can be estimated via Visible Infrared Imaging Radiometer Suite nighttime
observations. Following data gathering and preprocessing, Bayesian machine learning implemented
with Markov chain Monte Carlo methods is performed to tackle two tasks: flaring time series
analysis and distribution approximation. They help further understanding of the flaring profiles
and reporting qualities, which are important for decision/policy making. First, although fraught
with measurement and estimation errors, the time series provide insights into flaring approaches
and characteristics. Gaussian processes are successful in inferring the latent flaring trends. Second,
distribution approximation is achieved by unsupervised learning. The negative binomial and
Gaussian mixture models are utilized to describe the distributions of field flare count and volume,
respectively. Finally, a nearest-neighbor-based approach for company level flared volume allocation
is developed. Potential discrepancies are spotted between the company reported and the remotely
sensed flaring profiles.

Keywords: gas flaring nighttime observations; Bayesian machine learning; Gaussian process; distri-
bution approximation; nearest neighbor search; decision and policy making

1. Introduction

In recent years, flaring the produced natural gas from the oil wells has become a
commonplace practice for many operators. The United States is one of the top flaring
countries in the world thanks to the rise in shale reservoir development [1,2]. North
Dakota (Figure 1) is one of the top flaring states in terms of flared volume, as indicated
by data from the U.S. Energy Information Administration (EIA) [3]. The consequences
of flaring consist of energy waste and greenhouse gas emissions. It is desirable to obtain
quantitative flaring information and track varying trends from an environmental and
energy efficiency’s perspective. Since the statistics are mainly estimated and reported by
the different companies, inaccuracy and imprecision are inevitably introduced.
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Figure 1. Location map of North Dakota in the United States [4].

Satellite remote sensing provides another possibility for reaching the goal of quantify-
ing such information. For instance, the Visible Infrared Imaging Radiometer Suite (VIIRS)
can help detect flares during the nighttime. In this work, the processing algorithm VIIRS
Nightfire (VNF) [5] is leveraged for estimating flared gas volume. It specializes in detecting
and characterizing sub-pixel hot sources and can differentiate between biomass burning
and natural gas flaring [6]. The VIIRS data processing workflow is capable of picking up
flares whose areas are around 1 m2 (Figure 2). The main workflow is listed as follows:

1. Detection of hot pixels
2. Noise filtering
3. Planck curve fitting
4. Calculation of source area
5. Calculation of radiant heat

With radiant heat evaluated, a calibration was developed for estimating flared gas
volume [7], utilizing nation-level flaring data reported by Cedigaz [8]. In this paper, the de-
veloped calibration is applied to each detected flaring site in North America for estimation of
flared gas volume, flare temperature, etc. In other words, the VIIRS volumes estimated for
this work are largely based on the information carried by the Cedigaz reported figures.
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Figure 2. The nighttime combustion source detection limits of VIIRS processing workflow [9]. The
natural gas flare’s temperature is generally greater than 1500 K.

In this work, the flaring activities in the state of North Dakota are studied with machine
learning methods. Both the remote sensing interpretations and the state reporting constitute
the dataset. Specifically, the VIIRS estimated volumes and data from the North Dakota
Industrial Commission (NDIC) [10] are used. The NDIC is responsible for compiling the
company reporting and provides the final reporting on a monthly basis. It introduced a
gas flaring regulatory policy (Order 24665) in 2014 [11], with the goal of reducing flaring in
three aspects: flared volume of gas, number of wells flaring, and duration of flaring from
wells. The main aim of this work is therefore trying to answer the two questions below:

1. What insights can be drawn from the VIIRS observations that could lead to better
decision and policy making for the state government? Both the time series of a given
entity and the whole population of entities at a given time should be studied.

2. How good is the quality of the NDIC reporting (i.e., estimated and reported by different
companies), by using VIIRS as a benchmark? Although uncertainties are present in the
VIIRS estimates (due to the original quality of Cedigaz data as well as the temporal
sampling limitations of VIIRS [7]), they are treated as the baseline.

Machine learning methods are appropriate candidates for addressing the inferential
questions above, since useful structures needs to be distilled from the imperfect dataset.
Throughout this paper, the effectiveness of a full Bayesian approach has been observed in
learning models from gas flaring remote sensing data. The interpretability of the Bayesian
approach makes it more advantageous in a high-stakes decision-making scenario (such as
whether to revise gas flaring regulations) than some black box machine learning methods [12].
This choice, being a highlight of this paper, is not common in previous endeavors and
deserves wider usage, especially when both the remote sensing observations and company
reporting need to be studied or reconciled. Another contribution of this study is that the
development of a suite of models, with both parametric and nonparametric techniques,
provides guidance on how to extract insights from various angles.
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2. Materials and Methods

Three types of data: VIIRS estimations (flare volumes and counts), NDIC monthly
production reports, and shapefiles for North Dakota are collected for this research. The VI-
IRS flare inventory is compiled by the authors following the workflow outlined earlier
while leveraging the calibration developed by Elvidge et al. [7]. This inventory includes
monthly flare detection records in North America from March 2012 to December 2018 (both
included) with the corresponding:

• Timestamps showing the specific month
• Latitudes and longitudes in WGS 84 coordinates
• Flared volume estimations in billion cubic meters (bcm)

The monthly production reports from May 2015 to December 2018 (both included) which
contain flaring information are downloaded from the NDIC [10]. There is one spreadsheet
per month (starting from May 2015); each row corresponds to a well which was active in
that month, and columns are for various types of information such as flared gas volume
(estimated and reported by company), latitude/longitude, and field name.

The shapefiles for the counties and fields in North Dakota are downloaded from the
NDIC GIS Map Server [13]. All the shapes are polygons described in NAD 27 coordinates.
The shapefiles are for reverse geocoding the VIIRS detection locations to readable addresses,
i.e., whether a flare is in North Dakota and which field it is located in. Thereafter, the
flaring statistics from VIIRS and NDIC can be compared and contrasted at the state and
field levels for a given time window.

With the help of GeoPandas [14], the procedures for extracting county and field names
are listed as follows:

1. Store the VIIRS observations as a geospatial data object, with their original coordinates
in WGS 84.

2. Store the shapefile as a geospatial data object, with its original coordinates in NAD 27.
3. Transform all the geometry coordinates in the shapefile to WGS 84.
4. Perform a spatial join of the two data objects to obtain the field information for each

flare, if a field and the flare share any boundary or interior point.

The VIIRS records that are within the state of North Dakota are located (Figure 3a)
and chosen for the study. Both the NDIC well map and VIIRS flare map showing the study
area are graphed and presented in Figure 3b.

In this work, Bayesian machine learning is utilized to develop the data-driven models
for the purpose of insights extraction and decision/policy making. In a nutshell, it utilizes
probability theory to set up a formal procedure for learning from data [15]. In a certain
learning task, Bayesian models provide full joint probability distributions p(D, θ) over
observable data D and unobservable model parameters θ. The goal is to find the posterior
distribution p(θ | D), i.e., a probability distribution of the parameters conditioned on the
historical observations. Once the posterior is obtained, depending on the parameter and
model’s interpretability, the developed model with a set of highly probable parameter
values can be deployed to make inferences or predictions. The posterior is derived through
Bayes’ theorem:

p(θ | D) = p(D | θ) p(θ)
p(D) (1a)

=
p(D | θ) p(θ)∫

p(D | θ′) p(θ′)dθ′
(1b)

where p(D | θ) is the likelihood or observation model which denotes how likely the data
are when conditioned on a certain set of parameters, and p(θ) is the prior which models
the probability of the parameters before observing any data. Thus, the prior is used to
encode domain expertise.
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(a) North Dakota county shapes (gray) overlaid with VIIRS flare locations (blue).
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NDIC well map
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(b) The NDIC well map (left) and VIIRS flare map (right) for the same study area in North Dakota.

Figure 3. Location maps illustrating the study area.

Many of the integration problems central to Bayesian analysis, including the denom-
inator in Equation (1b), are analytically intractable. A category of sampling algorithms,
known as Markov chain Monte Carlo (MCMC), can be applied to approximate these quan-
tities [16], helping achieve the goal of computing the posterior distributions. The idea
is to construct Markov chains with specific target distributions, and allowing the chains
to traverse the sample space while collecting random samples. The integral can then be
approximated using the Monte Carlo principle.

Hamiltonian Monte Carlo (HMC), originally proposed in [17], currently outperforms
the other algorithms in the MCMC category and is chosen as the main sampling strategy
in this paper. Specifically, the No-U-Turn Sampler (NUTS) introduced in [18], which
is an extension to HMC, is employed for sampling from posterior distributions. In the
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following sections, all the machine learning studies are performed under the same Bayesian
framework; however, the probabilistic building blocks (i.e., prior and likelihood) are
bespoke. The majority of this work is implemented by leveraging PyMC3 [19], which
encapsulates the NUTS sampler.

3. Results

In this section, three scenarios are studied and the results are presented correspondingly:

1. Time series analysis, where the temporal structure is harnessed for exploring the
patterns and trends in flaring performance;

2. Cross-sectional data analytics, where the VIIRS observations collected for one point
or a period of time (such as a certain month or quarter) are summarized for distribu-
tional insights;

3. Company level monitoring and analysis, where flare ownership connecting detections
with companies is established. The NDIC and VIIRS reporting for a given company
can then be compared and contrasted.

3.1. Flaring Time Series Analysis

For the task of inferring flaring strategies and behaviors, the flaring data should be
inspected from the time series’ perspective. To recognize the patterns and trends from
the time series where measurement and estimation errors are present, Gaussian process
(GP) makes principled handling of uncertainty and interpretation possible [20,21] and is
employed in this section. A GP can be viewed as a distribution over functions. It is well
established as a Bayesian machine learning method, and many data analytics methods
such as kriging and Kalman filters correspond to specific forms of GP [22].

GPs can help organizations such as the NDIC to determine whether a given entity
meets the flaring reduction targets or not, in a entirely probabilistic framework (e.g.,
under a predefined confidence level). For the learning tasks in this paper, inferences of the
underlying latent processes are conducted directly in the function space. GP is utilized as a
prior for the unknown functions. A GP is completely specified by its mean function m(x)
and kernel k(x, x′), and the latent function f (x) distributed according to a GP is denoted by:

f (x) ∼ GP
(
m(x), k(x, x′)

)
, (2)

where x and x′ are the inputs, and the input space X ⊆ R1 is the time domain. GP
denotes the Gaussian process. In this work, the mean functions are always set to be zero.
The kernels adopted include the Matérn kernel with ν = 5/2, the standard periodic kernel,
and the white noise kernel.

3.1.1. Modeling VIIRS Detection Count

The number of satellite-detected flares reflects flaring magnitude in terms of emerging
combustion sources. Since the satellite could miss some flaring events due to resolution and
measurement errors, the inference task is to investigate how the “true” count varies over a
given time period. By exploiting GP, the model is specified through Expressions (3a)–(3f)
(numbered as Model 3). Essentially, the latent process is modeled using a Poisson process
whose intensity is assigned a GP prior:

` ∼ Gamma(2, 1) (3a)

η ∼ Half-Cauchy(5) (3b)

k = η2 × kMATÉRN52(x, x′; `) (3c)

f ∼ GP(0, k) (3d)

λi = exp( f (xi)) (3e)

Ci ∼ Poisson(λi) (3f)
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where:

` is the lengthscale for the Matérn kernel;
η is the marginal deviation controlling the latent functions’ magnitudes in the output

space;
k is the kernel for the GP;
f is the latent process;
λi is the flaring intensity (unobserved “true” count) of month i. Since λi is always

positive, the natural exponential function is applied to f ;
Ci is the reported count from VIIRS in month i.

Following the reverse geocoding discussed earlier, the model is tested with the data
from the Blue Buttes Field (Figure 4), which is a major producing field [23]. The VIIRS
observations are used which trace back to 2012. The posterior distributions (defined in
Equation (1a) for ` and η) and trace plots (showing the sampling progress for ` and η) are
displayed in Figure 5. To test for model convergence, four Markov chains are set up to run
in parallel. Their sampling progresses are plotted with different colors, and it is clearly
shown that well mixing and convergence of the four chains are achieved. This indicates
that the model is confident with its learning outcomes (characteristics of the field), using
the observations from the field. In other words, the inference results are valid and robust.
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Figure 4. Location map of the Blue Buttes Field (highlighted in blue) in North Dakota, which is
graphed using the information from the field shapefile.

The posterior predictive samples for the underlying process of flare count (λi) are
demonstrated in Figure 6, which depicts the trend distinctly. The colored ribbons have the
coverage below for the posterior samples:

• The lightest ribbon (the widest interval for a certain x) represents the 1st to 99th percentile;
• The darkest ribbon (in the center for a certain x) represents the 49th to 51st percentile.

In addition, thirty samples (inferred functions) are drawn from the GP posterior and
plotted as thin lines. Neither the inferred main trend nor any of the sample functions
go through all of the observed data points, indicating that the outcome is not overfitting.
Because the observations are never generated in a noise-free environment, any model that
fits perfectly to the data are overfitting and fragile. By employing the utility of full Bayesian
inference in training a GP model, the inference results reveal the most dominant trend that
is compatible with both the model assumptions and the imperfect data.
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Figure 5. Posterior distributions (left column) and trace plots (right column) for the Blue Buttes Field detection count
model. Well mixing and convergence of the Markov chains are achieved.
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Figure 6. Posterior predictive samples showing the VIIRS detection count variations at the Blue Buttes Field. Blue points
stand for the observed data while red lines represent the posterior samples.

Reducing the number of flaring wells is one of the three goals of the regulatory policy
introduced by the NDIC [11]. However, a flaring device is sometimes associated with more
than one wellhead, leading to uncertainties in the company reported flaring well count.
Since the detection count can be used as a surrogate for the well count, this model helps
infer whether a given entity makes efforts to achieve the target. The state level trends can
also be revealed if the corresponding data are fed into the model: the posterior distributions
and trace plots are displayed in Figure 7, and the inferred varying trends are demonstrated
in Figure 8.

Through the posterior predictive ribbons, important patterns are uncovered; for ex-
ample, one peak exists around summertime every year. This could be due to the lack of
demand for natural gas in summer and therefore more flaring activities are spotted.

By employing a Bayesian approach, both flexibility (for automation) and interpretabil-
ity (for modification) are obtained in the model building process. For the former, with the
same model specification, the state government can gain insights into the difference be-
tween certain fields and the whole state, with their corresponding dataset. This makes it
possible to automate the analysis for every entity in each level. In the case of interpretability,
as an example, the constructed model incorporating a Poisson likelihood can serve as the
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first modeling attempt because the Poisson distribution has only one parameter. If the
state government would like to consider the effects of overdispersion, Expression (3f) can
be changed to other observation models such as the negative binomial likelihood. This
interpretability of the developed model (due to its generative nature) is the reason why it
is more advantageous than other approaches such as smoothing splines.
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Figure 7. Posterior distributions and trace plots for the North Dakota detection count model. Well mixing and convergence
are achieved. Note the differences between these results and those in Figure 5, both of which are based on the same priors
and likelihood, demonstrating the model specification’s wide applicability.
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Figure 8. Posterior predictive samples showing the VIIRS detection count variations in North Dakota. Blue points stand for
the observed data while red lines represent the posterior samples.

3.1.2. Modeling Scale Factor between VIIRS and NDIC

Estimated flared gas volumes are provided via both NDIC and VIIRS. Data from the
two sources are visualized in Figure 9, which demonstrate a positive association. Because the
satellite imagery processing is based on a consistent workflow, the scale factor β between
VIIRS and NDIC (assuming NDIC = β×VIIRS) can serve as an indicator of whether the
NDIC reporting is consistent, when the time series of a given entity is inspected and the
latent process of β is inferred. The model for inferring the scale factor variations is specified
through Expressions (4a)–(4n) (numbered as Model 4):
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`MAT ∼ Gamma(8, 2) (4a)

ηMAT ∼ Half-Cauchy(5) (4b)

T ∼ N (12, 1) (4c)

`PER ∼ Gamma(4, 3) (4d)

ηPER ∼ Half-Cauchy(5) (4e)

ν ∼ Gamma(2, 0.1) (4f)

σ̂2 ∼ Half-Cauchy(5) (4g)

kMAT = η2
MAT × kMATÉRN52(x, x′; `MAT) (4h)

kPER = η2
PER × kPERIODIC(x, x′; T, `PER) (4i)

kWN = kWHITENOISE(x, x′; δ = 1e−6) (4j)

f ∼ GP(0, kMAT + kPER + kWN) (4k)

βi = exp( f (xi)) (4l)

µi = βi ×VIIRSi (4m)

NDICi ∼ Student-t(ν, µi, 1/σ̂2) (4n)

where:

`MAT is the lengthscale for the Matérn kernel;
ηMAT is the marginal deviation for the Matérn kernel;
T is the period for the periodic kernel;
`PER is the lengthscale for the periodic kernel;
ηPER is the marginal deviation for the periodic kernel;
ν is the degrees of freedom for the Student-t likelihood;
σ̂2 controls the inverse scaling parameter for the Student-t likelihood;
kMAT is the Matérn kernel;
kPER is the periodic kernel;
kWN is the white noise kernel;
f denotes the latent process, which is distributed according to a GP whose kernel is

the sum of three kernels;
βi is the underlying scale factor between VIIRS and NDIC of month i. Since this scale

factor is bounded to be positive, the natural exponential function is applied to the
latent process;

VIIRSi is the VIIRS reported volume of month i;
µi denotes the unobservable “true” flared volume of month i;
NDICi is the NDIC reported volume of month i, which is modeled using a Student-t likelihood.

The justification for choosing a Student-t likelihood is to make the model specification
be robust to noisy data points with potentially many outliers. Currently, companies have
to estimate or measure the flared volume by their own procedures, compile the figures,
and submit the reports. In this process, inaccuracies and occasional errors are inevitable.
The heavy tail of Student’s t-distribution makes it an excellent candidate to manage those
circumstances. Similarly, adopting the half-Cauchy priors as well as GP as a nonparametric
regression technique makes the system robust and generic to as many entities and situations
as possible. The reason behind including a periodic kernel is to scrutinize if any seasonal
patterns exist. By maintaining a full Bayesian workflow, this choice lets the data speak for
itself (whether seasonality prevails or not) instead of compelling seasonality to be present
in the final inference results.
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Figure 9. Visualizations of both the NDIC and VIIRS observations at the state level. The left figure presents the time series.
The right figure displays the scatterplot using each month’s data points.

With the state level reporting, the macroscopic consistency of the NDIC data is exam-
ined by using the VIIRS as a benchmark. The posterior distributions and trace plots are
displayed in Figure 10. The inferred latent process of the scale factor variations is visualized
through the posterior samples (Figure 11). In general, the NDIC reported volumes are
less than the VIIRS reported quantities. It is only when the overall flaring intensity was
small (manifested by the smaller point size) that the NDIC reported volumes are larger
than VIIRS. More interestingly, it becomes apparent that the scale factor βi always declines
within every year. The inferred process from the second quarter to the third quarter can
be envisioned as a “seesaw,” where July is the middle pivot point and the months after
July always observe a falloff. Within a given year, the NDIC reported volumes might still
increase; however, the scale factor decreasing suggests that much greater flaring magnitude
was captured by the satellite sensors.
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Figure 10. Cont.
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Figure 10. Posterior distributions and trace plots for the North Dakota VIIRS-NDIC scale factor model. Well mixing and
convergence are achieved.
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Figure 11. Posterior predictive samples showing the scale factor variations of North Dakota. Blue points stand for the observed
data while red lines demonstrate thirty posterior samples. Larger points indicate greater flaring magnitude as observed by VIIRS.

Since the state level statistics were compiled based on the company reports, it is
interesting to study whether the seasonal behavior is universal across all the entities.
Indeed, if data from the Blue Buttes Field are used to fit the same model, quite consistent
scale factors are inferred. The posterior distributions and trace plots are displayed in
Figure 12. The trend of scale factor variations (βi) is visualized in Figure 13, where no
apparent seasonal patterns are picked out by the inference process. The large uncertainties



Remote Sens. 2021, 13, 941 13 of 28

around early 2016 are possibly caused by the truncation effects instead of reporting quality
issues. That is, when the flares become intermittent and infrequent (could be due to sudden
increase of gas consumption on site, rising gas prices, anti-flaring regulations, etc.), they
are easily missed by the satellites. Based on the discussions above, the state government
should have a good reason to believe that some entities might have underreported their
flared volumes, especially after midyear. By fitting the model to other major producing
fields’ observations, the ones which exhibit the seesaw behaviors can be determined.
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Figure 12. Posterior distributions and trace plots for the Blue Buttes Field VIIRS-NDIC scale factor model. Well mixing and
convergence are achieved. Note the differences between these results and those in Figure 10, both of which are based on the
same priors and likelihood, demonstrating the model specification’s wide applicability.
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Figure 13. Posterior predictive samples showing the scale factor variations in the Blue Buttes Field. Blue points stand for the
observed data while red lines denote thirty posterior samples. Larger points indicate greater flaring magnitude as observed
by VIIRS.

3.1.3. Predicting NDIC Reported Volume

Once the model hyperparameters are learned, GP is fully capable of making predic-
tions. This section tackles the problem of predicting the NDIC reported volume based on
the forecasted scale factor to be applied on VIIRS. After the workflow for rapid satellite
detection/estimation becomes available (i.e., new interpretations become available on a
monthly basis), this model makes it possible for the flared volume being estimated before
company reports are received and compiled (which usually takes two months).

The predictions of the scale factor variations are demonstrated in Figure 14. The widen-
ing percentile ribbons show that the seasonal patterns might take place again and the
uncertainties are large. If point predictions as opposed to prediction intervals are required,
the posterior mean, mode, or median can be employed to construct the “best” function.
The intervals, however, showcase the difficulties in predicting the future and the necessity
of quantifying the uncertainties.
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Figure 14. Posterior predictive samples showing predictions of the scale factor for the next six months. Blue points stand
for the observed data while red lines denote thirty posterior samples. Larger points indicate greater flaring magnitude as
observed by VIIRS.
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3.2. Distribution Approximation

Besides time series modeling, flaring data can also be studied in a cross-sectional
setting. More specifically, this section addresses the problem of summarizing the flaring
associated quantities’ distribution among all the fields, for a given point of time (e.g., month
or quarter). The dataset is unlabeled in this case:

U = {x1, x2, . . . , xN}, (5)

where xi, i = 1, 2, . . . , N, is the observation for the i-th field. The learning target is a
conditional probability distribution Pθ(x | z), where θ are the unknown parameters and z
is some latent structure.

The practical scenarios for such cross-sectional studies include profile comparison
with previous times and summarizing the population whilst looking for hidden groups.
The inference results, in a form of distributional insights, will be informative for the state
government to gain further understanding of the status quo and develop policies.

3.2.1. Modeling VIIRS Detection Count

In Section 3.1.1, the time series of VIIRS detection count for a given field is the subject of
modeling. This section addresses the problem of approximating the distribution of a given
month’s count data for all of the fields. Because non-negative integer values are analyzed,
the four likelihoods below are compared for several randomly selected months’ records:

1. Poisson
2. Negative binomial
3. Zero-inflated Poisson (ZIP)
4. Zero-inflated negative binomial (ZINB)

Zero-inflated models are experimented with because many fields in North Dakota did
not show up on VIIRS in a given month. Through posterior predictive checks, it is found
that the negative binomial model provides the best approximation to the data generating
process, and thus is employed in this work. It is specified through Expressions (6a)–(6c)
(numbered as Model 6):

µ ∼ Gamma(2, 1) (6a)

φ ∼ Exponential(1) (6b)

Cj ∼ NegBinomial(µ, φ) (6c)

where Cj is the detection count for the j-th field. Because the negative binomial distribution
characterizes a Poisson random variable whose mean is distributed according to a gamma
distribution, the learned parameters are very interpretable:

• µ indicates the mean intensity from the perspective of flare count, analogous to the
interpretation of a Poisson’s mean. The larger the value of µ, the greater number of
combustion sources are present on average.

• φ is the overdispersion parameter indicating the diversity of the fields in North Dakota.
Specifically, µ2/φ is the additional variance above that of a Poisson with mean µ.
The smaller the value of φ, the more fields with a huge number of flares exist.

To showcase this model’s performance in learning from data, the observations from
October 2018 are collected. There are 506 producing fields altogether. The histogram of the
detection count for all of the fields is displayed in Figure 15.
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Figure 15. A histogram for the distribution of the field detection counts from October 2018. There are
plenty of zeros (more than 350) and a few fields have comparatively large detection counts (greater
than 20).

After fitting Model 6, the posterior distributions and trace plots are displayed in
Figure 16. The parameter estimates are presented in Table 1.
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Figure 16. Posterior distributions and trace plots for the field detection count distribution model. Well mixing and
convergence are achieved.

Table 1. Parameter estimates of field detection count distribution.

Parameter Variable Point Estimate 90% Credible Interval

µ Intensity 1.005 (0.814, 1.200)
φ Diversity 0.168 (0.135, 0.202)

The point estimate for the intensity µ is remarkably small (µ̂ ≈ 1), which is due to the
model being fed with a large number of zeros. Because the tail of the histogram reaches
far beyond µ̂ (Figure 15), posterior predictive checks are conducted to examine Model 6’s
compatibility with the data.

Figure 17 visualizes the results of the check, i.e., the histograms for the original observa-
tions and for all of the posterior predictive simulations are plotted. Each set of the possible
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parameter values (µ and φ) is used to generate one synthetic dataset for the fields in North
Dakota. There are 12,000 datasets in total, since each of the four Markov chains is set up for
3000 iterations. Every individual histogram is graphed using an unfilled line chart.
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Figure 17. Histograms for the distribution of the field detection counts from October 2018. Blue:
original data observed by VIIRS. Gray: posterior predictive simulation results obtained with Model 6.
The simulation results are plotted using gray with transparency, such that the darker gray indicates
where the majority of the simulations fall into.

Since there does not exist any obvious discrepancies between the raw observations and
simulation results, the model is found to be compatible with the dataset. To closely examine
the tail of the distribution where the count becomes larger than zero, the y-axis is clipped
for a zoomed-in view (Figure 18), in which some disagreement is noticed. A rigidity of this
model is that it would still be surprised by a high detection count such as Cj ≥ 20, even
with the relatively large overdispersion effects (φ̂ ≈ 0.2). On the whole, the explainability,
efficacy, and simplicity of Model 6 make it a recommended choice for summarizing the
detection count distribution. The practical use cases are discussed in Section 4.2.
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Figure 18. Histograms for the distribution of the field detection counts from October 2018, with the
y-axis clipped to closely inspect those counts which are greater than or equal to one.
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3.2.2. Modeling Flared Volume

Apart from detected flare count, estimated flared volume provides another critical facet
of the flaring landscape. In this section, a distributional summary of the VIIRS estimated
flared volumes for various fields is acquired. Specifically, all the 152 fields’ cumulative flared
volumes from the fourth quarter of 2018 are assembled for investigation. The original absolute
volumes in bcm are greatly skewed (Figure 19). Consequently, the order of magnitude of the
flared volume is computed for each field and then used for study:

Li = log(Fi), (7)

where Li is the magnitude of flared volume, and Fi is the VIIRS reported volume in bcm,
both of which belong to the i-th field. Base e is used for the logarithm. Figure 20 exhibits
the univariate distribution of the magnitudes exploiting rug plot, histogram, and kernel
density estimate (KDE).
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Figure 19. Histogram for the distribution of the field flared volumes from the fourth quarter of 2018.
Most of the fields have comparatively small-scale flaring activities (e.g., less than 0.005 bcm flared),
while a few fields have volumes greater than 0.1 bcm.
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Figure 20. Distribution of the field flared volume magnitudes from the fourth quarter of 2018. The rug
plot labels the value for each field. The curve displays a Gaussian KDE.
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All three visualization tactics agree that a single Gaussian would be a poor approxi-
mation to the underlying density. Therefore, a Gaussian mixture model (GMM) is utilized
to represent the population. The number of components K needs to be specified and
∀K ∈ {2, . . . , 7} are assessed. Larger numbers of components are avoided for better in-
terpretability of the modeling results. The mixture model is defined through Expressions
(8a)–(8h) (numbered as Model 8):

α = (α1, . . . , αK) = 6 · 1K (8a)

w ∼ Dirichlet(α) (8b)

l1 = min{L1, . . . , Ln} (8c)

l2 = max{L1, . . . , Ln} (8d)

µ̃k = l1 + (k− 1)
(

l2 − l1
K− 1

)
, k = 1, . . . , K (8e)

µk ∼ N (µ̃k, 2), k = 1, . . . , K (8f)

σk ∼ Half-Normal(2), k = 1, . . . , K (8g)

Li ∼
K

∑
j=1

wjN (µj, σj) (8h)

where:

α is the vector of concentration parameters for the Dirichlet distribution;
w is the vector of mixture weights (i.e., mixing proportions) which is assigned a

Dirichlet prior. This prior with every value inside α being 6, is a weakly informa-
tive prior, expecting any wk inside w could be greater or less than the others;

l1 and l2 are the lower and upper bound for {Li}n
i=1, respectively;

µ̃k is the prior for the location of the k-th mixture component, and {µ̃k}K
k=1 represent

the K evenly spaced points in [l1, l2];
µk is the mean for the k-th Gaussian component;
σk is the standard deviation for the k-th Gaussian component.

For each of the six different K’s, well mixing and convergence of the Markov chains
are achieved. The inference results for different number of components are visualized
through Figure 21, where both the inferred mean Gaussian components and fifty posterior
samples are graphed.

By inspecting the similarities between the posterior mean density and the KDE, it
is evident that the multimodal features are described effortlessly by using a mixture of
Gaussians. Although a larger K (e.g., K = 6 or K = 7) yields more resemblances between
the posterior density and KDE, more fluctuations and stochasticity are manifested in the
posterior samples, suggesting overfitting. The widely applicable information criterion
(WAIC) [24] is used to choose the best K. WAIC provides an estimate for the out-of-sample
KL divergence [25], and therefore a lower value is better. The comparison results for the
six models are summarized in Figure 22.

Considerable overlaps exist for all of the models when the standard error is taken into
account. Considering that K = 2 yields the most parsimonious model with the smallest
WAIC, the two components GMM is chosen for this dataset following Occam’s razor.
The implications of this are discussed in Section 4.3.
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Figure 21. GMM inference results with different K’s. The thick blue line illustrates the posterior mean density function.
The light blue lines represent fifty random posterior samples. The dashed lines mark the inferred mean Gaussian components.
The red curve displays the KDE.
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Figure 22. WAIC values with different K’s. The open points stand for the WAIC values. The long
horizontal line presents the standard error for each WAIC. Standard error of the difference in the WAIC’s
between each model and the top-ranked one is illustrated using the short line with a triangle on it.
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3.3. Company Level Monitoring and Analytics

In previous sections, the satellite-detected flaring statistics are compiled and studied
at the state and field levels. For the state government to obtain more granular insights in
a regulatory context, it is beneficial to achieve company level monitoring and analytics
by making use of remote sensing data. Currently, only the latitudes and longitudes of
company wells (points) are available through the NDIC. Due to the lack of a company leases
(polygons) shapefile, a nearest-neighbor-based approach is developed and summarized as
Algorithm 1. Essentially, the satellite-detected flares are assigned to the closet companies,
based on the well locations and corresponding time window. In the algorithm, the function
SearchClosestCompany(·) returns the closest company (OPj) for every detected flare and
the calculated distance (dj) between them. Haversine distance is computed and thus the
Earth radius (RE) is required as an input. For speedup on the search, a ball tree is leveraged
in the function implementation.

Due to the high-stakes nature in the assigning process, some logics are put in place
for deciding whether to keep or drop the company assignment. The design is as follows:
the assignment is immediately stored or rejected, when dj is significantly small or large,
respectively. The assignment for the case of dSECURE ≤ dj ≤ dCUTOFF will be kept only when
the flare and company are situated on the same township, range, and section.

Algorithm 1: Nearest-Neighbor-Based Flare Owner Assignment
Input: VIIRS and NDIC reporting in WGS 84 coordinates, township/range/section shapefiles for North Dakota,

dSECURE, dCUTOFF, RE
Output: companies assigned to VIIRS detections

1 n← number of months
2 for i← 1 to n do
3 VIIRSi ← the i-th month’s observations from VIIRS
4 NDICi ← the i-th month’s reportings from NDIC
5 (OP, d)← SearchClosestCompany(VIIRSi, NDICi, RE)

6 m← number of records in OP or d
7 for j← 1 to m do
8 OPj ← the closest company found on the j-th record
9 dj ← the distance between the flare and the closest company, for the j-th record

10 if dj > dCUTOFF then
11 drop OPj

12 else if dj < dSECURE then
13 keep OPj

14 else
15 if township/range/section agree then
16 keep OPj

17 else
18 drop OPj

19 end
20 end
21 end
22 end
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The effectiveness of Algorithm 1 is tested with the VIIRS and NDIC flaring data, using
the inputs below:

dSECURE = 300 m (9a)

dCUTOFF = 800 m (9b)

RE = 6371 km (9c)

Some companies, for example Company A and Company B, manifest strong asso-
ciations between the VIIRS and NDIC volumes (Figure 23). A linear model (NDICi =
α + β× VIIRSi) is fitted by ordinary least squares, the results of which are presented in
the legend. Because the intercepts are close to zero, these companies’ reporting show
consistency with the VIIRS reporting up to a scale factor. There exists diversity in the scale
factors among the companies.
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Figure 23. Examples of good fits between the NDIC and VIIRS reported volumes, at the company level.

However, some companies, for example Company C and Company D, are found to
show discrepancies between the VIIRS and NDIC volumes (Figure 24). Through close
examination of the scatterplots, the poor fits of the linear model are partially caused by
some data points being “pushed down” toward the x-axis. The company time series are
plotted (Figure 25) and indicate that the pattern is caused by the company-reported volumes
leveling off for certain periods of time. The VIIRS time series show that there were stronger
variations of flaring intensity for those times. The reporting from Companies A and B,
however, demonstrates better match with the remote sensing observations (Figure 26).
By employing the introduced workflow, a flag can be raised when these types of datasets
are present, achieving the first step in anomaly detection for company profiles. Considering
the possibility of misassigning the satellite-detected flares to the companies, in order to
nail down any decisions with regard to company reporting quality, great cautions must be
applied, which are discussed in Section 4.4.
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Figure 24. Examples of poor fits between the NDIC and VIIRS reported volumes, at the company level.

The company-reported volumes
leveled off at small values.
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reported zero flaring.

(b) Company D

Figure 25. Time series of the two example companies whose reporting show discrepancies with the VIIRS records. The times
during which the company-reported data were significantly different from the satellite detections are annotated.
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Figure 26. Time series of the two example companies whose reporting shows a good match with the VIIRS records.
For Company A, the two time series have the same dominating trends and are highly correlated (Figure 23a).

4. Discussion

This section discusses the implications and potential use cases of the Bayesian learning
models, as well as the caveats in applying nearest neighbor analysis to the companies.

4.1. GP’s Attractive Traits

The Gaussian process models demonstrate full capability of harnessing the temporal
structure from flaring time series at different levels. This provides a huge potential for
extracting insights from noisy monthly data streams. In fact, the elegant properties of GP
make it a natural choice to tackle a family of problems which share the challenges and
requirements below:

1. The observations contain much noise, for example, the estimation and measurement errors.
In the context of flaring data, companies estimate and self-report the volumes; satel-
lites inevitably miss some events or overestimate some flares’ duration. Nonetheless,
knowledge about the underlying “true” process (i.e., the dominating trend) is de-
sirable in many decision-making situations and helps with anomaly detection from
flaring profiles.

2. The observations for a given entity are time series.
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The temporal structure is intrinsic to the dataset, and observations collected at different
times are not independent samples. For example, the adjacent months’ observations
are typically strongly correlated, while the distant months (such as five years apart)
might be weakly associated.

3. A probabilistic model is required.
When inferring the latent process, a posterior distribution of probable functions is
preferable over one “best” function (for instance, the best gradient boosting regressor
or the best neural network classifier under a certain type of performance measure).

4. A generic framework that embraces automation is beneficial.
With more than 200 companies and 500 producing fields in North Dakota, Bayesian
nonparametric models are more advantageous than parametric techniques for auto-
mated insights extraction, e.g., computing every entity’s KPIs based on the inference
results. In a parametric setting, each entity needs its own form of parametric model
and the underlying implications could be contrasting, which poses challenges to the
development of automation pipelines.

4.2. Use Cases of Negative Binomial Model

Model 6 is believed to be valuable in the two use cases below:

1. µ and φ for the most recent month can be estimated via training Model 6 with the
latest VIIRS observations. A comparison study can be conducted by comparing the
parameter estimates with those from earlier times, in light of uncertainties character-
ized by the corresponding credible intervals. Concerning the example in Section 3.2.1,
the inference results can be compared with either August/September 2018 or October
2016/2017. From the study, it helps answer questions such as whether more fields
with huge flaring magnitude are identified (indicated by a smaller φ), or if there are
more detected flares on average (indicated by a larger µ).

2. Following the model training process, it is advisable to carry out the posterior pre-
dictive checks to identify any discrepancies between the raw observations and simu-
lations, the results of which are exhibited in Figures 17 and 18. The fields that show
large deviations from the simulated observations, especially those on the far tail (e.g.,
Cj ≥ 20), are worth further investigation. For instance, to inspect whether the “anoma-
lies” in each month are random fields from the population or almost never change for
years. Knowledge is acquired regarding how the grouping of fields behave.

4.3. GMM for Clustering Applications

The Gaussian mixture model describing the field volume distribution can also be viewed
from a generative process perspective, i.e., each data point Li (defined in Equation (7)) is
assumed to be generated by one mixture component. The mixture model is a natural candidate
for solving clustering problems, in that every observation Li belongs to one of the K clusters,
each with its own set of parameters N (µk, σk). In the context of a probabilistic model,
a sensible choice is to assign a data point to the cluster with the highest posterior probabilities.
For the 2-component GMM developed in Section 3.2.2, the probability that a particular
observation x belongs to cluster one (z = 1) can be calculated from Bayes’ theorem:

p(z = 1 | x) =
p(z = 1)N (x | µ1, σ1)

p(z = 1)N (x | µ1, σ1) + p(z = 2)N (x | µ2, σ2)
, (10)

where each part of the equation is obtainable from the posterior (e.g., using the posterior mode).
Regarding the interpretations of the found clusters, they can be directly mapped to the

concepts of major and minor flaring fields. For the purpose of decision- and policy-making,
it would be interesting to find out which leads to these clusters. In this example, if some
fields exist that continuously stay in the major flaring group, it provides insights into
optimization of the gas processing facilities. That is, the capacities and locations of the new
plants should be designed in consideration of those fields’ conditions.
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4.4. Warnings/Limitations Regarding Inconsistencies Discovered in Company Level Data

Whenever there is a necessity to assign flaring volume at the company level, one must
keep in mind that it can be an extremely challenging process. Despite the fact that the VIIRS
processing workflow is able to detect flares of 1 m2 [9], the VIIRS pixel footprint is much
larger in size. Because the latitude and longitude of the pixel center is used as flare location,
when multiple companies’ sub-pixel combustion sources neighbor each other, errors will
be introduced in the assigning process. Furthermore, since VIIRS has a temporal resolution
of 0.5 day, more errors are inevitable when companies turn on/off flaring multiple times
through the day. These are the major limitations in the current VIIRS imagery processing
workflow and thus are inherent in the company volume assigning workflow.

With respect to the company reporting quality in North Dakota, the following three
aspects must be taken into consideration. First, compared with Texas and New Mexico,
North Dakota’s state reporting shows closer agreement with the NOAA estimations [26].
Second, the existing methods available to the companies for estimating flaring volumes
are fraught with accuracy issues [27]. Third, the VIIRS flare inventory used in this paper
was mainly calibrated by the previous dataset such as the Cedigaz reporting, which has its
own errors and uncertainties; therefore, some discrepancies between the NDIC and VIIRS
reporting are unavoidable.

5. Conclusions

In summary, Bayesian machine learning implemented by Markov chain Monte Carlo
methods is very effective at extracting insights from gas flaring nighttime observations.
The models developed in this paper are listed in Table 2. They are all tested with real
flaring data in North Dakota and can guide future inference attempts at the state and field
levels. Since both stochastic uncertainties (due to measurement and estimation errors) and
parametric uncertainties (due to lack of knowledge in the data generating process) are
properly characterized, the obtained inference results are robust and insightful for high-
stakes decision-making. The Bayesian machine learning approach should be adopted in the
distillation of useful structure from the noisy measurements and reporting.

Table 2. Models developed in this paper.

Numbering Target of Modeling Page

Model 3 VIIRS detection count as time series 6
Model 4 Scale factor between VIIRS and NDIC as time series 9
Model 6 VIIRS detection count distribution for fields 15
Model 8 VIIRS volume distribution for fields 19

More specific conclusions are listed as follows:

1. Gaussian processes are proved to be very successful in inferring the latent process from
flaring time series. They act as a generic framework for tackling the tasks including demon-
strating field flaring approaches, evaluating the progress in achieving the goals of the
North Dakota regulatory policy (Order 24665), and predicting the state reported volumes.

2. The VIIRS nighttime observations serve as an important source of information for
benchmarking and evaluating flaring performance. However, when the flaring mag-
nitudes are small (e.g., many sporadic flares exist), the satellite estimation might be
affected by the truncation effects, characterized by the distinctive scale factors between
the NDIC and VIIRS reporting.

3. From the perspective of distribution approximations, the negative binomial and
Gaussian mixture models competently summarize the fields’ flare count and flared
volume, respectively. The learned parameters are interpretable and insightful for the
decision-making process.

4. A nearest-neighbor-based approach for company level volume allocation and analysis is
introduced. The workflow is tested with real data and potential disagreement between
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the company reporting and remote sensing interpretations are found. To improve
the confidence and accuracy when delivering such findings, better resolution remote
sensing data are desired when multiple companies have sub-pixel combustion sources
that are close to each other.
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