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Abstract: Net primary productivity (NPP) is the total amount of organic matter fixed by plants from 
the atmosphere through photosynthesis and is susceptible to the influences of climate change and 
human activities. In this study, we employed actual NPP (ANPP), potential NPP (PNPP), and hu-
man activity-induced NPP (HNPP) based on the Hurst exponent and statistical analysis to analyze 
the characteristics of vegetation productivity dynamics and to evaluate the effects of climate and 
human factors on vegetation productivity in Northeast China (NEC). The increasing trends in 
ANPP, PNPP, and HNPP accounted for 81.62%, 94.90%, and 89.63% of the total area, respectively, 
and ANPP in 68.64% of the total area will continue to increase in the future. Climate change played 
a leading role in vegetation productivity dynamics, which promoted an increase in ANPP in 71.55% 
of the area, and precipitation was the key climate factor affecting ANPP. The aggravation of human 
activities, such as increased livestock numbers and intensified agricultural activities, resulted in a 
decrease in ANPP in the western grasslands, northern Greater Khingan Mountains, and eastern 
Songnen Plain. In particular, human activities led to a decrease in ANPP in 53.84% of deciduous 
needleleaf forests. The impact of climate change and human activities varied significantly under 
different topography, and the percentage of the ANPP increase due to climate change decreased 
from 71.13% to 53.9% from plains to urgent slopes; however, the percentage of ANPP increase due 
to human activities increased from 3.44% to 21.74%, and the effect of human activities on the in-
crease of ANPP was more obvious with increasing slope. At different altitudes, the difference in the 
effect of these two factors was not significant. The results are significant for understanding the fac-
tors influencing the vegetation productivity dynamics in NEC and can provide a reference for gov-
ernments to implement projects to improve the ecosystem. 

Keywords: vegetation productivity dynamics; net primary productivity (NPP); climate change; hu-
man activities; Northeast China 
 

1. Introduction 
Over the past few decades, global average temperatures have risen by approximately 

0.74℃, and heavy precipitation events will continue to increase in the future [1]. Global 
climate change has led to significant changes in vegetation respiration, photosynthesis, 
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and the biosphere carbon cycle, which affect ecosystem productivity [2]. In addition, a 
series of human activities, such as the rapid growth of population and increased industri-
alization, have also placed much pressure on ecosystems [3,4]. Accurately evaluating the 
influences of climate and human factors on ecosystems has great significance for main-
taining the sustainable development of ecosystems [5]. However, regional ecosystem 
changes are often the result of the combination of climate and human factors, and distin-
guishing the relative influence of the two factors is still a challenge, although it is crucial 
to understand and manage the landscape [6]. 

Vegetation is an important part of ecosystems; it plays a key role in regulating eco-
system carbon balance and has the characteristics of adapting to the surface environment 
and reflecting human activities [4,7]. In recent years, vegetation growth status and surface 
coverage have undergone dramatic changes in China, and climate and human factors are 
the main driving forces of vegetation change [8,9]. Because of the continuous development 
of remote sensing technology, large-area observations and remote sensing analyses of 
vegetation have become more effective and less costly than human observations [10], and 
it is easier to obtain remote sensing data to study dynamic trends in vegetation [11–13]. 
Some studies have used residual trend analysis based on the normalized difference vege-
tation index (NDVI) to distinguish the effects of human activities on vegetation from other 
influencing factors [14]. Some studies have used a partial derivative analysis to evaluate 
the influences of climate and human factors [15]. A multiple linear regression model has 
also been used to distinguish between the two factors [16]. However, these studies have 
mainly been based on statistical methods employed to evaluate the relative influences of 
climate and human factors, ignoring the real ecological significance, which easily leads to 
uncertainty in the estimation results, and these analyses cannot completely distinguish 
the impacts of the two factors [17,18]. 

Net primary productivity (NPP) is the total amount of organic matter fixed by plants 
from the atmosphere through photosynthesis, and it plays an important role in the carbon 
cycle of ecosystems [19,20]. NPP is susceptible to the impact of climate and human factors, 
and the dynamic change in NPP can be used to evaluate the influences of these two factors 
on vegetation [21]. Accordingly, actual NPP (ANPP) refers to the actual productivity of 
plants and is influenced by both climate and human factors. Potential NPP (PNPP) repre-
sents the NPP value of plants affected by only climate factors, which is an ideal produc-
tivity situation. In addition, the result of PNPP minus ANPP can be regarded as NPP af-
fected by human activities (HNPP) [22,23]. By analyzing the trends in ANPP, PNPP, and 
HNPP at the pixel scale, the relative impacts of the two factors on vegetation can be dis-
tinguished [15,18,21]. The method uses NPP to evaluate the influence forces of vegetation 
productivity change affected by climate and human factors, which is more accurate than 
statistical analysis methods [24,25]. 

Northeast China (NEC) is an ecologically sensitive area with rich vegetation re-
sources and diverse topography and has been regarded as one of the most typical warm-
ing regions in East Asia [26,27]. In recent years, the temperature in this area has increased, 
even causing drought [28,29], which will cause vegetation productivity to decrease, 
changes in vegetation mortality, and ecosystem degradation [30]. Moreover, NEC, as an 
important crop production base in China, accounts for approximately 20% of China’s total 
grain output. However, the large demand for economic development and food has de-
stroyed a large number of natural land resources, resulting in the loss of biodiversity, wa-
ter shortages, and other serious ecological consequences [31,32]. Mao et al. [33] found that 
policies, such as those related to grain production, have a significant impact on land use 
and ecological carbon storage in NEC. By analyzing the relationship between climate 
change and vegetation dynamics, Li et al. [29] found that climate change aggravates 
drought in NEC, and vegetation is at a high risk of drought. However, the relative effects 
of climate change and human activities on vegetation dynamics in NEC and whether there 
are differences in the effects of these two factors under different vegetation types and 
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topography remain still unclear. Therefore, it has been very useful to quantitatively assess 
the impact of human and climate factors on ecosystems in the NEC in recent years. 

The objectives of this study are to explore the ANPP spatial distribution and temporal 
and sustainable trends in NEC; quantify the impact of climate and human factors on 
ANPP across NEC; and determine the influences of climate and human factors on ANPP 
under different topography and vegetation types. These research results will provide a 
basis for government departments to build ecological civilizations and restore ecosystems 
to enhance ecosystem quality and stability in NEC. 

2. Materials and Methods 

2.1. Study Area 
NEC is located between 38°42′–53°35′ N and 115°32′–135°09′ E, and the area encom-

passes approximately 1.24 million km2 [34]. The average elevation is 445 m, covering east-
ern Inner Mongolia, Liaoning, Jilin, and Heilongjiang provinces (Figure 1a). The annual 
average temperature is between −1.3 and 6.6℃, and the annual total precipitation is be-
tween 500 and 1000 mm [35]. Most of the area has a temperate humid and semi-humid 
continental monsoon climate, high temperatures, sufficient precipitation, and sunshine in 
summer, which are conducive to the growth of vegetation. Vegetation types include grass, 
crops, deciduous broadleaf forests (DBFs), and deciduous needleleaf forests (DNFs), and 
approximately 37% of the country’s forest area is located in NEC. The grass, crops, DBFs, 
and DNFs in Figure 1a are unchanged vegetation types from 2001 to 2019, and other land-
cover include areas where landcover has changed, and other landcover types. The terrain 
of NEC is mainly composed of plains, hills, and mountains, with the Lesser Khingan 
Mountains located in the north, the Greater Khingan Mountains in the west, and the 
Changbai Mountains in the east (Figure 1b). Among the mountains is the Northeast Plain, 
the largest plain in China, which is composed of the Sanjiang Plain, Liaohe Plain, and 
Songnen Plain. At low altitudes and on the relatively flat plains, human activities are dom-
inated by agricultural activities. For instance, the Songnen Plain and Sanjiang Plain, which 
are rich in fertile black soil resources, are planted with a large amount of commercial grain 
and play an important part in grain production in China [36]. In high-altitude areas, such 
as the Changbai Mountains, due to the high forest coverage and rich material resources, 
forest resources have been greatly developed and utilized because of the demand for eco-
nomic development in recent years [27]. 

  

(a) (b) 

Figure 1. (a) Location of the study area with vegetation types, (b) slope. 

2.2. Data Sources 
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2.2.1. Remote Sensing Data 
The 500 m moderate-resolution imaging spectroradiometer (MODIS) NDVI product 

(MOD13A1) and land cover product (MCD12Q1) were obtained from the Earth Observing 
System Data and Information System, National Aeronautics and Space Administration 
(NASA, https://ladsweb.modaps.eosdis.nasa.gov), and were employed to simulate 
ANPP. The MOD13A1 NDVI dataset temporal resolution is 16 days, with a time span 
from 2001 to 2019. The maximum-value composition (MVC) was employed to synthesize 
monthly datasets from the 16-day MODIS-NDVI products. One of the MCD12Q1 land 
cover classification schemes, the annual plant functional type (PFT), was used for our 
study. 
2.2.2. Meteorological Data 

The monthly average temperature and total precipitation were derived from the 
China Meteorological Data Sharing Service System (http://data.cma.cn), and NEC in-
cludes 107 meteorological stations (Figure 1a). We used ANUSPLIN software combined 
with digital elevation model (DEM) data to interpolate derived meteorological data, and 
the station meteorological data were then converted into raster data. The spatial resolution 
and projection were converted in accordance with the MODIS data. 
2.2.3. FLUXNET Data 

FLUXNET is a global network for measuring ecosystem fluxes and provides a large 
amount of data based on eddy covariance measurements, including gross primary 
productivity (GPP), net ecosystem exchange (NEE), respiration and heat fluxes [37]; the 
dataset is available at the FLUXNET website (https://fluxnet.org). We used remote sensing 
data and interpolated meteorological data to calculate simulated ANPP values at the pixel 
scale, and we extract the pixel values at FLUXNET sites. To verify the accuracy of the 
simulated ANPP, monthly GPP data from the FLUXNET2015 product were converted to 
ANPP to compare with the extracted pixel values. Two FLUXNET sites were available in 
our study area (Figure 1a), including the Changbaishan grassland site, which provides 
GPP data from 2003 to 2005, and the Changling mixed forest site, which contains GPP 
data from 2007 to 2010. 

2.3. Methods 
2.3.1. NPP Estimation 

Three types of NPPs were used in this study: ANPP calculated by the Carnegie–
Ames–Stanford Approach (CASA) model (Equations (1)–(3)), PNPP calculated by the 
Thornthwaite Memorial model (Equations (4)–(6)), and HNPP can be calculated through 
Equation (7). 

The CASA model uses NDVI, vegetation types, and meteorological data as input pa-
rameters, which are determined by plant absorbed photosynthetically active radiation 
(APAR) and actual light energy utilization efficiency (ε) [38]; this model can be defined as 
follows: 𝐴𝑁𝑃𝑃 𝑥, 𝑡 = 𝐴𝑃𝐴𝑅 𝑥, 𝑡 × ɛ 𝑥, 𝑡  (1) 

where APAR (x, t) and ε (x, t) can be simulated by the following formulas: 𝐴𝑃𝐴𝑅 𝑥, 𝑡 = 𝑆𝑂𝐿 𝑥, 𝑡 × 𝐹𝑃𝐴𝑅 𝑥, 𝑡 × 0.5 (2) ɛ 𝑥, 𝑡 = 𝑇ɛ 𝑥, 𝑡 × 𝑇ɛ 𝑥, 𝑡 × 𝑊ɛ 𝑥, 𝑡 × ɛ  (3) 

where SOL (x, t) and FPAR (x, t) represent the total monthly solar radiation (MJ m−2) and 
the effective radiation absorbed by the plant canopy through photosynthesis, respectively. 
Tε1 (x, t) and Tε2 (x, t) are the limits of low temperature and high temperature on the utili-
zation of light energy of vegetation, respectively [19]. εmax is the maximum light energy 
utilization in an ideal state (g C MJ−1). Zhu et al. [39] employed measured ANPP combined 
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with meteorological station data and remote sensing data, and the εmax of typical vegeta-
tion in China was calculated. The εmax results were used in this study. 

The Thornthwaite Memorial model is built on the basis of the Miami model, which 
is driven by the relationship among evaporation (ET), temperature, and precipitation [40]. 
The model was used to calculate PNPP by the following formulas: 𝑃𝑁𝑃𝑃 = 3000[1 − 𝑒 . ( )] (4) 

𝑣 = 1.05𝑟1 + (1 + 1.05𝑟𝐿 )  (5) 

𝐿 = 3000 + 25𝑡 + 0.05𝑡  (6) 

where v and L represent actual and mean evapotranspiration (mm), respectively. t and r 
are the annual mean temperature (℃) and total precipitation (mm), respectively. 

HNPP reflects the loss of vegetation productivity affected by human activities and 
can be simulated by the following formula [24]: 𝐻𝑁𝑃𝑃 = 𝑃𝑁𝑃𝑃 − 𝐴𝑁𝑃𝑃 (7) 

2.3.2. R/S Analysis 
R/S analysis is the most widely used method to calculate the Hurst exponent. British 

hydrologist Hurst first came up with the Hurst exponent, and R/S analysis can effectively 
evaluate the correlation of long time series, which can be used for future trend analysis 
[41]. R/S analysis can be conducted through Equations (8)–(12). 

The long time series {ξ(τ)} can be divided into τ subsequences, and the average value 
for each sequence was defined as follows: 

< 𝜉 >  =  1𝜏  𝜉 (𝑡),   𝜏 = 1, 2, … (8) 

The accumulated deviation for each sequence was calculated as follows: 

𝑋 (𝑡, 𝜏) =  [𝜉 (𝑢)  − < 𝜉 > ] ,   1 ≤ 𝑡 ≤  𝜏 (9) 

The range sequence was calculated as follows: 𝑅(𝜏) = max 𝑋 (𝑡, 𝜏)  −  min 𝑋 (𝑡, 𝜏) ,   𝜏 = 1, 2, … (10) 

The standard deviation sequence was defined as follows: 

𝑆 (𝜏) = [1𝜏  (𝜉(𝑡) − < 𝜉 > ) ] ,   𝜏 = 1, 2, … (11) 

The Hurst exponent H can be defined by R, S, and τ as follows: 𝑅(𝜏) / 𝑆(𝜏) = 𝑐 ·  𝜏  (12) 

where c is a constant. According to Wang [10], the Hurst exponent index ranges from 0 to 
1 and indicates three states. When 0 < H < 0.5, changes in the time series were inconsistent, 
and the sequence may have an opposite trend in the future. When H equals 0.5, changes 
in the time series were stochastic, and the trend in the past had no effect on the future. 
When 0.5 < H < 1, changes in the time series were consistent, and the future had the same 
trend as the past. The closer H was to 0, the more inconsistent the time series was; in con-
trast, the closer H was to 1, the more consistent the sequence was. According to the classi-
fication method based on the Hurst index [42], we defined strong inconsistency of time 
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series as H less than 0.25, weak inconsistency for H from 0.25 to 0.5, weak consistency for 
H from 0.5 to 0.75, and strong consistency for H greater than 0.75. 
2.3.3. Partial Correlation Analysis 

Partial correlation analysis was employed to evaluate the relationship between 
ANPP and climate factors. This method removes the influence of other related variables, 
so it can effectively evaluate the correlation between two variables [43] and is calculated 
through Equation (13): 𝑅 , = 𝑅 −  𝑅 ·  𝑅(1 − 𝑅 ) · 1 − 𝑅  (13) 

where Rxy,z is the partial correlation coefficient between x and y while removing the influ-
ence of the variable z. Rxy, Rxz, and Ryz are the Pearson correlation coefficients between two 
variables. In addition, the t-test was employed to demonstrate the significance of the cor-
relation. 
2.3.4. Convert GPP to NPP 

The conversion formula of eddy covariance measured gross primary productivity to 
NPP is described as Equation (14) [44]: 𝑁𝑃𝑃 = 𝐶𝑈𝐸 · 𝐺𝑃𝑃 (14) 

where CUE is the carbon use efficiency. Previous studies have argued that CUE is constant 
[45,46]. Waring et al. [47] suggested that most forest CUE has a uniform value of 0.47, 
while Liu et al. [44] found that the CUE values of grassland range from 0.48 to 0.56. In this 
study, because the vegetation types of the two FLUXNET sites are grassland and mixed 
forest, we set CUE to 0.5 to calculate the FLUXNET site-observed ANPPs. 

3. Results 

3.1. Validation of Simulated ANPP 
We extracted the CASA-simulated monthly ANPP values from the two FLUXNET 

sites of Changbaishan and Changling. Figure 2 shows the comparison of the extracted 
CASA-simulated ANPP with the FLUXNET site-observed ANPPs. The significant corre-
lation (R2 = 0.93, p < 0.001) demonstrated that the simulated results are accurate. 

 
Figure 2. Comparison of actual net primary productivity (ANPP) simulated by Carnegie–Ames–
Stanford Approach (CASA) model with FLUXNET site-observed ANPPs. 
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3.2. Spatial Characteristics of NPP from 2001 to 2019 
3.2.1. Spatial Distribution of ANPP 

Figure 3 shows the spatial distribution of the mean ANPP in NEC, and the average 
ANPP was 477.90 g C m−2 year−1 during 2001–2019. High values of ANPP appeared in the 
region of the Changbai Mountains, Greater Khingan Mountains, and Lesser Khingan 
Mountains, and low values were observed in the Hulun Buir Plain and Songnen Plain. 
According to vegetation type, the largest average ANPP was 638.34 g C m−2 year−1 for DBF, 
followed by cropland at 456.43 g C m−2 year−1, DNF at 354.55 g C m−2 year−1, and grassland 
at 347.18 g C m−2 year−1. 

 
Figure 3. Spatial distribution of the average ANPP in Northeast China (NEC) during 2001–2019. 

3.2.2. ANPP, PNPP and HNPP trends 
The ANPP in most regions of NEC presented an increasing trend (Figure 4a), with a 

mean increment of 2.29 g C m−2 year−1 during 2001–2019. The increasing region accounted 
for 81.62% of the study area, while the decreasing trend area was rare (18.38% of the study 
area) and was distributed across the eastern Sanjiang Plain, southern Liaohe Plain, and 
DNF area. Figure 4b shows the spatial distribution of the Hurst exponent of ANPP; 83.43% 
of the study area was consistent with the current state, among which strong consistency 
and weak consistency accounted for 40.88% and 42.55%, respectively. Only 16.57% of the 
total area ANPP was the opposite of the current state, and strong inconsistency and weak 
inconsistency accounted for 4.04% and 12.53%, respectively. We spatially overlaid Figure 
4a,b, and we combined the attributes of the two layers at the pixel scale to obtain Figure 
4c. The result shows that 68.64% of the total area had a continuous increasing trend in the 
future, only 14.79% of the study area showed a continuous decreasing trend, 3.59% of the 
area converted from decreasing to increasing, and 12.98% converted from increasing to 
decreasing. The results indicate that the ANPP in 72.23% of NEC will increase, and the 
ANPP of different vegetation types is dominated by a future increase. However, DNF had 
the largest areal decrease in ANPP in the future (48.19% of the DNF area). 
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(a) (b) 

 
(c) 

Figure 4. (a) Trend of ANPP, (b) Hurst exponent of ANPP, and (c) trend with Hurst in NEC dur-
ing 2001–2019. 

Figure 5a,b show the spatial PNPP and HNPP trends in NEC during 2001–2019, and 
the areas of PNPP and HNPP with positive trends accounted for 94.90% and 89.63% of the 
total area, respectively. A positive PNPP trend indicates that climate change promotes 
vegetation productivity, and a positive HNPP trend indicates that human activities reduce 
the productivity of vegetation. In the southern Changbai Mountains, human activities had 
a promotional effect, and climate change had a negative impact on vegetation productiv-
ity, and most trends in HNPP in this region were below −5 (Figure 5b), while the trends 
in PNPP were mainly between −5 and 0; the decreasing rate of HNPP was greater than 
that of PNPP, which suggests that the restoration effect of human activities on vegetation 
productivity was larger than the reduction effect of climate change. Therefore, ANPP re-
mained dominated by an increase in this area (Figure 4a). 
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Figure 5. (a) potential NPP (PNPP) and (b) human activity-induced NPP (HNPP) trends in NEC 
during 2001–2019. 

3.3. Relative Influences of Climate Change and Human Activities on Vegetation Productivity 
3.3.1. Influences of Climate Change and Human Activity on Vegetation ANPP Dynamics 

According to the classification method in Table 1, the influences of climate and hu-
man factors on ANPP were divided into six scenarios. Figure 6 shows the spatial distribu-
tion of the classification results. Climate change was the leading factor affecting the in-
crease in ANPP, accounting for 71.55% of the study area, which was located in the middle 
of NEC. Human activities (4.28% of the area) and the combination of two factors (5.79% 
of the area) induced a reduced increase in ANPP and were distributed in the southern 
Changbai Mountains. Human activities were the main factor affecting the decrease in 
ANPP, accounting for 17.56% of the study area and being located in the DNF area and 
Sangjiang Plain. Climate change (0.3% of the area) and the combination of two factors 
(0.52% of the area) induced a reduced decrease in ANPP. 

Table 1. Six scenarios for evaluating the driving factors of ANPP in NEC [17,18]. SANPP, SPNPP, 
and SHNPP represent the slopes of ANPP, PNPP, and HNPP during 2001–2019, respectively. 

SANPP SPNPP SHNPP Driving factors of ANPP 
+ + + Increase due to climate change (IDC) 
+ − − Increase due to human activities (IDH) 

+ + − 
Increase due to the combined influences of climate 

change and human activities (IDCH) 
− − − Decrease due to climate change (DDC) 
− + + Decrease due to human activities (DDH) 

− − + Decrease due to the combined influences of climate 
change and human activities (DDCH) 
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Figure 6. Spatial distribution of the influences of climate and human factors on vegetation produc-
tivity in NEC. See Table 1 for the definitions of the driving forces. 

3.3.2. Analysis of Driving Factors for Different Vegetation Types 
Figure 7a shows the area percentage of ANPP increase affected by climate and hu-

man factors for different vegetation types. To avoid the impact of land cover type change, 
we selected the area where grass, crops, DNF, and DBF did not change from 2001 to 2019. 
Climate change is the major factor affecting the increase in ANPP and had the largest ef-
fect on grassland, accounting for 82.53% of grassland area. Moreover, 75.24% of the 
cropland area and 68.25% of the DBF area showed an increase in ANPP due to climate 
change, and climate change had the lowest influence on DNF, accounting for 45.55% of 
the DNF area. Figure 7b shows the area percentage of ANPP decrease affected by climate 
and human factors for different vegetation types, and human activities were the major 
driving force affecting the decrease in ANPP for different vegetation types. Human activ-
ities led to 53.84% of the DNF area ANPP decrease, and the percentages of DBF, cropland, 
and grassland were 17.71%, 16.15%, and 9.48%, respectively. The combination of the two 
factors had less of an impact on ANPP. In conclusion, climate change was the major factor 
leading to the ANPP increase, and human activities were the leading factor affecting the 
ANPP decrease for different vegetation types. Compared with other vegetation types, 
DNF was more sensitive to human activities. 

 
Figure 7. Area percentage of ANPP (a) increase and (b) decrease affected by climate and human 
factors for different vegetation types. CL: cropland; DBF: deciduous broadleaf forest; DNF: decid-
uous needleleaf forest; and GL: grassland. See Table 1 for the definitions of the driving forces. 

Based on the vegetation types of NEC in 2001, we extracted the stable change areas 
of vegetation types through the landcover data in 2009 and 2019. Through the analysis of 
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vegetation types change in NEC (Table 2), we found that grassland accounted for the larg-
est proportion of land-use change, and 10.8% of grassland changed into crops, which in-
dicated that the intensification of human agricultural activities was one of the reasons for 
grassland degradation in this region. According to Table 2, 14.37% of DNF was converted 
into other land use types, while the conversion of other land use types into DNF was rare, 
indicating that DNF has been further degraded due to recent land-use changes. 

Table 2. Area (unit: 103 m2) and percentage of land cover change in NEC from 2001 to 2019. DNF: 
deciduous needleleaf forest; DBF: deciduous broadleaf forest. 

Land  Area Translates to 
Cover  Grass   Crop   DNF   DBF   Others   Change  

  Area %  Area %  Area %  Area %  Area %  Area % 
Grass 362.67 301.21 83.05  39.13 10.80  0.69 0.19  20.29 5.59  1.35 0.37  61.46 16.95 
Crops 390.11 15.01 3.85  354.41 90.85  0.03 0.00  19.30 4.95  1.36 0.35  35.70 9.15 
DNF 74.30 0.72 0.97  0.01 0.00  63.62 85.63  9.75 13.12  0.20 0.28  10.68 14.37 
DBF 388.56 7.15 2.35  6.00 1.54  9.73 2.50  363.46 93.54  0.22 0.07  25.1 6.46 

3.3.3. Analysis of the driving factors in different topographic elements 
We graded the altitude and slope according to the International Geographical Union 

Commission on Geomorphological Survey and Mapping to explore the driving factors 
affecting the vegetation productivity dynamics in different topographic elements in NEC. 
The different altitudes can be divided into plains (≤200 m), hills (200~500 m), low moun-
tains (500~1000 m), and high mountains (>1000 m). Table 3 shows that the average ANPP 
of high mountains was the largest at 511.04 g C m−2 year−1. Approximately 63.73% of 
cropland was distributed in the plains, DNF was mainly distributed in the low mountains 
(76.36% of the area), and DBF and grassland were mainly distributed in the hills and low 
mountains. According to Table 3, the average area percentages of IDC and IDH at differ-
ent altitudes were 71.12% and 3.56%, respectively. Therefore, at different altitudes, climate 
change was the leading factor affecting the increase in vegetation ANPP. The average area 
percentages of DDC and DDH at different altitudes were 0.27% and 18.51%, respectively; 
thus, human activities were the main factor affecting the decrease in vegetation ANPP. 
The effects had no obvious distinctions for different altitude grades. 

Table 3. Effects of different altitudes on the mean ANPP (unit: g C m−2 year−1), vegetation type 
distribution and driving forces in NEC. CL: cropland; DBF: deciduous broadleaf forest; DNF: de-
ciduous needleleaf forest; and GL: grassland. See Table 1 for definitions of the driving forces. 

Altitude Mean Area Percentage (%)  Influence Factors (%) 
(m) ANPP CL DBF DNF GL  IDC IDH IDCH DDC DDH DDCH Total 
≤200 432.22 63.73 5.1 0.39 19.12  70.78 4.7 3.63 0.83 18.37 1.69 100 

200 ~ 500 509.81 32.69 46.88 9.05 24.3  73.31 5.01 5.2 0.16 16.2 0.12 100 
500 ~ 1000 484.24 3.33 42.01 76.36 46.65  70.56 3.75 8.16 0.05 17.46 0.02 100 

>1000 511.04 0.25 6.01 14.2 9.93  69.81 0.77 7.39 0.02 22 0.01 100 
Total  100 100 100 100        100 

Grading according to slope, the study area can be divided into plains (≤2°), gentle 
slopes (2 ~ 5°), inclined slopes (5 ~ 15°), steep slopes (15 ~ 25°), and urgent slopes (>25°). 
ANPP increased with increasing slope grade (Table 4), the mean ANPP of the plains was 
the lowest (421.09 g C m−2 year−1), and the mean ANPP on the urgent slopes was the largest 
(611.09 g C m−2 year−1). All vegetation types had the largest area percentage on inclined 
slopes, and the percentages of cropland, DBF, DNF, and grassland were 46.1%, 51.62%, 
55.82%, and 45.39%, respectively. At different slope grades, the average area percentages 
of IDC and IDH were 67.41% and 7.01%, respectively; thus, climate change was the major 
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factor affecting the increase in ANPP. The average area percentages of DDC and DDH 
under different slope grades were 0.42% and 16.60%, respectively; thus, human activities 
led to a decrease in ANPP. With increasing slope grade, the area percentage of the ANPP 
driving factors also changed, and the percentage of the increase in ANPP due to climate 
change decreased from 71.13% to 53.9%; however, the percentage of the increase in ANPP 
due to human activities increased from 3.44% to 21.74%. The results showed that as the 
slope increased, the influence of human activities on the increase in ANPP also increased. 

Table 4. Effects of different slopes on the mean ANPP (unit: g C m−2 year−1), vegetation type distri-
bution and driving forces in NEC. CL: cropland; DBF: deciduous broadleaf forest; DNF: deciduous 
needleleaf forest; and GL: grassland. See Table 1 for definitions of the driving forces. 

Slope Mean Area percentage (%)  Influence factors (%) 
(̊) ANPP CL DBF DNF GL  IDC IDH IDCH DDC DDH DDCH Total 
≤2 421.09 13.05 3.87 3.87 11.61  71.13 3.44 4.33 0.74 18.72 1.64 100 

2 ~ 5 434.80 35.52 15.88 16.57 33.22  74.65 1.91 4.04 0.32 18.4 0.68 100 
5 ~ 15 484.53 46.1 51.62 55.82 45.39  72.78 3.05 5.96 0.19 17.71 0.31 100 
15 ~ 25 572.38 4.71 22.32 19.23 7.98  64.59 10.57 8.83 0.31 15.43 0.27 100 

>25 611.09 0.62 6.31 4.51 1.8  53.9 21.74 10.76 0.55 12.74 0.31 100 
Total  100 100 100 100         

3.4. The Relationship Between Vegetation ANPP and Climate Factors. 
The average partial correlation coefficient between vegetation ANPP and tempera-

ture was 0.15 in NEC. The area of positive correlation accounted for 71.87% of the study 
area (Figure 8a), and there was a significant positive correlation (p < 0.05) in 10.83% of the 
area, which was distributed in the central NEC. Twenty-eight percent of the study area 
presented a negative correlation between ANPP and temperature, which was distributed 
in grassland and deciduous forest regions of western NEC, and only 0.54% passed the 
significance test. The average partial correlation coefficient between vegetation ANPP and 
precipitation in the study area was 0.38, and 89.22% of the study area was positively cor-
related (Figure 8b); 42.21% of the area passed the significance test and was mainly distrib-
uted in grassland and cropland in the western part of NEC. ANPP in 10% of the study 
area was negatively correlated with precipitation, and this area was mainly located in the 
Greater Khingan Mountains and Changbai Mountains; only 0.41% passed the significance 
test. 

  

(a) (b) 

Figure 8. Spatial distribution of partial correlation coefficients between (a) ANPP and annual aver-
age temperature and (b) ANPP and annual total precipitation. 
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4. Discussion 
4.1. ANPP Change Characteristics in NEC 

The ANPP in 81.62% of the NEC area had a tendency to increase due to climate and 
human factors from 2001 to 2019 (Figure 4a). Zeng et al. [48] also noted that NEC vegeta-
tion restoration was significant from 2000 to 2015. The Hurst exponent in NEC showed 
that except for some grassland, Sanjiang Plain, and DNF areas, the ANPP will continue to 
increase in most regions in the future (Figure 4c). Changes in temperature and precipita-
tion can affect vegetation growth and increases in ANPP will benefit from global warming 
[49]. Increasing heat resources brought about by global warming will increase crop yield 
in most of the crop-producing areas in NEC [50]. In addition to climate change, changes 
in atmospheric CO2 will also affect vegetation productivity. With the increase in global 
warming and atmospheric CO2 content in the future, plant photosynthesis is promoted, 
and respiration is inhibited, leading to an increase in vegetation ANPP [51]. 

4.2. Role of Climate Change in Determining ANPP 
Spatially, 71.55% of the study area ANPP increased due to climate change (Figure 6), 

and most of the areal ANPP was positively correlated with climatic factors (temperature 
and precipitation) (Figure 8ab). Vegetation productivity changes have been associated 
with climate change in different ecosystems over the past decades, especially temperature 
and precipitation factors [52,53]. Climate change can impact ecosystem productivity by 
changing the surface water content and soil organic matter and affecting vegetation res-
piration and photosynthesis [54]. The mean partial correlation coefficient between ANPP 
and temperature in the entire study area was 0.15, and negative correlations were mainly 
distributed in grassland and DBF areas in the Inner Mongolia region (Figure 8a). There is 
less precipitation in this area, and as the temperature rises, vegetation growth will be re-
strained. In the past 50 years, Inner Mongolia has become a warmer and drier region [55]. 
Although a temperature rise can increase the plant photosynthesis and respiration rates, 
temperature will have a negative effect if the temperature is too high to exceed the limita-
tion [56]. Warming without more precipitation may aggravate the impact of drought on 
the environment, which will have adverse effects on plant growth [8,57]. Therefore, ANPP 
was negatively correlated with temperature in the relatively arid Inner Mongolia region, 
while the eastern region with more precipitation exhibited a positive correlation. 

ANPP was positively correlated with precipitation in a total of 89.22% of the study 
area (Figure 8b), and the average correlation coefficient was 0.38. Compared with temper-
ature, the effect of precipitation on ANPP was stronger in NEC. Precipitation is often con-
sidered to be the leading factor for vegetation growth because water shortages may lead 
to many limitations of vegetation, which will severely restrict the growth of vegetation 
[8,58]. ANPP was significantly positively correlated with precipitation in the western 
grassland, which may be because increasing precipitation can increase grassland coverage 
[7], and grassland productivity is improved. The correlation between precipitation and 
vegetation ANPP is weak in the north and east of NEC, even with a negative correlation 
in the Changbai Mountains and northern Greater Khingan Mountains. Mao et al. [34] also 
observed that the NDVI in the Lesser Khingan Mountains and Changbai Mountains was 
negatively correlated with precipitation. These regions have cold and snowy springs, and 
precipitation will lead to more clouds, thus reducing incident radiation [34]. The decrease 
in incident radiation will weaken photosynthesis and affect the growth of vegetation [59]. 
The decrease in photosynthesis reduced carbon sequestration in plants; therefore, there 
was a negative correlation between ANPP and precipitation. 

4.3. Role of Human Activities in Determining ANPP 
In recent years, the Chinese government has carried out many ecological projects to 

protect vegetation ecosystems. With the implementation of multiple afforestation pro-
grams, such as the Grain to Green Program (GTGP), the vegetation in NEC has 
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experienced accelerated greening due to human activity [60]. The natural forest conserva-
tion project (NFCP) and GTGP had obvious effects on woodlands, and the implementa-
tion of ecological protection projects resulted in a total 2256 km2 increase in woodlands 
after 2000 in NEC [33]. Topography is also an important factor affecting vegetation growth 
on a large spatial scale [61]. Slope can affect surface runoff, soil water content, and other 
physicochemical properties, leading to changes in the vegetation growth environment 
[62]. The GTGP program explicitly forbids reclamation in areas with slopes over 25°; in 
addition, exploitation on slopes between 15° and 25° is not recommended [21]. Our results 
showed that the region with an increase in ANPP caused by human activities was mainly 
distributed in the Changbai Mountains in the southern NEC area (Figure 6), where the 
slope is steep (Figure 1b). According to Table 4, with the increase in slope, the contribution 
rate of human factors to the increase in ANPP also increased. Therefore, our results indi-
rectly prove the effectiveness of the GTGP in NEC. 

The decrease in ANPP caused by human factors is distributed in the western Inner 
Mongolia grassland, the Sanjiang Plain, and northern DNFs (Figure 6). Grassland degra-
dation in Inner Mongolia can be caused by overgrazing. According to the Statistics Bureau 
of Inner Mongolia (http://tj.nmg.gov.cn), the total amount of livestock in four Inner Mon-
golian cities in NEC increased significantly (Figure 9a), resulting in the consumption of 
grassland plant biomass increasing and grassland degradation accelerating [19]. If the 
number of livestock exceeds the capacity of grassland ecosystems, this will reduce the 
resilience of grassland and cause grassland degradation [21]. Therefore, it is necessary to 
control the livestock volume in Inner Mongolia to improve the grassland ecological envi-
ronment. The ANPP decrease in the DNF area in Greater Khingan caused by human ac-
tivities was more intense than that in other vegetation types (Figure 7b), which may be 
related to the frequent occurrence of forest fires in this area. Forest fires have occurred 
frequently in this region in recent years, and the average annual burnt area of the DNF 
area extracted from MODIS (MCD64A1) is 3210 ha (Figure 9b). Some studies have found 
that fires in boreal forests in NEC are closely related to human activities, and fire sites are 
close to residential areas and roads [63]. With global warming, the forest fire risk level in 
this area will also increase in the future [64], which should be given more research focus. 

 

 

(a) (b) 

Figure 9. (a) Interannual variations in livestock numbers in four Inner Mongolian cities in NEC 
(one cattle or horse is regarded to be the same as four sheep) and (b) annual burning area of the 
DNF area. 

The change in land use and land cover caused by human activities can also affect the 
dynamics of vegetation [65], and land-use changes have a great impact on carbon seques-
tration [66]. During the study period, landcover changed significantly in NEC, and 10.8% 
of grassland changed into crops (Table 2). Due to the economic development under the 
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influence of policy in NEC, the demand for land use has increased, which makes the large-
scale grassland transformed into crops, resulting in the continuous expansion of crop area 
in recent years [67]. Furthermore, numerous marshland regions have been reclaimed as 
cropland over the past 30 years across the Sanjiang Plain, leading to aggravated fragmen-
tation of marshlands [68,69]. The conversion of marshlands to cropland accelerated the 
decomposition of topsoil organic matter, resulting in soil organic carbon loss [70]. There-
fore, the intensification of human agricultural activities may lead to a decrease in the 
ANPP over the Sanjiang Plain. 

4.4. Limitations of this Study 
In this study, we employed a methodology using ANPP, PNPP, and HNPP as pa-

rameters to quantitatively evaluate the influences of climate and human factors on ANPP 
in NEC. In addition, the limitations of our study should also be noted. First, the 
Thornthwaite Memorial model for calculating PNPP only considers the climate factors of 
temperature and precipitation and does not consider solar radiation, while solar radiation 
is also one of the meteorological factors affecting NPP [71]. In addition, PNPP is the NPP 
value that is completely unaffected by human beings and was not verified with measured 
data in this study; thus, there was uncertainty in the simulated PNPP. Second, human 
activities, such as fire and land-use change, can affect vegetation productivity dynamics. 
However, this study only quantitatively discusses the influence of human activities. Be-
cause of the limitations of our methodology, these human factors cannot be quantified, 
which is also a great challenge for future research. Finally, we resampled the interpolated 
meteorological images to 500 m to keep the spatial resolution consistent with MODIS, 
which sacrifices pixel accuracy to some extent. Although there are some shortcomings in 
the evaluation method, the results can reflect the overall change trend in ANPP and the 
relative impact of climate and human factors on a large scale in NEC, and the results are 
valuable for policymaking and further research. 

5. Conclusions 
Based on three NPP indices (ANPP, PNPP, and HNPP) simulated by meteorological 

data and remote sensing data, we quantitatively discussed the influences of climate 
change and human activities on ANPP in NEC. The findings are described as follows: 

• The average ANPP of the entire study area was 477.90 g C m−2 year−1 from 2001 to 
2019, the area of increased ANPP accounted for 81.62% of NEC, and the area of de-
creased ANPP was mainly distributed across the eastern Sanjiang Plain, southern 
Liaohe Plain, and DNFs. According to the analysis of the Hurst exponent, the ANPP 
change exhibited a certain sustainability, and the ANPP in 72.23% of the study area 
will increase in the future. 

• Compared with human activities, climate change has a greater influence on ANPP, 
which promoted the increase in ANPP in 71.55% of the study area. In addition, the 
influences of climate factors (temperature and precipitation) on ANPP have spatial 
differences. ANPP in the western part of the study area was negatively correlated 
with temperature because of less precipitation. ANPP was negatively correlated with 
precipitation in the Greater Khingan Mountains and Changbai Mountains. In the 
western grasslands, northern Greater Khingan Mountains, and eastern Songnen 
Plain, ANPP decreased with intensified human activities. In the southern Changbai 
Mountains, ANPP increased due to human activities. 

• Compared with other vegetation types, DNF was most affected by human activities, 
and ANPP in 53.84% of the DNF area decreased because of human activities. In dif-
ferent topography, the impact of human activities on vegetation productivity was 
also different; with increasing slope, the contribution rate of human activities to the 
increase in ANPP also increased, while the effects had no obvious distinction at dif-
ferent altitude grades. 
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