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Abstract: Soybean grain yield has regularly been impaired by drought periods, and the future
climatic scenarios for soybean production might drastically impact yields worldwide. In this context,
the knowledge of soybean yield is extremely important to subsidize government and corporative
decisions over technical issues. This paper aimed to predict grain yield in soybean crop grown
under different levels of water availability using reflectance spectroscopy and partial least square
regression (PLSR). Field experiments were undertaken at Embrapa Soja (Brazilian Agricultural
Research Corporation) in the 2016/2017, 2017/2018 and 2018/2019 cropping seasons. The data
collected were analyzed following a split plot model in a randomized complete block design, with
four blocks. The following water conditions were distributed in the field plots: irrigated (IRR),
non-irrigated (NIRR) and water deficit induced at the vegetative (WDV) and reproductive stages
(WDR) using rainout shelters. Soybean genotypes with different responses to water deficit were
distributed in the subplots. Soil moisture and weather data were monitored daily. A total of 7216 leaf
reflectance (from 400 to 2500 nm, measured by the FieldSpec 3 Jr spectroradiometer) was collected
at 24 days in the three cropping seasons. The PLSR (p ≤ 0.05) was performed to predict soybean
grain yield by its leaf-based reflectance spectroscopy. The results demonstrated the highest accuracy
in soybean grain yield prediction at the R5 phenological stage, corresponding to the period when
grains are being formed (R2 ranging from 0.731 to 0.924 and the RMSE from 334 to 403 kg ha−1—7.77
to 11.33%). Analyzing the three cropping seasons into a single PLSR model at R5 stage, R2 equal
to 0.775, 0.730 and 0.688 were obtained at the calibration, cross-validation and external validation
stages, with RMSE lower than 634 kg ha−1 (13.34%). The PLSR demonstrated higher accuracy in
plants submitted to water deficit both at the vegetative and reproductive periods in comparison to
plants under natural rainfall or irrigation.

Keywords: Glycine max (L.) Merrill; drought stress; soybean genotypes; leaf-based data; hyperspec-
tral reflectance
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1. Introduction

Brazil is responsible for over one third (124 million tons) of soybean produced world-
wide (341 million tons) and plays an important role in the world’s food production and
financial market [1,2]. Although expressive yields are often obtained, Brazilian soybean
crop production is regularly impaired by drought periods. Battisti et al. [3] demonstrated
the influence of water availability on soybean yield in different fields in Brazil. According
to Sentelhas et al. [4], drought periods have impaired around 30% of the Brazilian soybean
production, which led to financial losses of over USD 79 billion in 38 years [5]. Further-
more, the future climatic scenarios for soybean production might drastically impact yields
worldwide [6].

In this context, the understanding of soybean production areas and their development
conditions is extremely important to subsidize government and corporative decisions over
technical issues, which directly affect supply regulation, food security, financial market
and strategical planning in relation to social, environmental and economic policies [7–10].
Hence, a rising need for precise methods capable of predicting soybean yield prior to the
harvesting period has been observed, assisting better management of agronomic, logistic
and economic practices.

Soybean grain yield prediction has been successfully addressed by several researches
at orbital and aerial (UAV-based) levels of data acquisition [11–16]. However, according to
Sakamoto [13], most of yield prediction models are based on the direct relation between
biomass and vegetation indexes and the indirect relation between biomass and yield at
specific phenological stage. According to Braga et al. [17], soybean plants submitted to
different levels of water availability present different physiological responses, and those
physiological responses are differently expressed across the spectrum. Thus, considering
that yield is the result of multiple physiological iterations during the cropping season, field-
based investigation addressing soybean grain yield prediction via hyperspectral response,
studying a larger number of spectral bands at fine spectral resolution, can contribute to
better understand, across multiple wavelengths, the relation between reflectance and yield,
comprising a larger number of physiological iterations across the spectrum.

Recognized to be a useful method when the number of predictor variables (e.g.,
wavelengths) is larger than the number of response variables (e.g., grain yield—[18]), partial
least squares regression (PLSR) has been successfully applied to yield prediction in several
crop types: soybean [19], maize [20,21], winter wheat [22,23], barley [24], oilseeds [25]
and grassland [26]. Moreover, Barmeier et al. [24] described the PLSR approach to have
stronger predictive capacity of yield compared to vegetation indices in several crop systems.
Developed by Wold et al. [27], the PLSR is a multivariate statistical analysis method that
combines principal component regression (PCR) and multiple regression, overcoming the
multicollinearity among independent variables [28,29].

In Brazil, due to the regular threat of unfavorable weather events, especially drought
periods, soybean yield prediction models should comprise the evaluation of plants both
under water shortage and under good conditions of water availability, allowing the yield
monitoring across cropping seasons with variable weather characteristics.

Based on the current progress, this paper aimed to predict grain yield in soybean crop
grown under different levels of water availability using reflectance spectroscopy and partial
least squares regression. Our hypothesis is that soybean plants present different spectral
responses according to their levels of water availability and that the spectral response
might be related to grain yield. Our research question addresses: (1) the detection of the
best time across soybean cropping season to predict grain yield; (2) the development of a
multi-year prediction model, composed by hyperspectral reflectance collected in multiple
cropping seasons; (3) the evaluation of the effect of crop water status on the accuracy of
soybean grain yield prediction.
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2. Materials and Methods
2.1. Experimental Site

The experiment (Figure 1) was undertaken in the experimental farm of the National
Soybean Research Center (Embrapa Soja), a branch of the Brazilian Agricultural Research
Corporation, located in Londrina Municipality, Paraná State, Southern Brazil (23◦11′37” S,
51◦11′03” W, 630 m above sea level), in the 2016/2017, 2017/2018 and 2018/2019 crop-
ping seasons.

Figure 1. Experimental area overview (a) and description of weather station and treatment plots (b): irrigated (IRR),
non-irrigated (NIRR) and water deficit induced at vegetative (WDV) and reproductive (WDR) stages. RGB image obtained
by an UAV carrying a regular digital camera.

The climate of the experimental site is classified as Cfa climate according to the Köppen
climate classification, i.e., subtropical climate, with a mean temperature in the hottest month
higher than 22 ◦C, and rainfall concentrated in the summer months, corresponding to the
periods of soybean production, albeit with no defined dry season [30,31]. Although dry
season is not observed in the entire soybean crop season, periods of water deficit often
cause large yield losses [4].

The soil of the experimental area is characterized as Udox Oxisol [32], with 75 mm of
water holding capacity, and the results from soil analysis (March 2016) are presented in
Table 1.

Table 1. Soil characteristics of the experimental area.

pH H++Al3+ Al3+ Ca2+ Mg2+ K+ CTC P C SB V% Clay
H2O cmolc dm−3 mg dm−3 g dm−3 g kg−1

4.9 3.5 0.03 3.9 1.8 0.7 10.0 24.2 15.6 6.5 64.8 710

The data collected were analyzed following a split plot model in a randomized com-
plete block design, with four blocks and the experimental practices followed soybean
production technologies [33]. The following water condition treatments were distributed
in the field plots: irrigated (IRR, receiving rainfall and irrigation when necessary, with a
soil water matric potential between −0.03 and −0.05 MPa); non-irrigated (NIRR, receiving
only rainfall); water deficit induced at the vegetative stages (WDV); water deficit induced
at reproductive stages (WDR). Soybean genotypes (commercial cultivars and genotypes
with drought tolerance genes), with different response to water deficit, were distributed in
the subplots.

WDV and WDR plots were established under rainout shelters to simulate water deficit.
Shelters automatically covered the subplots (at the vegetative or reproductive stage) when
rainfalls above 0.1 mm were recorded and automatically uncovered plants once rainfalls
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had ceased. To prevent water lateral movement from outside into the soil, the plots had in
their perimeter vertical concrete barriers (buried up to 90 cm depth).

During the period to which WDV plots were deprived of rainfall, WDR was kept
under natural conditions of water availability. From the flowering period to the harvesting
period, the WDR treatment was deprived of natural rainfall, and in turn, the WDV plots
began to be rain watered, simulating, thus, water deficit periods both at the vegetative and
reproductive stages of development. Specifically, in the 2018/2019 cropping season, due to
the severe natural drought conditions, WDR was only deprived from natural rainfall until
14 January 2019, when plants begun to receive natural rainfall until the harvesting period.

Plots from IRR and NIRR treatments were composed by 10 subplots, and plots from
WDV and WDR were composed by 5 subplots. Only genotypes sown in all the four
experimental treatments were considered in the analysis. In the 2016/2017 and 2017/2018
cropping seasons, five genotypes (1Ea15, 2Ha11, 2Ia4, BR16 and BRS 184) were sown in all
experimental treatments, while in the 2018/2019 cropping season, five different genotypes
(1Ea2939, 3Ma2, BRS 283, BRT18-0089 and BRT18-0201) were sown in those plots.

In IRR and NIRR treatments, the subplot dimensions were 4 m width × 5.5 m length
composed by eight rows spaced 0.5 m from each other. In WDV and WDR treatments, the
subplot dimensions were 1.5 m width × 6 m length composed by three rows spaced 0.5 m
from each other. To minimize potential external effects on soybean plants, both extremities
from each row (0.5 m) were not considered for data acquisition.

Table 2 displays the sowing dates and periods of inducement of water deficit both at
the vegetative and reproductive periods in the three evaluated cropping seasons.

Table 2. Sowing dates and periods of inducement of water deficit at the vegetative and reproductive
periods (expressed in days after sowing—DAS) during the 2016/2017, 2017/2018 and 2018/2019
cropping seasons.

Cropping Season Sowing Water Deficit Induced
at Vegetative Stages

Water Deficit Induced
at Reproductive Stages Harvesting Period

2016/2017 19 October 2016 From 37 DAS to 54 DAS From 54 DAS to the
harvesting period From 116 DAS

2017/2018 18 October 2017 From 33 DAS to 62 DAS From 62 DAS to the
harvesting period From 139 DAS

2018/2019 16 October 2018 From 41 DAS to 64 DAS From 41 DAS to 90 DAS From 129 DAS

Soil moisture (0–20 and 20–40 cm depths) in IRR plots were daily monitored by
tensiometers, contributing to the determination of the amount of irrigation needed to keep
the soil water matric potential between −0.03 and −0.05 MPa. Tensiometers are composed
by a porous and permeable ceramic tip, placed in contact to the soil, and connected to
a vacuum gauge by a tube filled with water. When the water flows from the tube to the
soil (since it is not always saturated), a negative pressure is created and can be measured
by the vacuum gauge. Tensiometers were installed in each one of the four blocks, and
the irrigation schedule performed in the 2016/2017 and 2018/2019 cropping seasons is
described in Table 3. In the 2017/2018 cropping season, there was no need for irrigation,
and therefore, plants of IRR and NIRR treatments were under the same water availability.
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Table 3. Irrigation schedule in the 2016/2017 and 2018/2019 cropping seasons.

Cropping Season Days after Sowing Amount (mm) Length (min)

2016/2017

24 14.4 60
29 4.8 20
30 7.2 30
31 9.6 40
34 4.8 20
35 4.8 20
36 4.8 20
37 4.8 20
38 14.4 60

2018/2019

52 14.4 60
53 14.4 60
57 11.5 48
58 5.7 24
59 5.7 24
61 8.4 35
66 2.9 12
106 7.2 30
109 8.4 35
114 11.5 48
115 2.9 12
116 8.4 35
119 4.8 20

Soil moisture was monitored in all plots by gravimetric analysis at two periods across
each cropping season: transition between vegetative and reproductive stages (58 DAS, 57
DAS and 62 DAS in 2016/2017, 2017/2018 and 2018/2019 cropping seasons, respectively)
and close to the maturity period (112 DAS, 112 DAS and 2017 DAS in 2016/2017, 2017/2018
and 2018/2019 cropping seasons, respectively).

The growth stages of the soybean plants were weekly monitored from emergence to
maturation according to Fehr and Caviness [34].

Recorded by the weather station located within the experimental area, weather data
(air temperature, relative air humidity and rainfall) were monitored according to Sibaldelli
and Farias [35–37], and the climatic water balance for each experimental treatment of each
cropping season was calculated according to Thornthwaite and Mather [38].

Grain yield was calculated and corrected for 13% grain moisture, according to Equation (1):

GY =
(100−HGM)

(100−DGM)
× HGW × 10, 000

HPA
(1)

in which GY is the grain yield (kg ha−1), HGM the harvested grain moisture (%), DGM the
desired grain moisture (%), HGW the harvested grain weight (kg) and HPA the harvested
plot area (m2). Harvest grain moisture was measured using the G810 grain moisture meter
(Gehaka Inc., São Paulo, Brazil).

2.2. Spectral Data Acquisition and Processing

The FieldSpec 3 Jr spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA),
with spectral resolution of 3 nm between 350 and 1400 nm and 30 nm between 1400 and
2500 nm (Figure 2), was used to collect soybean leaf reflectance. Each spectral reading was
averaged by 20 internal automatic spectral readings, and the output spectra are given in
single bands of 1 nm width, 2151 contiguous spectral bands.
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Figure 2. Spectral assessment in field (a,b) and detail of the plant probe device (c). Photo by Décio de Assis—Embrapa Soja.

The leaf reflectance plant probe device, connected to the FieldSpec by a one-meter
bare fiber (Figure 2c), was used to prevent illumination interferences of adjacent targets
and atmospheric scattering and attenuation, not requiring, therefore, the application of
spectral filters for noise removal and data smooth [39–43]. With an internal 99% reflectance
board (Spectralon®), used as reflectance standard, and a 1% reflectance opaque and black
board, this device was used during the spectral assessment to ensure pure leaf reflectance
spectra collection.

Spectral data acquisition was performed at the central leaflet of the fullest expanded
third trifoliate leaf from the top. Leaf reflectance spectra were collected from four plants
within each subplot and then averaged, resulting in the values used on data processing,
minimizing, thus, the spectral variability within the same subplot.

A total of 7216 leaf reflectance was collected at 24 days in the three cropping seasons
(four sub-samples in each plot), resulting into 1804 spectral samples used in statistical
analysis, as described in Table 4. During the 2016/2017 cropping season, reflectance
data from cultivar BRS 184 were not collected. The days of spectral assessments are
represented in “days after sowing” (DAS). Because of the frequent spectral noises observed
on vegetation analysis, wavelengths between 350 and 399 nm were not considered [44,45].

Table 4. Description of days of spectral assessment (expressed in days after sowing—DAS) and
number of spectral samples in the 2016/2017, 2017/2018 and 2018/2019 cropping seasons.

2016/2017 Cropping Season 2017/2018 Cropping Season 2018/2019 Cropping Season

DAS Spectral Samples DAS Spectral Samples DAS Spectral Samples

28 64 29 80 41 80
33 64 37 80 50 80
44 64 42 80 57 80
57 64 57 80 64 80
69 64 78 80 79 80
89 64 96 80 87 80

112 60 106 80 94 80
- - 113 80 101 80
- - - - 107 80

2.3. Statistical Analysis

Once the assumptions of analysis of variance (ANOVA) had been met, soil moisture
and grain yield in each cropping season were submitted to ANOVA and means compared
by the Tukey’s test (p ≤ 0.05) via the software Sisvar [46].

Partial Least Squares Regression—PLSR

The partial least squares regression (p ≤ 0.05) was performed by The Unscrambler®

(CAMO Software—Norway) to develop a soybean grain yield prediction model by its
leaf-based hyperspectral reflectance.

The PLSR method correlates the spectral data (matrix “X”) to the grain yield (analytical
data—matrix “Y”) and creates a new dataset of orthogonal base vectors (latent variables
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or PLSR factors), which account for most of the variation in a trait variable, generating
a linear model consisting of waveband scaling coefficients to transform full-spectrum
data [47]. The number of orthogonal base vectors is considered a key process in the PLSR
and deeply affects its prediction capacity [42]. The ideal PLSR model should use the
number of orthogonal base vectors that presents the lowest value of root mean square
error (RMSE) through the “leave-one-out” cross-validation method, highest coefficient of
determination of multivariate regression (R2) and value of systematic error (BIAS) close to
zero [48].

At the first stage, PLSR was applied using the hyperspectral data from each day of
spectral assessment and the corresponding cropping season’s grain yield.

At the second stage, the possibility of developing a multi-year soybean grain yield
prediction model was evaluated. To do so, the spectral assessment at R5 phenological stage
(corresponding to the period when grains are being formed) of each cropping seasons were
pooled into the same dataset and analyzed together: 89 DAS (2016/2017 cropping season),
96 DAS (2017/2018 cropping season) and 94 DAS (2018/2019 cropping season), in a total
of 224 leaf reflectance samples.

The hyperspectral reflectance of soybean plants at R5 stage (224 samples) were ran-
domly split in two subsets: calibration/cross-validation (containing 75% of data—168
spectral samples), used to develop the PLSR model, and external validation (containing the
remaining 25% of the data—56 spectral samples), used to test the developed PLSR model.

At the third stage, aiming at investigating the individual effect of the experimental
treatments on the accuracy of grain yield prediction, the spectral samples from each
treatment (IRR, NIRR, WDV and WDR) at R5 phenological stage, comprising the three
cropping seasons, were fitted into separated models.

The fit quality of each developed PLSR model was assessed by the coefficient of
determination (R2), the root mean squared error (RMSE), the root mean squared error
expressed in percentage in relation to the amplitude of observed values (RMSE%) and the
systematic error (BIAS) at the calibration and cross-validation (using the leave-one-out
cross-validation method) steps. Specifically, at the second stage, the predictive accuracy of
the obtained PLSR model (generated using 75% of the soybean spectral data at R5 stage)
and tested using external samples (25% of the soybean spectral data at R5 stage) was also
assessed by the R2, RMSE, RMSE% and BIAS obtained in the external validation (predicted
Vs measured yield) step.

Before adjusting the PLSR models, reflectance spectra within each spectral dataset
were normalized (subtraction of mean reflectance from the actual reflectance at each
wavelength), allowing, thus, the comparison among the fitted coefficients in PLSR. Outliers
and homogeneity of the spectral data were assessed by the Leverage and Hotelling’s
T2 tests.

3. Results and Discussion
3.1. Effect of Experimental Treatments on Climatic Water Balance, Soil Moisture, Grain Yield and
Leaf Reflectance

The climatic water balance, calculated according to Thornthwaite and Mather [38] for
each experimental treatment of each cropping season, is presented in Figure 3.
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Figure 3. Climatic water balance at 10-day periods in the WDV (a), WDR (b), NIRR (c) and IRR (d) treatments in 2016/2017
cropping season; WDV (e), WDR (f), NIRR (g) and IRR (h) treatments in the 2017/2018 cropping season; WDV (i), WDR (j),
NIRR (k) and IRR (l) treatments in 2018/2019 cropping season.

The experimental treatments demonstrated to be efficient in promoting water deficit at
the vegetative (at December 1 and 2 10-day periods—Figure 3a,e,i) and at the reproductive
(3 December and 1, 2 and 3 January 10-day periods—Figure 3b,f,j) stages in the three
cropping seasons. However, the water deficit induced at reproductive stages revealed to
be more severe, most likely because of the longer period to which plants were submitted to
water withholding.

In the 2016/2017 cropping season, the 69.6 mm of irrigation between 24 and 38 DAS
were enough to maintain plants of IRR treatments under good conditions of water avail-
ability at 3 November and 1 December 10-day periods (Figure 3d) even under the absence
of severe water deficit across this cropping seasons (Figure 3c). Natural water deficit
periods could be observed in the 2018/2019 cropping season, both at the vegetative and
reproductive periods (Figure 3k), and the irrigation across crop development (106.1 mm)
sustained IRR plants under good water status at 1, 2 and 3 December, 2 January and 2
February 10-day periods (Figure 3l).

The soil moisture assessed on the transition between vegetative and reproductive
stages and close to the maturity period at the three evaluated cropping seasons is presented
in Figure 4.
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Figure 4. Soil moisture content (%) at 0–20 cm and 20–40 cm depths in the 2016/2017, 2017/2018 and 2018/2019 cropping
seasons at the transition between vegetative and re-productive stages (a) and close to maturity period (b). Means followed
by the same letter among treatments within each depth and on each date do not differ by Tukey’s test (p ≤ 0.05).

At the three cropping seasons, the soil moisture on WDV plots on the transition
between vegetative and reproductive stages (Figure 4a) demonstrated to be the lowest
among all treatments. Even though in the 2017/2018 cropping season, statistical differences
could not be detected, most likely because of the large amount of rainfall before the onset
of the rainout shelters (late October) and the atmospheric conditions at 3 November and 1
and 2 December 10-day periods, the average values at both depths indicate such a trend.

The soil moisture on the last day of spectral assessment in each cropping season, close
to maturation period (Figure 4b), revealed to be lower in WDR plots, due to the long period
to which plants were submitted to water deficit. In turn, in WDV plots, the soil moisture
demonstrated an increase, since plants began to be rain-watered.

Soybean grain yield in the 2016/2017, 2017/2018 and 2018/2019 cropping seasons
is presented in Figure 5. It is possible to observe that soybean plants under water deficit
during the reproductive stages had their grain yield drastically decreased. In the 2017/2018
and 2018/2019 cropping seasons, grain yield was reduced to less than a half of other levels
of water availability.
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Figure 5. Soybean yield in the 2016/2017, 2017/2018 and 2018/2019 cropping seasons (kg ha−1). Means followed by the
same letter do not differ by Tukey test (p ≤ 0.05).

In turn, soybean plants subjected to water deficit during the vegetative stages pre-
sented grain yield similar to plants under natural rainfall (NIRR treatment), demonstrating
that the water deprivation during reproductive stages is more harmful to soybean crop.
Several authors have reported similar values of soybean yield on plants under water deficit
during the vegetative stages (and rain watered during reproductive stages) compared to
plants under good conditions of water availability [49–52].

Although yield on irrigated plots were similar to non-irrigated plants in the 2016/2017
cropping season, due to the absence of severe natural water deficit (Figure 3c), in the
2018/2019 cropping season, when severe natural water deficit was observed, the IRR treat-
ment demonstrated higher grain yield compared to plants receiving only natural rainfall.

Figure 6 demonstrates the average spectral response of soybean genotypes on irrigated
(IRR) and water deficit induced at reproductive stages (WDR) treatments at 107 DAS in
the 2018/2019 cropping season (when severe natural water deficit was observed) and
their correspondent grain yield. It is possible to observe that plants with higher levels
of grain yield (irrigated treatment—blue dashed line) presented lower reflectance across
the spectrum compared to plants submitted to water deficit at reproductive stages (WDR
treatment—red dashed line), which presented lower values of grain yield.

Figure 6. Average spectral response of soybean genotypes on irrigated (IRR) and water deficit induced at reproductive
stages (WDR) treatments at 107 DAS in the 2018/2019 cropping season.

Damm et al. [53] developed a complete review highlighting that plants under water
deficit present higher values of reflectance in comparison to those under good conditions of
water availability. According to Maimaitiyiming et al. [54], because of the leaf biochemical
properties and structure, the differences in spectral responses of soybean plants under
different levels of water availability are not the same across the spectrum.
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Although differences in reflectance from IRR and WDR plants can be observed across
the spectrum, differences in visible wavelengths (around 550 nm) and shortwave infrared
wavelengths (around 1400 and 2200 nm) demonstrated to be better expressed.

Leaf reflectance across the visible spectrum (between 400 and 720 nm) has been
proven to have a direct relation with photosynthetic active radiation (PAR), influenced
by the interaction between electromagnetic energy and plant tissue compounds, e.g.,
chlorophyll a, b [55,56], carotenoids (β-carotene, lutein, violaxanthin and neoxanthin) [57],
flavonoids (flavones, flavonols, isoflavones and anthocyanins) [58–60]. Hence, high rates
of absorbed PAR deliver low reflectance, and low rates of absorbed PAR deliver high
reflectance at those wavelengths [61–65]. Soybean plants under water deficit present lower
photosynthetic and stomatal conductance rates [66,67], resulting in lower absorption of
PAR and delivering higher values of reflectance. Regarding the largest difference observed
across the visible spectrum, in the green wavelengths (around 550 nm), Moriwaki et al. [68]
observed larger absorption in this spectral interval with increasing chlorophyll contents,
albeit, no significant increases in blue or red absorptions.

Despite the absence of large difference in leaf reflectance across near-infrared wave-
lengths (between 720 and 1300 nm), it is possible to observe higher reflectance from WDR
plants. The near-infrared spectrum is associated to leaf physical structure and spatial distri-
bution of cells and also by water content [56,69,70]. Thus, the interaction of electromagnetic
energy inside the mesophyll leads to internal scattering [71–73] and promotes differences
in leaf reflectance.

The shortwave-infrared spectrum (between 1300 and 2500 nm) has been well character-
ized as negative related to vegetation water status and leaf water content. Braga et al. [17],
characterizing the relative water content in soybean plants submitted to irrigated and water
deficit conditions, demonstrated higher reflectance values for plants under water shortage.
Hence, plants under good conditions of water availability (IRR treatment) presented higher
levels of leaf water content and, consequently, lower values of reflectance [74–77].

The differences in reflectance across the spectrum play an important role in the mon-
itoring and differentiation of soybean crop water status and can contribute to the water
management and decision making across cropping season. Besides that, the spectral be-
havior from visible to shortwave infrared can provide important information for yield
prediction, and the understanding of the most correlated wavelengths to yield (also influ-
enced by the phenological iteration across cropping season).

3.2. Predicting Soybean Grain Yield through Partial Least Squares Regression—PLSR

The results of PLSR in the prediction of soybean grain yield for the 2016/2017,
2017/2018 and 2018/2019 cropping seasons are presented in Table 5.

In all days of spectral assessment, the correlation coefficient (R2) of the calibration step
was superior than the R2 found on cross-validation step. Consequently, the RMSE from the
cross-validation was larger than the values obtained in the calibration step.

In the 2016/2017 cropping season, the lowest values of R2 and highest values of
RMSE were observed at the early stages of crop development (28 and 33 DAS) both in
the calibration and cross-validation steps. On those dates, the R2 was lower than 0.168,
and the RMSE was over 588 kg ha−1 (19.96%). However, an increment in grain yield
prediction accuracy, with higher R2 and lower RMSE, was observed as the soybean crop
becomes developed.

Therefore, at 89 DAS, the highest R2 was obtained both at calibration and cross-
validation (0.731 and 0.595, respectively). On this date, the RMSE at the calibration step
was 334 kg ha−1 (11.33%) and 416 kg ha−1 (14.14%) at the cross-validation. This date
corresponds to the R5 phenological stage, when soybean grains are being formed.
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Table 5. Statistical parameters of partial least squares regression (PLSR) for soybean grain yield prediction in the 2016/2017,
2017/2018 and 2018/2019 cropping seasons, on each day of spectral assessment (expressed in days after sowing—DAS).

Cropping
Season

Days after
Sowing

Spectral
Samples Rc

2 Rcv
2 RMSEc (kg ha−1) RMSEcv (kg ha−1) RMSEc

%
RMSEcv

% BIAScv

2016/2017

28 64 0.168 0.088 588.43 625.72 19.96 21.22 7.286
33 64 0.134 0.083 600.12 627.55 20.36 21.29 0.854
44 64 0.407 0.105 496.77 619.91 16.85 21.03 6.646
57 64 0.573 0.316 421.44 541.83 14.29 18.38 4.036
69 64 0.641 0.529 386.42 449.36 13.11 15.24 7.225
89 64 0.731 0.595 334.11 416.81 11.33 14.14 −6.651
112 60 0.611 0.590 403.51 421.29 13.69 14.29 4.686

2017/2018

29 80 0.510 0.265 893.46 1108.96 19.76 24.52 −12.929
37 80 0.440 0.189 955.69 1164.52 21.13 25.75 −13.176
42 80 0.601 0.314 806.25 1070.67 17.83 23.67 7.477
57 80 0.159 0.167 1171.35 1180.37 25.90 26.10 32.699
78 80 0.913 0.881 374.97 445.10 8.29 9.84 2.867
96 80 0.924 0.885 351.49 437.22 7.77 9.67 5.618
106 80 0.921 0.866 358.21 473.19 7.92 10.46 3.037
113 80 0.847 0.842 498.32 513.24 11.02 11.35 3.300

2018/2019

41 80 0.542 0.329 826.84 1014.04 18.23 22.36 −0.107
50 80 0.251 0.094 1057.83 1178.01 23.32 25.97 −0.942
57 80 0.751 0.494 609.89 880.60 13.45 19.41 −6.239
64 80 0.858 0.443 460.64 923.32 10.16 20.36 −2.539
79 80 0.868 0.801 443.18 551.14 9.77 12.15 2.740
87 80 0.871 0.775 437.76 586.23 9.65 12.92 −8.600
94 80 0.891 0.810 403.59 538.47 8.90 11.87 −7.726
101 80 0.739 0.681 624.04 698.49 13.76 15.40 3.671
107 80 0.839 0.733 489.73 638.78 10.80 14.08 1.618

c. Calibration step. cv. Cross-validation step.

Although the accuracy in grain yield prediction increased as soybean crop developed,
at the last assessment day in this cropping season (112 DAS), the values of R2 demonstrated
to be lower and the RMSE higher compared to the previous assessment day. On this last
evaluation, soybean crop had reached the R6 phenological stage, indicating that grains
have been completely filled, and the maturation is initiating.

Based on the obtained results, the PLSR model demonstrated to be able to predict
soybean grain yield (ranging from 1221 to 4169 kg ha−1, as demonstrated by Figure 7) under
different levels of water availability with R2 between 0.731 and 0.595 and RMSE between
334 kg ha−1 (11.33%) and 416 kg ha−1 (14.14%) at the calibration and cross-validation
steps, respectively.

Figure 7. Boxplot of soybean grain yield in the 2016/2017, 2017/2018 and 2018/2019 cropping seasons and all data (all
cropping seasons).
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On the 2017/2018 cropping season, as it has been observed in the previous cropping
season, the lowest values of R2 and highest RMSE were obtained in the early stages of
crop development.

Following the results observed in the 2016/2017 cropping season, in the 2017/2018
cropping season, the highest accuracy in grain yield prediction was found at the R5 stage
(96 DAS), when the R2 at calibration and cross-validation were 0.924 and 0.885, respectively,
and the RMSE at both steps was 351.49 kg ha−1 (7.77%—calibration) and 437.22 kg ha−1

(9.67%—cross-validation). As previously discussed, decrease in R2 and increase in RMSE
values were observed as the crop reached the maturation stages of crop development
(113 DAS).

In this cropping season (2017/2018), the PLSR demonstrated to be able to predict
soybean grain yield under contrasting levels of water status across crop development,
resulting in yields ranging from 875 to 5398 kg ha−1, as shown in Figure 7.

The results of the PLSR in the prediction of soybean grain yield in the 2018/2019
cropping season corroborate the results observed in the 2016/2017 and 2017/2018 cropping
seasons, with lower values of R2 at the calibration and cross-validation observed on the
earliest days of spectral assessment.

In the 2018/2019 cropping season, the highest values of R2, both at the calibration
(0.891) and cross-validation (0.810), were obtained at the R5 stage (94 DAS), present-
ing the lowest values of RMSE (403.59 kg ha−1—8.90%—and 538.47 kg ha−1—11.87%—
respectively). A decrease in prediction accuracy was observed as the crop reaches the
maturation stages of development. In this cropping season, the observed yields ranged
from 287 to 4823 kg ha−1 (Figure 7).

In the three cropping seasons, the accuracy in soybean grain yield prediction demon-
strated to increase as the crop develops and to decrease as the crop reaches the maturation
stages of development. Similar results were reported by Herrmann et al. [21] who per-
formed the corn yield prediction using crop reflectance and PLSR. Christenson et al. [19]
collected hyperspectral data from soybean canopy between R1 and R6 reproductive stages
and applied PLSR to predict grain yield but did not conclude about the best stage for yield
prediction. The R5 phenological stage has been suggested to be more suitable for soybean
grain yield monitoring and prediction using satellite-based [11,13,78], UAV-based [15] and
field-based [52,79] remote-sensed data.

The highest accuracy for soybean yield prediction at R5 phenological stage is associ-
ated to the crop phenology, physiological responses according to the water availability and
time of inducement of water deficit. The R5 phenological stage corresponds to the period
when the grains are being formed, which represents the crop yield, being a result of several
physiological iterations during the cropping season. At this stage, most of physiological
iterations will be expressed on yield. Hence, the R5 phenological stage is the closest one
to yield itself, and spectral assessments during this stage are suitable to investigate the
relation between leaf reflectance and yield (also comprising its driving factors). In the
forthcoming development stages, the grains had already been formed and plants reached
their maturity. At this time, most biotic and abiotic factors that can provoke physiological
responses and, therefore, interfere in grain yield, as water availability, soil nutritional status,
plant diseases and insect attack, can no longer impair the crop production.

Regarding the physiological responses under different levels of water availability, the
lowest accuracy in yield prediction at the early phenological stages is associated to the
fact that soybean plants submitted to water shortage at vegetative stages demonstrated to
recover their physiological responses and to reach a similar yield compared to those plants
grown under good conditions of water availability (Figure 5). Hence, there is a trade-off
between early yield prediction and accuracy: plants from WDV treatment assessed at the
vegetative stages of development can be submitted to different water status (e.g., rainfall)
on forthcoming stages; likewise, plants from WDR treatment evaluated at vegetative stages
might be submitted to different conditions of water availability (e.g., water deficit) in the
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forthcoming development stages, which imposes limitation to the early prediction of yield
with high accuracy.

Considering the results found in the three evaluated cropping seasons (2016/2017,
2017/2018 and 2018/2019), the highest accuracy in soybean grain yield prediction was
obtained at 89 DAS, 96 DAS and 94 DAS, respectively, which correspond to the R5 stage.
Based on that, aiming at constructing a multi-year soybean grain yield prediction model,
the spectral data collected at 89 DAS (2016/2017 cropping season), 96 DAS (2017/2018
cropping season) and 94 DAS (2018/2019 cropping season), and their correspondent yields
were analyzed into a single PLSR model.

The results of the PLSR in the prediction of soybean grain yield at R5 stage, comprising
spectral data collected in the three evaluated cropping seasons (2016/2017, 2017/2018 and
2018/2019), are presented in Table 6. As it was expected, the highest accuracy in grain
yield prediction was found in the calibration step, followed by the cross-validation and
external validation. At the calibration, the highest R2 and lowest RMSE were observed
(0.775 and 574.52 kg ha−1—11.38%—respectively), while at the cross-validation, using the
leave-one-out method, the R2 demonstrated a slightly decrease (0.730), and the RMSE was
increased (634 kg ha−1—12.57%).

Table 6. Statistical parameters of PLSR for soybean grain yield prediction at the R5 phenological stage.

PLSR R2 RMSE (kg ha−1) RMSE% BIAS

Calibration 0.775 574.52 11.38 -
Cross-validation 0.730 634.44 12.57 −4.941

External validation 0.688 622.46 13.34 -

When applying the generated yield prediction model to external samples (external
validation), a positive correlation was achieved between the observed and predicted
soybean grain yield, as demonstrated by Figure 8.

Figure 8. Correlation between observed and predicted (external validation) values of soybean grain
yield through PLSR.

The regression analysis with an intersection passing through the origin (y = bx) re-
vealed an adjusted model (y = 0.9814 x) with coefficients of determination (R2) equal
to 0.688. The RMSE of the external validation (622 kg ha−1—13.34%) demonstrated an
increase of only 48 kg ha−1 in comparison to the calibration step.
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Hence, soybean grain yield ranging from 287 to 5398 kg ha−1 (Figure 7), due to the
different levels of water availability in the three evaluated cropping seasons, could be
predicted at the R5 stage, which denotes the possibility of applying the generated PLSR
model on forthcoming cropping seasons.

Similar results were obtained in research using crop reflectance and PLSR to predict
yield in major crops. Ancin-Murguzur et al. [26], predicting grassland yield, obtained R2

between 0.37 and 0.82 in the calibration step and between 0.56 and 0.71 in the validation
step. Estimating spring barley yield, Barmeier et al. [24] obtained R2 equal to 0.78 and
0.80 at calibration and validation steps, respectively. In the same context, Ferrio et al. [80]
predicted durum wheat yield with R2 equal to 0.81 and 0.76 at calibration and validation
steps, respectively, and R2 lower than 0.6 when using external validation. In winter wheat,
Sharabian et al. [23] demonstrated R2 equal to 0.66 and 0.73 at the cross and external
validation, respectively. Predicting corn yield, Herrmann et al. [21] obtained R2 equal to
0.77, 0.70 and 0.73 at calibration, cross and external validation steps, respectively.

Christenson et al. [19] used hyperspectral canopy reflectance and PLSR to predict
soybean grain yield. The authors obtained R2 between 0.18 and 0.67 depending on the ma-
turity group of the evaluated cultivars and R2 equal to 0.44 and RMSE equal to 841 Kg ha−1

when considering all cultivars into the same model.
Figure 9 presents the regression coefficients of the PLSR model for soybean grain yield

prediction at R5 stage. Although the PLSR coefficients demonstrated to be well distributed
across the spectrum, peaks were observed at 408, 550 and 702 nm (deeply influenced by
the absorption photosynthetic active radiation); 729 nm (correspondent to the slope in leaf
reflectance between the red and near-infrared wavelengths); 1000 and 1917 nm (associated
to the light scattering inside the mesophyll and leaf water content, respectively).

Figure 9. Regression coefficients of PLSR for soybean grain yield prediction at R5 stage.

The strong negative correlation at 702 nm is in accordance to previous research works
addressing the yield prediction through PLSR and canopy reflectance in major crops.
Ferrio et al. [80] observed negative correlation at 700 and 750 nm in the yield prediction
of durum wheat. Herrmann et al. [21] detected negative correlation at 740 nm aiming at
predicting corn yield. Estimating spring wheat yield, Øvergaard et al. [81] demonstrated a
negative correlation at 700 nm; Christenson et al. [19] observed a strong negative correlation
between the reflectance at 715 nm in the prediction of soybean grain yield.

To assess the individual effect of the experimental treatments on the prediction ability
of the PLSR, comprising the three cropping seasons at R5 stage, the spectral samples from
each treatment (IRR, NIRR, WDV and WDR) were fitted into separated PLSR models.
The performance of PLSR in the prediction of soybean grain yield at R5 stage in each
experimental treatment (water availability) is presented in Table 7.
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Table 7. Statistical parameters of PLSR for soybean grain yield prediction at R5 phenological stage
under the four experimental treatments (water availability) evaluated.

Treatment Spectral
Samples Rc

2 Rcv
2 RMSEc

(kg ha−1)
RMSEcv

(kg ha−1) RMSEc% RMSEcv % BIAScv

IRR 36 0.622 0.315 453.72 628.61 16.68 23.11 −24.25
NIRR 76 0.691 0.625 378.62 422.79 13.11 14.64 4.79
WDV 56 0.812 0.738 367.04 441.83 11.06 13.32 4.07
WDR 56 0.795 0.624 298.39 412.20 11.33 15.65 −16.60

c. Calibration step. cv. Cross-validation step.

The highest accuracy in grain yield prediction, both at the calibration and cross-
validation, was found on soybean plants that have been submitted to water shortage
during the vegetative stages of crop development and then rain watered from the flowering
period (WDV treatment). In accordance to these results, the WDR treatment demonstrated
the second highest accuracy in grain yield prediction, both at the calibration and cross-
validation steps.

In contrast, the lowest R2 and highest RMSE, both at the calibration and cross-
validation, were found on soybean plants from the irrigated (IRR) treatment. It is important
to emphasize that the IRR spectral samples from 2017/2018 cropping seasons were an-
alyzed into the NIRR treatment due to the absence of irrigation in this cropping season.
Although the prediction accuracy on NIRR demonstrated to be higher compared to the IRR
treatment, it was still inferior than the values obtained both in WDR and WDV treatments.

Much research suggests that the expression of drought tolerance genes in soybean
genotypes is higher in plants submitted to water deficit, as it might have occurred in the
WDV and WDR treatments, leading to physiological differences among soybean geno-
types [50,66,67,82,83] and resulting in spectral responses better correlated to grain yield.

Assessing the accuracy of PLSR to predict corn yield using canopy and leaves re-
flectance, Weber et al. [20] obtained better results on plants subjected to water deficit in
comparison to well-watered plants. Accordingly, Christenson et al. [19] reported limitations
when predicting soybean grain yield on irrigated plots.

The obtained results demonstrated that the use of leaf reflectance and PLSR is able
to predict soybean grain yield under different levels of crop water status. The highest
accuracy in the prediction of soybean grain yield under water shortage during vegeta-
tive and reproductive stages plays an important role, providing information for better
characterization and mitigation of the negative impacts of drought occurrence, leading
to adjustments in management practices and decision making regarding food security,
logistic, economic and social issues, minimizing potential losses.

The use of leaf-based hyperspectral data demonstrated to be feasible for soybean yield
prediction. Although the used sensor is a non-imaging sensor, providing only point-based
spectral acquisition, it provides a large number of bands at high spectral resolution, which
allows the characterization of multiple iterations between yield (as a result of crop physiol-
ogy) and reflectance across the spectrum. The methods used on the present manuscript
and the obtained results might contribute to future research aiming at yield monitoring
using hyperspectral sensors at different levels of data acquisition, including satellite and
UAV-based hyperspectral images. Considering that spectroradiometers are usually ex-
pensive, its intensive use on large areas might be undermined. However, considering
the most explanatory spectral bands for yield prediction, future research can focus on the
evaluation of narrow-band vegetation indices, centered on specific wavelengths, which can
be generated and acquired by digital cameras equipped with narrow-band-pass optical
filters, allowing the monitoring of large crop areas by unmanned aerial vehicles (UAVs).

4. Conclusions

This present paper addressed the prediction of grain yield in soybean crop grown
under different levels of water availability using reflectance spectroscopy and partial least
squares regression.
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Plants with higher levels of yield presented lower leaf reflectance across the spectrum.
Although differences in reflectance from IRR and WDR plants could be observed across the
spectrum, differences in visible wavelengths (around 550 nm), influenced by the interaction
between electromagnetic energy and plant tissue compounds, and shortwave infrared
wavelengths (around 1400 and 2200 nm), influenced by crop water status and leaf water
content, demonstrated to be better expressed.

The PLSR in the three evaluated cropping seasons (2016/2017, 2017/2018 and 2018/
2019) demonstrated the highest accuracy in soybean grain yield prediction at 89 DAS, 96
DAS and 94 DAS, respectively, which correspond to the R5 phenological stage. On these
dates, the R2 on the calibration step ranged from 0.731 to 0.924 and the RMSE from 334 to
403 kg ha−1 (7.77 to 11.33%), respectively.

Analyzing the three cropping seasons into a single PLSR model, soybean yield ranging
from 287 to 5398 kg ha−1 could be predicted at the R5 stage with R2 equal to 0.775, 0.730
and 0.688 at the calibration, cross-validation and external validation step, respectively. A
strong positive correlation was achieved between the observed and predicted soybean
yield, with RMSE equal to 622 kg ha−1 (13.34%), which denotes the possibility of applying
the generated PLSR model in forthcoming cropping seasons.

The obtained results demonstrated that the use of leaf reflectance and PLSR is able to
predict soybean grain yield under different levels of crop water status. The PLSR of each
experimental treatment at the R5 stage demonstrated higher accuracy for plants submitted
to water deficit both at the vegetative and reproductive periods in comparison to plants
under natural rainfall or irrigation. The accuracy in grain yield prediction under different
levels of crop water status provides valuable information for better characterization and
mitigation of the negative impacts of drought occurrence, leading to adjustments in man-
agement practices and decision making regarding food security, logistic, economic and
social issues, minimizing potential losses.
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