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Abstract: Similar to the Reflective Solar Band (RSB) calibration, Suomi-National Polar-orbiting
Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) on-board calibration of Day
Night Band (DNB) is based on the Solar Diffuser (SD) observations in the Low Gain State (LGS).
DNB has a broad spectral response covering a wavelength range roughly from 500 nm to 900 nm
with a large dynamic range from three different gain states called High Gain State (HGS), Mid
Gain State (MGS), and LGS. The calibration of MGS and HGS is also dependent on the LGS gain
estimation with the gain ratios for each gain state. Over the lifetime of S-NPP VIIRS operations, the
LGS gains have been derived from the on-board SD observations since its launch in October 2011.
In this study, the lifetime LGS gains are validated by the lunar calibration coefficients (defined as
F-factors) using a lunar irradiance model called Global Space-based Inter-Calibration System (GSICS)
Implementation of RObotic Lunar Observatory (ROLO) (GIRO). Using the moon as an independent
on-orbit calibration source, the S-NPP VIIRS DNB on-board SD based radiometric calibration is
validated by the lunar F-factors within two percent of the lunar F-factors in terms of the standard
deviation in the long-term trends over nine years of the S-NPP VIIRS operation.

Keywords: S-NPP VIIRS; day night band; lunar calibration; GIRO; ROLO; LGS

1. Introduction

The Suomi-National Polar-orbiting Partnership (S-NPP) satellite was launched on
October 28, 2011 including Visible Infrared Imaging Radiometer Suite (VIIRS) sensor to
provide continuous global observations following the legacy imaging instruments such as
National Aeronautics and Space Administration’s (NASA) Moderate Resolution Imaging
Spectroradiometer (MODIS) and National Oceanic and Atmospheric Administration’s
(NOAA) Advanced Very-High Resolution Radiometer (AVHRR) [1,2]. The VIIRS was
designed to have similar spectral responses and on-board calibration systems following
the historical MODIS instrument. The VIIRS has 14 Reflective Solar Bands (RSBs) and 7
Thermal Emissive Bands (TEBs) and a Day Night Band (DNB) covering a spectral range
from 400 nm to 12,322 nm with spatial resolution of 750 m for medium resolution (M)
bands and 350 m for Imaging resolution (I) bands with nadir observations. In addition to
the RSBs and TEBs, DNB is a unique panchromatic band approximately covering 500 nm to
900 nm with capability of day and night observations from its Low Gain State (LGS), Mid
Gain State (MGS), and High Gain States (HGS). The three gain states cover a radiometric
dynamic range from 3 nano Watts to 2 × 10−2 W/cm2, which is wide enough for the day
and night observations.

DNB is on a temperature controlled Focal Plane Assembly (FPA) at a nominal temper-
ature of 253 K and it has a backside-illuminated Charge-Coupled Device (CCD) detector
chip with four different sets of sub-pixel detectors as shown in Figure 1. The DNB FPA is
located adjacent to the Visible and Near Infrared (VIS/NIR) FPA. There are 672 sub-pixels
in along-track direction and three different Time Delay Integration (TDI) configurations

Remote Sens. 2021, 13, 1093. https://doi.org/10.3390/rs13061093 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3572-6525
https://doi.org/10.3390/rs13061093
https://doi.org/10.3390/rs13061093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13061093
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13061093?type=check_update&version=2


Remote Sens. 2021, 13, 1093 2 of 12

for each gain state. The LGS detector array has no TDI whereas MGS and HGS has 3
and 250 TDIs, respectively. The 250 TDI and the two identical HGSA and HGSB reduce
noise and radiation impacts in data by averaging the multiple observations and detectors.
The signals from all four detector arrays are digitized and an appropriate gain state is
selected by logic on the DNB Timing card in the VIIRS Electronics Module (EM) for the best
representation of the EV scene [3]. The 672 sub-pixel responses are aggregated to 16 repre-
sentative pixels with the 32 aggregation zones. The aggregation zones are determined by
the scan angles to compensate for the bow-tie effects. Details of the VIIRS DNB operations
are well described in the Joint Polar Satellite System (JPSS) VIIRS Radiometric Calibration
Algorithm Theoretical Basis Document (ATBD) [3].
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Figure 1. S-NPP VIIRS DNB and visible (VIS)/near-infrared (NIR) Focal Plane Assembly (FPA)
sub-detector and detector layout [3].

Similar to RSB calibration, DNB on-board calibration is based on the Solar Diffuser
(SD) and corresponding Space View (SV) observations in the LGS. The SD degradation,
which is estimated by the Solar Diffuser Stability Monitor (SDSM) collections, compensates
the time-dependent reduction of SD surface reflectance of the prelaunch Bidirectional
Reflectance Distribution Function (BRDF) [4,5]. The ratio between the estimated radiance
from the Sun and the biased removed SD Digital Number (DN) is the on-orbit gain factor
in the LGS [6]. When deriving the estimated radiance of the SD from the Sun, the spectral
response of the Rotating Telescope Assembly (RTA) needs to be considered. Since there
was continuous RTA mirror darkening due to the Tungsten contamination on the surface
of the mirror [7,8], the contamination of the mirror was modeled and applied to get time-
dependent modulated Relative Spectral Response (RSR) in the LGS gain estimation.

As an alternative source of calibration, scheduled lunar observations has been used
to validate the on-orbit calibration for the earth observing sensors like SeaWifs, Terra and
Aqua MODIS, Landsat-8 Operational Land Imager (OLI), and Geostationary Operational
Environmental Satellite (GOES)-10 visible imager channels [9–13]. Previously, the lunar
collections were used only for the RSB bands of VIIRS and the lunar calibration coefficients
were compared with the SD based calibration coefficients (called F-factors) [4,5,14]. In
this work, we provide descriptions of current DNB lunar calibration algorithm used by
NOAA radiance team validating the on-orbit SD calibration by the lunar calibration results.
For accurate estimation of lunar calibration, we present detailed steps of the on-orbit
modulated RSRs modeling, the lunar irradiance model called GIRO, verified Raw Data
Record (vRDR) pixel count conversions, radiance to irradiance conversion using lunar
phase angles and distance, and long-term DNB calibration stabilities in comparisons with
the DNB radiometric calibration uncertainty requirements.
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2. On-orbit DNB Calibration
2.1. Primary On-Orbit DNB Calibration Using SD

As a sun-synchronous, polar orbiting and scanning radiometer, S-NPP VIIRS provides
four different on-orbit data sets of Space View (SV), Earth View (EV), Blackbody (BB), and
SD and SDSM views in order of the RTA scan direction as shown in Figure 2. The BB, SD,
and SDSM view data sets are used for on-orbit calibration for TEB and RSB calibration
along with the SV data, which provides detector bias at the zero signal [14–17]. The
BB is temperature controlled at 292.5 K with a very high emissivity and the on-orbit BB
observations are used as a reference for the TEB calibration.
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For RSB calibration, the SD BRDF provides the prelaunch calibration traceability
to the National Institute of Standards and Technology (NIST) standard. When VIIRS is
on-orbit, the SD gets illuminated by the Sun and starts reflectance degradation especially
in the short wavelengths due to exposure to solar UltraViolet (UV) and energetic particle
radiation [18,19]. The estimation of SD degradation is one of the key factors of on-orbit
calibration and it is called H-factor. The H-factor is also used for DNB on-orbit calibration
in following Equation (1).

G(h, d, Ag) =
cosθSD RVSSD

∫ ∅sun(λ)
4πd2 τSD BRDF(λ)RTA H(λ,t)RSR(λ,t)dλ/

∫
RSR(λ,t)dλ

dnSD(h,d,Ag) (1)

In Equation (1), G is named as gain (but actually it is 1/gain), h is Half Angle Mirror
(HAM) side, d is DNB detector, Ag is aggregation zone, θSD is solar incident angle to
the SD screen, RVSSD is Response Versus Scan angle (RVS) at the SD angle, φSD(λ) is
the solar irradiance value at the a wavelength λ, d is the distance between the Sun and
sensor, τSDBRDF(λ)RTA is the BRDF combined with SD transmittance function, H is the
SD degradation, and dnSD(h,d,Ag) is bias removed (denoted as lower case) DN. The detector
bias removal of the SD observation is performed by removing zero signal from the SV
observation in the same scan of RTA.

In the early lifetime of S-NPP VIIRS, significant optical degradation was reported in
the SD signal due to an unexpected RTA mirror darkening [7]. An anomaly investigation
team was formed and concluded that it was caused by the deposition of a thin layer of
tungsten oxide (WOx). With UV exposure, the thin layers of the WOx on the surface of
the mirrors darken the reflectance of the mirrors mostly 500 nm to 2500 nm range with
a peak value at 1000 nm. The RTA degradation significantly modified the shape of RSR,
and the changes were included in the DNB calibration as shown in Equation (1). The RTA
degradation model and its parameters were adapted from a NASA team’s study [20].
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2.2. Scheduled Lunar Collection

VIIRS can view the moon through the SV port with the RTA scan angles from −66.1
to −65.25 degrees just before the start of Earth View (EV) scans in the direction of rotation
as shown in Figure 3. A lunar roll maneuver is predicted and performed at the time of
scheduled lunar collection to place the moon at the center of SV port. During the roll
maneuver, a sector rotation is also applied to put the SV port at the center of EV frame. The
sector rotation is necessary because it expends the availability of dark space pixel frames to
estimate the detector bias in each scan. The sector rotation also corrects the Band-to-Band
Registrations (BBR) differences, which exist in the SV observations [21]. In the RSB and TEB
bands, the gain state is forced to be in the high gain state for dual gain bands but DNB gain
selection was not affected by this operational command. Figure 4a shows a raw Digital
Number (DN) image of the scheduled lunar collection on 4 April 2020. The corresponding
pixel based gain states are shown in Figure 4b. The DNB on-board processor selects LGS
for the bright earth and moon pixels, MGS for around and left side of space pixels and
HGS for the left side of the moon.
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Figure 4. A scheduled lunar collection on 4 April 2020. (a) shows the raw Digital Number (DN)
image and (b) shows the pixel gain states selected by the on-board DNB processor. The black, gray,
and white areas represent HGS, MGS, and LGS, respectively.

Since 2 April 2012, there are 64 scheduled lunar collections over the nine years of
operation as of 5 May 2020. In one year cycle, there are months where the scheduled lunar
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observations are not possible from June to September (or October), because the moon goes
below the Earth limb [22]. In this study, all the moon collections are used and derived the
lunar calibration coefficients called lunar F-factors.

2.3. Lunar Radiance and Irradaince Calculation

For a scheduled lunar collection, the normal NOAA Science Data Record (SDR) gran-
ules does not provide any image data but the EV data are populated with a fill value during
the lunar roll maneuver. To get the raw EV image like Figure 4a, a software tool called
ADL (Algorithm Development Library) is used converting the Raw Data Record (RDR) to
verified-RDR (vRDR) as an intermediate file before generating a normal SDR [16,23]. In the
vRDR file, the DNB pixels include gain information and DN values are mixed in the 16 bits.
The first three bits are assigned for gain state and the numbers in the three bits indicate
different gain states. The gain number one for high gain, two for mid gain, and three for
low gain pixels. The rest of 13 bits are assigned for the EV DN responses. Figure 4a shows
raw DN image before the decoding of the gain and DN information segregation. Once the
normal DN values are retrieved, the right detector bias values need to be found from a
LUT and removed in each gain state. Because of the automatic gain selection process, there
are all three gain states around the moon observations as shown in Figure 4b.

The detector bias values are read from the DN0 Look-Up-Table (LUT) to get the right
bias values for each detector and aggregation zone one where the moon is located during
the scheduled lunar collections. In addition to the gain estimation, the determination of the
dark bias is one of the key steps, because any error in the bias estimation will propagate
to the final radiance value through the DNB calibration equation. To determine the dark
offset in the three different gain states, there have been monthly special acquisitions known
as the VIIRS recommended operating procedures (VROPs) during a new moon dark night
over the Pacific Ocean [6,24,25]. Especially for HGS, dark offset estimation is very sensitive
to the stray light. An improved algorithm for determining the DNB HGS dark offset was
proposed and improved HGS dark offset estimation by combining the DNB BB data and
the VROP data sets [26]. Once the dark offset is correctly removed from EV DN in each
pixel from the DN0 LUT as indicated by Equation (2), a bias removed DN (indicated in the
lower case letters) can be used for further radiance calculation.

dnEV(h, g, d, f r) = DNEV(h, g, d, f r)− DN0(h, g, d, f r) (2)

In Equation (2), h represents the ham side, g is gain in each pixel, d is detector number,
and fr is frame number of the pixel. For the LGS pixels, the EV radiance is simply multiplied
by LGS gain and divided by the RVS as shown in Equation (3).

LEV_LGS(h, g, d, f r) =
G[h, d, Ag( f r)]dnEV(h, g, d, f r)

RVSEV(at SV)
R(1, MDS[Ag] or HGS[Ag]) (3)

In Equation (3), the G is LGS gain, which is determined by Equation (1), Ag is ag-
gregation zone determined by the frame number in the DNB EV image and RVSEV is EV
dependent RVS specified in each aggregation zone. Actually, the RVS at SV is used instead
of nadir (aggregation zone 1) in Equation (3), since the scheduled lunar data is sector ro-
tated to locate the SV frame to be at the center of EV fame. For LGS state R is one, whereas
the MGS or HGS EV pixel radiance is calculated by applying the correct ratio for the gain
state. The ratio LUT indicated by R in Equation (3) is derived from the SD observations in
each aggregation zone which transfers gain from LGS to MGS or LGS to HGS according to
the gain state information in each pixel. These two ratios are quite stable over the lifetime
of S-NPP VIIRS operation according to the NOAA Integrated Calibration Validation Sys-
tem (ICVS) Webpage at http://www.star.nesdis.noaa.gov/icvs/status_NPP_VIIRS.php
(accessed on 11 March 2021). Figure 5 shows scheduled lunar collection near the center of
the EV frame at aggregation zone 1 after the detector offset and gain corrections. Compared

http://www.star.nesdis.noaa.gov/icvs/status_NPP_VIIRS.php
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to the raw DN image in Figure 4a, the lunar radiance image in Figure 5 provides the true
shape and intensity of the moon in the DNB.

Since GIRO provides irradiance, the observed lunar radiance needs to be converted to
irradiance value to match the units. Once lunar radiance values are ready, the observed
lunar irradiance can be calculated by using satellite-moon distance and lunar phase angle
information as shown in Equation (4). The LAvg in Equation (5) is the mean radiance of
the Moon pixels after the summation over all the detectors and frames over the number of
effective lunar pixels (N).

IObserved =
π·R2

moon

D2
Sat_Moon

·1 + cos(θ)
2

·LAvg/FWHMRSR (4)

LAvg = ∑
Pixel

LPixel(b)
N

(5)
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In Equation (4), Rmoon is radius of moon, DSat_Moon is distance between satellite and
moon, θ is phase angle of the moon. All the moon pixels are accumulated and divided by
the number of pixels in Equation (5). The FWHMRSR is the time-dependent Full-Width
at Half-Maximum (FWHM) of the RSR at the time of scheduled lunar observation. The
current DNB radiance unit is per centimeter square Steradian. To match up with the
lunar irradiance model unit of per meter square Steradian micrometer, the FWHMRSR
needs to be divided in Equation (4). Since the RSR changes over time because of the
RTA degradation, the RSR FWHM also needs to be accurately estimated for the observed
irradiance calculation. The number of effective pixels is determined by a threshold of the
6 percent of maximum height of the lunar radiance. A threshold based method is selected
to find the number of effective pixels (N), because (1) there are some bright and dark spots
on the moon surface as shown in Figure 5; (2) there are some topographic features near the
termination line of the shadow (not near the circular edge part of the moon); and (3) GIRO
irradiance takes into account on these features.

2.4. Lunar Irradiance from the GIRO and Lunar F-Factor

The USGS ROLO model provides lunar irradiance over the VIS/NIR spectrum
range accounting geometric dependences to the lunar phase angle which is the angle
between Moon–Sun and Moon–Earth vectors, Earth–Sun distance, Moon–Earth distance
and libration angle [27–30]. Using more than 1000 ground based telescope collections
over 10 years, ROLO can provide estimated lunar irradiance at the time of satellite
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collection covering a spectral range from 350 nm to 2450 nm. The atmospheric cor-
rection and the radiometric reference of ROLO was based on the simultaneous mea-
surements of Vega which caused absolute scale biases. However with the absolute
scale problems, the ROLO model has been routinely used for relative radiometric cal-
ibrations of the Terra and Aqua MODIS and SeaWiFS [31,32]. Because of the frequent
use of the moon for on-orbit calibrations and inter-calibrations, an international col-
laboration group called European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) implemented the ROLO model as a standard lunar calibration
tool for the GSICS community in collaborations with USGS, NASA, Centre National
d’Etudes Spatiales (CNES) and Japan Aerospace Exploration Agency (JAXA). The GIRO
provides unified lunar irradiance value under the framework of GSICS and the required
input and output formats are well documented in the GSICS Lunar Calibration website
(http://gsics.atmos.umd.edu/bin/view/Development/LunarWorkArea accessed on 12
March 2021). For current lunar calibration, we used the “compulsory” option, which
requires satellite position, observation time, and band RSR information to the GIRO model.
In the output NetCDF file, the model provides the lunar irradiance over the provided
sensor RSR at the specific satellite position and collection time. The unit of output lunar
irradiance is in Watts per meter square per micrometer (Wm−2µm−1). The diagram of
GIRO compulsory option is shown in Figure 6.

As discussed in Section 2.1, DNB is a spectrally broad band and the on-orbit VIIRS
RSRs have been continuously changed due to the RTA mirror darkening. As a result,
the RSR input definition file also needs to be changed at the time of observation for each
scheduled lunar collection. This is a unique situation for S-NPP VIIRS especially for DNB
calibration as a spectrally broad band. To get the accurate GIRO lunar irradiances, new
sets of input files with observation time, satellite position and the DNB RSR at the time of
lunar collection are generated and processed.
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Once the lunar irradiance from the GIRO model and the observed lunar irradiance
values are ready, the lunar F-factor can be calculated by the ratio between the irradiance
values as shown in Equation (6).

FLunar(band) =
IGIRO(band)

IObserved(band)
(6)
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3. Results
3.1. The S-NPP VIIRS DNB RSR

As mentioned in Section 2.1, the S-NPP VIIRS have experienced spectral band response
changes over time due to the Tungsten oxides film deposition on the RTA mirrors. The
wavelength and time dependent RTA degradation effects and the modulated RSRs are
shown in Figure 7a. For accurate DNB calibration, time-dependent RSR changes need to
be tracked and applied which will affect the total radiance at each spectral wavelength as
shown in Figure 7b. The DNB RSR is greatly affected by the RTA degradation, especially
below 1 µm range and the yearly RSRs showed the differences after 0.5, 1, 2, 3, and 7 years
of operation. The RTA degradation was greatly affected in early lifetime and it gradually
slowed down in the later part of operations. We used NASA team’s RSR degradation
model by Ning Lei [33] in this work. According to the DNB calibration in Equations (1)
and (3), the modulated RSR information should be used in the observed lunar radiance
and irradiance estimations.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 13 
 

 

 242 
Figure 6. The GIRO compulsory option diagram described in the GSICS Lunar Calibration website 243 
at (http://gsics.atmos.umd.edu/bin/view/Development/LunarWorkArea) (accessed on 11 March 244 
2021). 245 

Once the lunar irradiance from the GIRO model and the observed lunar irradiance 246 
values are ready, the lunar F-factor can be calculated by the ratio between the irradiance 247 
values as shown in Equation (6).  248 

𝐹௅௨௡௔௥(𝑏𝑎𝑛𝑑) =
𝐼ீூோை(𝑏𝑎𝑛𝑑)

𝐼ை௕௦௘௥௩௘ௗ(𝑏𝑎𝑛𝑑)
 (6)

3. Results 249 
3.1. The S-NPP VIIRS DNB RSR 250 

As mentioned in Section 2.1, the S-NPP VIIRS have experienced spectral band re- 251 
sponse changes over time due to the Tungsten oxides film deposition on the RTA mirrors. 252 
The wavelength and time dependent RTA degradation effects and the modulated RSRs 253 
are shown in Figure 7a. For accurate DNB calibration, time-dependent RSR changes need 254 
to be tracked and applied which will affect the total radiance at each spectral wavelength 255 
as shown in Figure 7b. The DNB RSR is greatly affected by the RTA degradation, espe- 256 
cially below 1 µm range and the yearly RSRs showed the differences after 0.5, 1, 2, 3, and 257 
7 years of operation. The RTA degradation was greatly affected in early lifetime and it 258 
gradually slowed down in the later part of operations. We used NASA team’s RSR degra- 259 
dation model by Ning Lei [33] in this work. According to the DNB calibration in Equations 260 
(1) and (3), the modulated RSR information should be used in the observed lunar radiance 261 
and irradiance estimations.  262 

  

 

 
(a) (b) 

Figure 7. Time-dependent RTA darkening due to Tungsten oxides on the mirror surface (a) and
corresponding modulated Relative Spectral Response (RSR) (b).

3.2. VIIRS Observed Lunar Radiance

In each scheduled lunar collection, the center aggregation zone image is properly
trimmed around the moon and the raw pixels are converted to pixel DN and gain infor-
mation. The lifetime operational LGS gains that are calculated from the SD observations
are shown in Figure 8a. In each gain state of the pixel, the radiance values are found
after removing the corresponding bias value. Once the radiance of all the lunar pixels
are calculated the irradiance can be derived by applying Equation (4). When the satellite
position and observation time are given to the GIRO model, it provides the phase angle
of the moon and the distance between satellite and moon for the lunar irradiance calcula-
tion in Equation (4). Another input parameter called FWHM is shown in Figure 8b from
the RTA simulation and provided to Equation (4) using linear interpolation at the lunar
collection time.

The FWHM of the modulated RSR has been reduced over the lifetime. The RTA
darkening did not affect the shape of the RSR near the left side lobe near 500 nm in
Figure 7a. However, on the right side of RSR around 900 nm, there was significant RTA
darkening, gradually reducing the response over time as shown in Figure 7b. As a result of
the RSR degradation on the right side of the RSR, the FWHM values are also reduced as
shown in Figure 8b.
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In each pixel of the moon, the right detector bias value is found from the DN0 LUT. If
the pixel is HGS or MGS, the gain ratio of the detector is chosen from the gain ratio LUTs.
The corresponding LGS gain is interpolated from the LGS gain LUTs as shown in Figure 8a.
The mean lunar radiance is measured and shown in Figure 9.
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Figure 9. The VIIRS observed mean lunar radiance. Independent linear fits are performed before
and after the 1500 Days Since Launch (DSL).

The mean radiance trend is quite noisy around 0.009 Watts per centimeter square
Steradian with annual oscillations over the 9 years of S-NPP operation. The mean radiance
value seems to degrade to 0.008 starting from 1500 days in Figure 9. Independent linear
fits are applied before and after the 1500 Days Since Launch (DSL) and a steeper negative
slope is observed in the latter part of VIIRS mission compared to the initial period.

3.3. VIIRS Observed Lunar Irradiance and Lunar F-Factor

These radiance values are converted irradiance using phase angle, distance between
moon and satellite, and FWHM. Figure 10a,b show the phase angle and the distance be-
tween moon and satellite. The lunar phase angle has been maintained around −51 degrees
to mitigate additional uncertainty from the lunar model by keeping it at a stable level.
Near the months when scheduled lunar observations are out of range, there are lunar
roll maneuver free collections because of the constraints of the positive satellite roll angle.
With the no roll maneuver collections, the location of the moon can be closer to the earth
limb than normal collections as shown in Figure 4, which also increases uncertainties of
lunar calibration.
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Figure 10. Lunar phase angles (a) and the distance between moon and satellite (b) for the scheduled lunar collections.

Figure 11a shows observed lunar irradiance in red triangles and GIRO model irradi-
ance in black diamonds. The GIRO and observed irradiances are matching very well but
GIRO irradiance values are slightly lower than observed lunar irradiance, since GIRO has
absolute calibration uncertainty issues from the radiometric calibration reference Vega and
atmospheric corrections for the ROLO model. The GIRO and observed lunar irradiance are
mostly matching within five percent level of VIIRS DNB radiometric uncertainty require-
ments. There are some observation points that are quite different from the GIRO irradiance
values in Figure 11a. It usually happens with the no-roll maneuver collection before and
after the annual gaps. These extreme points are not considered in the final lunar F-factor
plot in Figure 11b. GIRO can be used to check the long-term relative stability of a lunar
imaging sensor. Figure 11b shows the lunar F-factors and it is quite stable over time within
two percent level over the nine years with the standard deviation of 0.0198. In an ideal
case, the lunar F-factors should be near unity, but there is a small long-term downward
trend in the F-factors with a slope of 0.0026 per year. Since the measured long-term trend
slope of 0.0026 (0.26%) per year is larger than the suggested instrument precision of 0.1%
from SeaWiFS [34], this indicates that the SD LGS gain may over estimated aggregation
zone 1 LGS gains, and it reduces the lunar F-factors in Figure 11b.
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According to the VIIRS requirements, DNB radiance for a uniform scene shall have
calibration uncertainty of 5 percent at the half maximum radiance and 10 percent at the
minimum radiance for the LGS [3]. The lunar F-factors proves the DNB on-orbit SD based
radiometric calibration uncertainty requirements within five percent level compared to the
GIRO lunar irradiance model. This study uses a unique irradiance method by using the
whole moon based solid angle calculation with the phase angle consideration. On top of it,
the simulated FWHM correction is applied to the observed lunar irradiance calculation
from the RTA Tungsten oxide-darkening model. In the lunar F-factor plot Figure 11b,
the trend is mostly flat until day 1500 but it shows slight downward degradation about
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two percent until recent collection. NOAA VIIRS SDR team is closely monitoring this
long-term F-factor trend to investigate the possible sources of calibration error in the DNB
LGS gain calculations.

4. Conclusions

This study presented the on-orbit S-NPP VIIRS DNB radiometric calibration compari-
son results between the primary SD observations and alternative monthly scheduled lunar
collections. Initially, the time-dependent RSRs are calculated from the tungsten oxide thin
film model and applied to the SD LGS gain estimations. The lifetime SD LGS gains are
interpolated to calculate the observed lunar radiance along with the detector bias (called
DN0) and gain ratio LUTs. In each scheduled lunar collection, the observed lunar radiance
is converted to lunar irradiance using the satellite-moon distance, phase angle of the moon,
and the FWHM of the modulated RSR. Along with the observed lunar irradiance, the
GIRO model provides lunar irradiance from the inputs of lunar observation time, satellite
location, and the modulated DNB RSR at the lunar observation time. Finally, the lunar
F-factors are calculated from the irradiance ratio between the GIRO and VIIRS observation.
In an ideal case, the lunar F-factors are expected to be near unity. The overall on-orbit
DNB SD LGS gains showed very stable responses compared to the GIRO lunar irradiance
model meeting the S-NPP VIIRS product specification of five percent. The current on-orbit
DNB calibration showed expected stability with a large margin; however, the calculated
lunar F-factors showed a slight linear downward trend of −0.26 percent per year over
the nine years operations. These calibration differences can be used for the future S-NPP
recalibration for the better quality of VIIRS DNB products.
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