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Abstract: The adaptability and stability of new bread wheat cultivars that can be successfully grown 

in rainfed conditions are of paramount importance. Plant improvement can be boosted using effec-

tive high-throughput phenotyping tools in dry areas of the Mediterranean basin, where drought 

and heat stress are expected to increase yield instability. Remote sensing has been of growing inter-

est in breeding programs since it is a cost-effective technology useful for assessing the canopy struc-

ture as well as the physiological traits of large genotype collections. The purpose of this study was 

to evaluate the use of a 4-band multispectral camera on-board an unmanned aerial vehicle (UAV) 

and ground-based RGB imagery to predict agronomic traits as well as quantify the best estimation 

of leaf area index (LAI) in rainfed conditions. A collection of 365 bread wheat genotypes, including 

181 Mediterranean landraces and 184 modern cultivars, was evaluated during two consecutive 

growing seasons. Several vegetation indices (VI) derived from multispectral UAV and ground-

based RGB images were calculated at different image acquisition dates of the crop cycle. The mod-

ified triangular vegetation index (MTVI2) proved to have a good accuracy to estimate LAI (R2 = 

0.61). Although the stepwise multiple regression analysis showed that grain yield and number of 

grains per square meter (NGm2) were the agronomic traits most suitable to be predicted, the R2 were 

low due to field trials were conducted under rainfed conditions. Moreover, the prediction of agro-

nomic traits was slightly better with ground-based RGB VI rather than with UAV multispectral VIs. 

NDVI and GNDVI, from multispectral images, were present in most of the prediction equations. 

Repeated measurements confirmed that the ability of VIs to predict yield depends on the range of 

phenotypic data. The current study highlights the potential use of VI and RGB images as an efficient 

tool for high-throughput phenotyping under rainfed Mediterranean conditions. 

Keywords: high-throughput phenotyping; drought stress; UAV imagery; ground-based RGB im-

age; vegetation indices; phenology; grain yield; biomass 

 

1. Introduction 

Wheat is the main crop around the world and provides 18% of the global human 

intake of calories and 20% of protein (http://www.fao.org/faostat/ accessed on 14 Decem-

ber 2020). Since global wheat demand is predicted to increase by 60% by the year 2050, 

there is an urgent need to raise wheat production by 1.7% per year until then [1]. There-

fore, the rate of genetic improvement required in the next decades is higher than that 

achieved so far [2]. Given the limitations imposed by the soil availability for agricultural 

Citation:  Rufo, R.; Soriano, J.M.; 

Villegas, D.; Royo, C.; Bellvert, J.  

Using Unmanned Aerial Vehicle and 

Ground-Based RGB Indices to  

Assess Agronomic Performance of 

Wheat Landraces and Cultivars in a 

Mediterranean-Type Environment. 

Remote Sens. 2021, 13, 1187. 

https://doi.org/10.3390/rs13061187 

Academic Editor: Ittai Herrmann 

Received: 23 January 2021 

Accepted: 18 March 2021 

Published: 20 March 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: ©  2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Remote Sens. 2021, 13, 1187 2 of 18 
 

 

uses, most increases rely on the release of improved cultivars with enhanced yield poten-

tial and stability under variable environmental conditions. Drought stress during the 

grain filling period, originating from a combination of water deficit and high tempera-

tures, is the main constraint on wheat yield in semi-arid environments, such as the Medi-

terranean Basin [3], which has been identified as one of the regions most sensitive to the 

effects of climate change. A reduction of 20% in yearly precipitation and a mean temper-

ature increase of 4 °C have been predicted for this area by climate change models 

(http://www.ipcc.ch/ accessed on 14 December 2020) [4]. For this reason, breeding pro-

grams are focusing on the adaptability and stability of new cultivars that can be success-

fully grown in dry areas [5]. 

There is a general agreement that phenotyping is currently the bottleneck for further 

yield increases in breeding programs [6]. The availability of cost-effective technologies 

able to phenotype large number of plots in a rapid, cost-effective, and high spatial resolu-

tion way is essential for genetic progress [7]. In recent years, high-throughput phenotyp-

ing (HTP) has been increasingly used in plant breeding to estimate traits such as yield, 

green biomass, plant height, and leaf area index (LAI) [8–10]. Among the different ap-

proaches used for field HTP, remote sensing permits nonintrusive, nondestructive, high-

throughput monitoring of agronomic, physiological, and architectural plant traits [11]. In 

HTP, this approach is mostly through spectral vegetation indices (VI), which are obtained 

from the formulation of different wavelengths mostly located at the visible, red-edge, and 

near-infrared [12]. Usually, these indices are calculated from multispectral cameras in-

stalled on-board an unmanned aerial vehicle (UAV), with the main advantage being the 

capacity for screening hundreds of plots in a short period of time [13,14]. Various authors 

have stressed the suitability of using VI measured early in the season for grain yield fore-

casting [15], although anthesis and milk grain development have been shown to be more 

useful for yield appraisal in wheat [16,17]. Some of them have shown a root mean square 

error (RMSE) ranging from 0.57 to 0.97 t/ha for predicting yield in wheat [18,19]. Other 

methodologies also use machine-learning regressions, chemometrics, radiative transfer 

models, photogrammetry, or hybrid approaches to estimate vegetation traits [20–22]. On 

the other hand, far-infrared (thermal) radiation and LIDAR sensors have been respec-

tively used to estimate plant water status [23] and to characterize the architectural features 

[24].  

Red-green-blue (RGB) imagery, obtained from conventional digital cameras, has also 

been reported to be a suitable method to calculate vegetation indices for wheat breeding 

in water-limited environments [25]. Conventional digital cameras are more affordable, 

portable, and easy to use, being a cost-effective way to obtain images of a large number of 

samples with minimum effort [26]. Moreover, their use has also been proposed in breed-

ing programs for assessing plant traits such as green biomass since the calculation of veg-

etation indices is based on simple methods that can obtain data automatically from a high 

number of images [25]. Some studies have demonstrated that vegetation indices derived 

from RGB cameras are also able to give the same or better results as those obtained from 

multispectral images [9,27]. Kefauver et al. [27] compared UAV and field-based high-

throughput phenotyping using RGB cameras for assessing nitrogen use efficiency (NUE) 

in barley. It was found that the regression models explained 77.8% and 71.6% of the vari-

ance in yield from UAV and ground data, respectively, while combining the datasets led 

to an increase in the explanation of variance to 82.7%. Gracia-Romero et al. [9] compared 

the performance of RGB images acquired from ground and aerial cameras to estimate 

yield in maize under different levels of phosphorus fertilization. The authors found that, 

in general, ground-based RGB indices correlated in a comparable way with grain yield.  

Most studies comparing the performance of RGB and multispectral images for the 

assessment of wheat traits have been conducted on sets of semidwarf cultivars grown in 

well-irrigated fields, where the expression of the yield potential and the range of pheno-

typic values are maximized, or under different irrigation treatments [28]. However, infor-

mation is lacking regarding the suitability of remote sensing images to predict agronomic 
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traits of wheats with contrasting canopy architectures under rainfed conditions. The cur-

rent study examines the performance of VIs obtained at different dates from a 4-band 

multispectral camera (Parrot Sequoia) on-board UAV and those obtained from ground-

based RGB images to assess agronomic traits of large panels of bread wheat landraces and 

modern cultivars adapted to Mediterranean conditions. 

2. Materials and Methods 

2.1. Experimental Field Setup and Agronomic Data Recording 

A collection of 365 bread wheat (Triticum aestivum L.) genotypes from the 

MED6WHEAT IRTA-panel [29] was used in this study. The collection consisted of 181 

landraces and 184 modern cultivars from 24 and 19 Mediterranean countries, respectively 

(Table S1). Field experiments were conducted at Gimenells, Lleida (41°38’ N and 0°22’ E, 

260 m a.s.l) under rainfed conditions for two consecutive growing seasons, 2016‒2017 and 

2017‒2018. Experiments followed a nonreplicated augmented design with two replicated 

checks (cv. ‘Anza’ and ‘Soissons’) and plots of 3.6 m2 (1.2 m wide × 3 m long) with eight 

rows spaced 0.15 m apart. The seed rate was adjusted to 250 germinable seeds per m2 and 

the plots were kept free of weeds and diseases. The sowing dates were 21 November 2016 

and 15 November 2017.  

Phenology was assessed based on the scale of Zadoks et al. [30]. A growth stage (GS) 

was considered to have been achieved when at least 50% of the plants reached it. The 

following six GS were determined at each plot: stem elongation or when the first node 

was detectable (S, GS31); booting, determined when boots swollen (B, GS45); heading (H, 

GS55); anthesis (A, GS65); medium milk-grain development (M, GS75); and hard-dough 

grain development (D, GS87). Meteorological data were recorded from a weather station 

placed in the experimental field. 

The following agronomic traits were measured: yield, biomass, number of spikes per 

square meter (NSm2), number of grains per square meter (NGm2), and thousand kernel 
weight (TKW). The NSm2, NGm2, and TKW were obtained from samples collected at ma-

turity one week before harvest from 1-m-long central row of each plot. After harvesting, 

plants were stored in a glasshouse in paper sacks at room temperature during five months 

until processing. Subsequently, samples were processed as dry matter after drying them 

at 70 °C for 24 h to determine the aboveground biomass (t/ha). The plots were mechani-

cally harvested at maturity, and the grain yield (GY, t/ha) is expressed on a 12% moisture 

basis.  

The fraction of intercepted photosynthetically active radiation (fiPAR) was measured 

from 13:00 to 15:00 (local time) at each image acquisition date in 64 different plots of each 

landrace and modern set of genotypes using a portable ceptometer (AccuPAR model LP-

80, decagon devices Inc., Pullman, WA, USA). Measurements were collected in clear sky 

conditions. Two measurements per plot were recorded by placing the ceptometer in a 

horizontal position at ground level. A fixed tripod connected to the sensor allowed us to 

collect the incident radiation above the plants. These measurements were also used to 

obtain the leaf area index (LAI) using the Norman‒Jarvis model [31], and assuming a leaf 

area distribution parameter for wheat as 0.96.  

2.2. Remote Sensing Images Acquisition 

During the first growing season, both ground-based RGB and multispectral UAV im-

ages were acquired on the following three dates: 28 March (128 days after sowing, DAS); 

21 April (151 DAS), and 19 May (179 DAS). Figure 1 shows the color of the different gen-

otypes in the field at the three image acquisition dates. The adverse meteorological condi-

tions during the spring of the second year hindered image capturing at the early growth 

stages. Therefore, images were collected on April 17 (153 DAS) and May 18 (184 DAS), to 

match the main growth stages of the crop. Table 1 summarizes the growth stages of the 

genotypes included in the panel at each image acquisition occasion. 
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Table 1. Number and percentage of genotypes showing each growth stage at each image acquisi-

tion occasion. 

Landraces 2016–2017 

Date Days after sowing Growth stage Number of genotypes (%) 

28 March 2017 128 Stem elongation 181 100 

21 April 2017 151 Booting 95 53 

  Heading 53 29 

  Anthesis 29 16 

  Milk development 4 2 

19 May 2017 179 Milk development 52 29 

  Dough development 129 71 

Modern 2016–2017 

28 March 2017 128 Stem elongation 169 92 

  Booting 15 8 

21 April 2017 151 Booting 8 4 

  Heading 72 39 

  Anthesis 45 25 

  Milk development 59 32 

19 May 2017 179 Dough development 184 100 

Landraces 2017–2018 

17 April 2018 153 Stem elongation 97 53 

  Booting 83 46 

  Heading 1 1 

18 May 2018 184 Milk development 109 60 

  Dough development 72 40 

Modern 2017–2018 

17 April 2018 153 Stem elongation 26 14 

  Booting 126 69 

  Heading 32 17 

18 May 2018 184 Milk development 66 36 

  Dough development 118 64 

 

Figure 1. Field view of both collection sets, landraces and modern cultivars, at each image acquisi-

tion date of the growing season 2016–2017. DAS, days after sowing. 

2.2.1. Ground-Based RGB Vegetation Indices 

Ground-based RGB images were collected in clear-sky conditions from 12:00 to 14:00 

(local time) over the two years at the same day as UAV multispectral image acquisition. 

Ground-based RGB images were taken following the methodology reported by Casadesús 

and Villegas [26]. A digital camera (Sony Alpha A5000, TYO, JPN) was used, with an ob-

jective Sony 16‒50 mm at the minimum focal length, 19.8 megapixels of resolution, fixed 

aperture of F3.5, shutter speed of 1/250, without flash, and the aperture in automatic. 

When the plants were shorter than 120 cm, pictures were taken by holding the camera at 

150 cm, approximately 50 cm from the border of the plot and oriented downwards. Once 
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the average plot height exceeded 120 cm (which was the case with some landraces), it was 

necessary to use a camera stick at 170‒190 cm. Three pictures were obtained per plot with-

out stopping, covering the central rows of each plot in a zenithal plane. All the images 

were 1152 × 768 pixels, saved in JPEG format and processed with open-source BreedPix 

v0.2 software [25]. RGB indices were calculated based on properties of color related to the 

“greenness” of the canopy. Ten vegetation indices (VIs) were calculated following the pro-

tocol described in Casadesús et al. [25] (Table 2). As described in Kefauver et al. [27], hue, 

intensity, and saturation are the components of the HIS (hue–intensity–saturation) color 

space. Similar to intensity is the parameter lightness in both CIE-Lab and CIE-Luv color 

spaces, defined by the Commission Internationale de l’Éclairage (CIE), where a* and u* 

represent a color in an axis from green to red and b* and v* from yellow to blue according 

to the human visual system. 

Table 2. Red-green-blue (RGB) vegetation indices, based on different color properties, used in the 

study. 

Parameter Definition Reference 

Intensity Brightness of the image from black to white 

[32] 

Hue Color tint 

Saturation Amount of tint 

Lightness Overall albedo from the HIS color space 

a* 
Red‒green spectrum of chromaticity 

u* 

b* 
Yellow‒blue color spectrum 

v* 

GA Green area 
[25] 

GGA Greener area 

2.2.2. Multispectral Images Acquired with the UAV 

The UAV used for the multispectral image acquisition was the DJI S800 EVO hexa-

copter (Nanshan, CHN) (Figure 2a). Flight altitude was 40 m above ground level (AGL). 

The multispectral camera used was a Parrot Sequoia (Parrot, Paris, France) with a 1.2 

mega-pixel sensor yielding a resolution of 1280 × 960 pixels. Horizontal, vertical, and di-

agonal field of view (HFOV, VFOV, and DFOV) provided by the optical focal length were 

61.9°, 48.5°, and 73.7°, respectively. The camera included four individual image sensors 

with filters centered at the wavelengths and full-width half-max bandwidths (FWHM) of 

550 ± 40 (green), 660 ± 40 (red), 735 ± 10 (red edge) and 790 ± 40 nm (near infrared), respec-

tively. The Parrot Sequoia camera includes a separate sunshine sensor that measures solar 

irradiance in the same spectral bands as the four image sensors. Flight plans were de-

signed for 80% image overlap along flight paths. In addition to the radiometric corrections 

made by the internal solar irradiance sensor, corrections were conducted through in situ 

spectral measurements with black-and-white ground calibration targets, bare soil, and 

wheat plots using the JAZ-3 Ocean Optics STS VIS spectrometer (Ocean Optics, Inc., Dun-

edin, FL, USA) with a wavelength response from 350 to 800 nm (Figure 2b, Table S2). In 

2017, data from white calibration targets was not used due to saturation problems (Table 

S2). The calibration of the spectrometer measurements was taken using a reference panel 

(white color Spectralon and dark) laid on the ground as targets before and after the flights. 

Image orthorectification was completed using ground control points (GCP). The position 

of the center of each GCP was acquired with a handheld GPS (Global Positioning System) 

(Geo7x, Trimble GeoExplorer series, Sunnyvale, CA, USA). All images were mosaicked 

using the Agisoft Photoscan Professional software (Agisoft LLC., St. Petersburg, Russia) 

and pixel-based georectification was done with the software QGIS version 3.2.0 (USA, 

http://www.qgis.org). The collected multispectral images were used to calculate several 
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vegetation indices (VI), which were carefully selected based on the relationship to certain 

specific features of plant physiology [33] (Table 3). 

 

Figure 2. (a) Unmanned aerial vehicle (UAV) Hexacopter DJI S800 EVO used to collect the multi-

spectral images of the experimental plots; (b) reference targets used for the geometric and radio-

metric calibrations. 

Table 3. Vegetation spectral indices evaluated in this study. 

Vegetation In-

dex 
Equation  Reference 

NDVI (R790 – R660)/(R790 + R660)  [33] 

RDVI (R790 – R660)/√𝑅790 + 𝑅660  [34] 

MSAVI ½  [2 R790 + 1 ‒ √(2 𝑅790  +  1)2– 8 (𝑅790 − 𝑅660)]  [35] 

MTVI2 

[1.5 (1.2 (𝑅790 – 𝑅550) –  2.5 (𝑅660 – 𝑅550))]

√(2 𝑅790  +  1)2– (6 𝑅790 − 5 √𝑅660) − 0.5 

 
 [36] 

TCARI/OSAVI 

3 [(𝑅735 – 𝑅660) – 0.2 (𝑅735 – 𝑅550) (𝑅735/𝑅660)]

(1 + 0.16) 
(𝑅790 − 𝑅660)

(𝑅790 + 𝑅660 + 0.16)
 

 
 [37] 

GNDVI (R790 – R550)/(R790 + R550)  [38] 

2.3. Statistical Analysis 

Restricted maximum likelihood (REML) was used to estimate the variance compo-

nents and produce the best linear unbiased predictors (BLUPs) for agronomical traits, VIs, 

and RGB indices, following the MIXED procedure of the SAS-STAT statistical package 

(SAS Institute, Inc., Cary, NC, USA). To assess differences between genotypes, years, and 

flight occasions, one-way ANOVAs were conducted separately for the 181 landraces and 

the 184 modern cultivars. LAI measurements were regressed with all the VIs described 

previously using aggregated data of the two growing seasons for landrace (N=320) and 

modern (N=320) panels separately and joining both panels (N=640). Stepwise linear re-

gression models were fit to the relationships between genotypic means for agronomic 

traits as dependent variables and UAV or RGB vegetation indices calculated at each flight 

occasion as independent ones. Since 12 landrace cultivars were considered outliers for its 

VI values, stepwise linear regression was conducted on 169 landraces and 184 modern 

cultivars. To assess the relationship between agronomic traits (yield, biomass, NSm2, 

NGm2, and TKW) and VIs, both the landrace and modern sets were randomly and equally 

divided into two independent groups: one for training purposes called training dataset 

and the other as an evaluation group for the prediction accuracy called test dataset. All 

the statistical analyses and randomly splitting data for predictive modelling were carried 

out using the JMP v13.1.0 statistical package (SAS Institute, Inc.), considering a signifi-

cance level of p < 0.05. 
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3. Results 

3.1. Environmental Conditions 

The experimental site is representative of the Mediterranean climate, characterized 

by an uneven distribution of rainfall during the season, low temperatures in winter that 

rise sharply in spring, and high temperatures continuing until the end of the crop cycle 

(Figure 3). The first growing season had less rainfall (105 mm) than the second one (269 

mm) during the growth cycle from sowing (December) to maturity (June). Moreover, wa-

ter scarcity was significantly higher in the 2016‒2017 growing season than in the 2017‒

2018 growing season, mostly during the grain-filling periods, which received 5 mm and 

147 mm of rainfall, respectively.  

 

Figure 3. Monthly rainfall (mm), and minimum (Tmin) and maximum (Tmax) temperatures dur-

ing the growth cycle of each growing season. 

3.2. Agronomic Performance 

The number of genotypes, minimum, maximum, mean, and standard deviation (SD) 

values for each dataset, trait, and growing season are shown in Table 4. The analysis of 

variance (ANOVA) for the agronomic traits was performed separately for landraces and 

modern genotypes (Table 5). Given that the year effect was significant for all traits in the 

two types of germplasm (except for biomass in the landrace set), the results are presented 

independently for each growing season. The percentage of variability for all traits ex-

plained by genotype was much higher than that explained by the year or by the year x 

genotype interaction. The contribution to total variation by the year effect was lower than 

that of the year x genotype interaction for all traits, except for NGm2 in both landrace and 

modern genotypes and for TKW in modern genotypes. F-values showed that all agro-

nomic traits, except biomass, differed significantly between landraces and modern geno-

types. All the evaluated traits, except thousand kernel weight (TKW), were higher in 2018 

than in 2017 in the whole collection. Grain yield, NGm2, TKW, and biomass were also 

higher in modern cultivars than in landraces in both years. The evaluated traits had a 

higher coefficient of variability (CV) in both years. 

  



Remote Sens. 2021, 13, 1187 8 of 18 
 

 

Table 4. Main descriptive statistics for yield (t/ha), biomass at ripening (t/ha), number of spikes per square meter (NSm2), 

number of grains per square meter (NGm2), and thousand kernel weight (TKW, g) for the sample datasets used in the 

models. N, number of genotypes; Min, minimum values; Max, maximum values; SD, standard deviation. 

Set Agronomic traits  
Training Test 

N Min Max Mean SD N Min Max Mean SD L
an

d
race 2016–

2017 

Yield (t/ha) 84 

  

  

  

  

3.0 8.3 5.0 0.9 85 

  

  

  

  

3.2 8.5 5.2 0.9 

Biomass (t/ha) 8.6 24.5 15.5 3.5 6.5 24.5 15.9 3.4 

NSm2 386 761 544 73 381 686 542 63 

NGm2 7438 20,154 12,764 2481 8180 23,003 13,082 2742 

TKW (g) 27.0 51.6 38.9 5.2 23.3 52.7 39.8 5.1 L
an

d
race 2017–

2018 

Yield (t/ha) 84 

  

  

  

  

3.6 7.2 5.5 0.7 85 

  

  

  

  

4.1 9.0 5.8 0.9 

Biomass (t/ha) 7.1 29.9 16.1 4.7 6.7 33.9 16.9 5.2 

NSm2 372 824 580 94 345 889 583 95 

NGm2 13,035 22,227 16,357 1645 12,917 24,836 17,130 2650 

TKW (g) 19.9 49.3 33.9 6.3 17.9 49.0 34.6 7.5 

M
o

d
ern

 2016– 

2017 

Yield (t/ha) 92 

  

  

  

  

7.1 11.8 9.5 0.9 92 

  

  

  

  

6.5 11.7 9.4 1.1 

Biomass (t/ha) 8.5 22.9 16.4 2.9 10.2 22.9 16.3 3.0 

NSm2 253 820 486 117 280 813 471 108 

NGm2 14,276 31,452 22,630 3628 12,520 33,852 22,170 4251 

TKW (g) 31.3 58.8 42.8 5.2 32.6 58.1 43.3 5.1 

M
o

d
ern

 2017–

2018 

Yield (t/ha) 92 

  

  

  

  

6.9 12.0 10.0 1.0 92 

  

  

  

  

7.3 12.4 10.0 1.0 

Biomass (t(ha) 10.4 39.0 19.2 4.6 6.2 29.4 19.6 3.9 

NSm2 200 973 583 149 220 920 585 142 

NGm2 17,002 34,191 26,848 3706 17,752 41,629 26,718 4082 

TKW (g) 29.7 51.1 37.7 4.2 24.4 51.3 38.1 4.6 

Table 5. Analysis of variance performed separately for 181 landraces and 184 modern cultivars and values for grain yield, 

biomass, number of spikes per square meter (NSm2), number of grains per square meter (NGm2), and thousand kernel 

weight (TKW) for each growing season. SS, sum of squares. CV, coefficient of variability. * p < 0.05. ** p < 0.01. *** p < 0.001. 

Landraces Modern 

  Yield (t/ha)  
Biomass 

(t/ha) 
NSm2 NGm2  TKW (g) 

Yield 

(t/ha)  

Biomass 

(t/ha) 
NSm2 NGm2  

TKW 

(g) 

SS Year (%) 8.4 0.8 5.3 38.3 15.0 6.2 14.2 14.2 23.9 22.5 

SS Genotype (%) 63.7 52.6 55.9 40.1 64.8 64.7 42.9 50.6 62.5 64.2 

SS Year × Genotype (%) 27.9 46.6 38.8 21.5 20.1 29.1 42.9 35.2 13.6 13.3 

F year 50.3*** 2.8 23.1*** 296.7*** 125.6*** 38.8*** 61.0*** 74.0*** 322.1*** 309.2*** 

F genotype 2.3*** 1.1 1.4** 1.8*** 3.2*** 2.2*** 1.0 1.4** 4.6*** 4.8*** 

CV (%) 
2016–2017 17.9 22.2 12.5 20.2 13.1 10.7 18.0 23.5 17.6 11.9 

2017–2018 14.7 30.1 16.2 13.4 20.1 9.9 22.1 24.9 14.5 11.6 

Mean  
2016–2017 5.1 15.7 543 12,923 39.4 9.5 16.4 479 22,400 43.0 

2017–2018 5.6 16.5 582 16,746 34.3 10.0 19.4 584 26,783 37.9 

Minimum  
2016–2017 3.0 6.5 381 7438 23.3 6.5 8.5 253 12,520 31.3 

2017–2018 3.6 6.7 345 12,917 17.9 6.9 6.2 200 17,002 24.4 

Maximum  
2016–2017 8.5 24.5 761 23,003 52.7 11.8 22.9 820 33,852 58.8 

2017–2018 9.0 33.9 889 24,835 49.3 12.4 39.0 973 41,629 51.3 

3.3. LAI Prediction through Vegetation Indices 

Estimates of LAI were carried out with aggregated data of the two growing seasons 

for landraces and modern sets separately. Although LAI measurements were regressed 

with all the VIs reported in Tables 2 and 3, only the NDVI, GNDVI, modified triangular 

vegetation index (MTVI2), GA, GGA, Hue, a*, and u* showed significant relationships (p 

< 0.001) (Table 6). Despite the lower R2 values for landraces, LAI predictions for both pan-

els showed similar slopes for the relation between observed LAI and estimated LAI. Thus, 

LAI was assessed for the whole collection, joining data from landraces and modern geno-
types of the two growing seasons. The highest R2 for LAI estimates using UAV multispec-

tral images was obtained with the MTVI2 (R2 = 0.61), which showed a RMSE of 1.17. On 

the other hand, Hue was the ground-based RGB index with the highest R2 (R2 = 0.45) and 

a RMSE of 1.40. 



Remote Sens. 2021, 13, 1187 9 of 18 
 

 

Table 6. Statistically significant (p < 0.001) relationships between leaf area index (LAI) measured with the ceptometer and 

vegetation indices (VIs) obtained from UAV multispectral and RGB images. Calculations have been made with aggregated 

data of the two growing seasons and image acquisition occasions joining germplasm collections and for landraces and 

modern sets separately. ns, no significant. RMSE, root mean square error. 

Method VI Equation R2 RMSE Equation R2 RMSE Equation R2 RMSE 

    Landraces + Modern (N=640) Landraces (N=320) Modern (N=320) 

UAV  

Multispectral 
NDVI y = 11.63x – 5.55 0.38 1.48 y = 10.74x - 4.49 0.16 1.45 y = 11.06x - 5.22 0.43 1.47 

  GNDVI y = 8.89x – 2.54 0.18 1.70 ns y = 9.42x - 3.35 0.26 1.67 

  MTVI2 y = 7.45x – 1.01 0.61 1.17 y = 7.11x - 0.72 0.39 1.24 y = 7.58x - 1.10 0.66 1.12 

Ground-based 

RGB 
GA y = 7.18x – 1.36 0.41 1.43 y = 8.04x - 2.00 0.20 1.41 y = 6.71x - 1.09 0.45 1.43 

  GGA y = 4.52x – 1.86 0.39 1.45 y = 4.47x + 2.07 0.29 1.33 y = 4.27x + 1.89 0.38 1.52 

  Hue y = 0.09x – 2.91 0.45 1.40 y = 0.10x - 3.59 0.33 1.29 y = 0.08x - 2.44 0.45 1.44 

  a* y = 0.18x – 2.04 0.22 1.66 ns y = -0.18x + 1.96 0.21 1.73 

  u* y = 0.19x – 3.05 0.3 1.57 y = -0.16x + 3.54 0.15 1.46 y =-0.18x + 2.99 0.3 1.63 

Then, the LAI of all plots was estimated through MTVI2, considering the growth 

stage of each genotype at each flight occasion. LAI varied significantly between the set of 

genotypes and years (p < 0.001) at each flight occasion and growth stage. Figure 3 shows 

that LAI was higher in 2018 than in 2017 for both landraces and modern cultivars. In the 

first growing season (2016‒2017), landraces had LAI values significantly higher than those 

of modern cultivars at 128 DAS and 151‒153 DAS, but similar at 178‒184 DAS (Figure 3a). 

Maximum LAI values for landraces and modern cultivars in 2017 were obtained at the 

booting and stem elongation stages, respectively (Figure 3b). The LAI of landraces in 2017 

was significantly higher than modern cultivars until anthesis, when it decreased signifi-

cantly until the values were lower than those estimated in the modern panel. Therefore, 

the LAI of modern cultivars started declining later than in landraces. In 2018, the LAI of 

landraces and modern cultivars had a similar pattern throughout the growing season 

without significant differences between them, except at the hard dough-grain stage, 

where the LAI of landraces was slightly lower than that of modern cultivars (Figure 3b). 

 

Figure 3. Mean values in 2017 and 2018 of leaf area index estimated through MTVI2 for landraces 

and modern cultivars at: (a) each date of image acquisition expressed in days after sowing (DAS), 

and (b) each growth stage. S, stem elongation; B, booting; H, heading; A, anthesis; M, milk-grain 

development; D, hard dough-grain development. Different letters at each date or growth stage 

indicate significant differences at p ≤ 0.01 using Tukey’s honest significant difference test. 

3.4. Performance of Stepwise Regression Models 
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Table 7 shows the main statistics of the models built to estimate the different agro-

nomic traits with UAV multispectral and RGB VIs for each year and germplasm set. Scat-

ter plots for the relation between estimated and observed agronomic traits on the test da-

taset based on Table 7 equations are shown in Figures S1 and S2. The results indicate that 

the training models developed from multispectral images were significant for all traits, 

germplasm sets, and years, with the exception of NSm2 for the landraces set in 2018. Grain 

yield and NGm2 were the traits showing the highest R2 in both germplasm collections. 

Most of the equations developed with multispectral VI had in common the NDVI and 

GNDVI indices, although in some cases MTVI and MSAVI also appeared. The models 

constructed with RGB-VI were also statistically significant in all cases except for biomass 

and NSm2 for the landraces set in 2018. Yield was also one of the most predictive traits. 

Test models obtained with the corresponding dataset also showed the highest R2 for 

yield and NGm2, using either multispectral or RGB VIs. However, R2 tended to be slightly 

lower for the latter. For multispectral VI, the maximum R2 obtained to predict yield in 

landraces and modern cultivars was 0.36 and 0.43, respectively, which corresponded to 

an RMSE of 0.28 t/ha and 0.39 t/ha. In addition, the maximum R2 for NGm2 predictions 

through multispectral VIs was 0.19 and 0.38 for landraces and modern genotypes, respec-

tively, corresponding with RMSE values of 768 and 1835 grains/m2 (Table 7). Considering 

training and test model values together, the highest R2 for yield was obtained in modern 

genotypes, being higher for the growing season 2016‒2017 (R2 = 0.43 and R2 = 0.37 through 

UAV and RGB imagery, respectively) than in the next growing season (R2 = 0.29 and R2 = 

0.45 through UAV and RGB imagery, respectively). 

Table 8 shows the training and test statistics for the five agronomic traits obtained 

with aggregated datasets of the two growing seasons for landraces and modern cultivars. 

Scatter plots for the relation between estimated and observed agronomic traits on the test 

dataset based on Table 8 equations are shown in Figures S3 and S4. In general, the models 

fitted better for modern cultivars. The test models for most agronomic traits were not sig-

nificant in the set of landraces. In general, both test and training models improved when 

the data from two growing seasons were analyzed together. Grain yield and NGm2 were 

again the traits that showed the highest R2, using either UAV multispectral and RGB VIs 

(Table 8). For these two traits, despite the R2 of training models being higher in modern 

cultivars, the RMSE tended to be lower in landraces. For the models built with multispec-

tral VI, the RMSE in yield predictions ranged from 0.26 to 0.32 t/ha and from 0.34 to 0.38 

t/ha, for landraces and modern cultivars, respectively. The models built with ground-

based RGB VIs had RMSE values ranging from 0.28‒0.50 t/ha and 0.39‒0.54 t/ha for land-

races and modern cultivars, respectively. The highest R2 for yield training models of land-

races were obtained with ground-based RGB VI, testing data with the dataset correspond-

ing to 2018 (R2 = 0.30). In contrast, training model of yield in modern genotypes had the 

highest R2 using UAV multispectral VI, testing data in the dataset of 2017 (R2 = 0.51).  
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Table 7. Training and test statistics of the models for the estimations of agronomic traits through UAV multispectral and 

RGB VIs for each germplasm set and growing season. *p < 0.05. **p < 0.01. N, number of genotypes; R2, determination 

coefficient; RMSE, root mean standard error; Yield (t/ha); NSm2, number of spikes per square meter; NGm2, number of 

grains per square meter; TKW, thousand kernel weight (g); I, intensity; L, lightness; S, saturation. Number after each VI 

means the flight occasion: 1, 128 DAS; 2, 151‒153 DAS; 3, 179‒184 DAS. 

UAV multispectral Ground-based RGB 

Set Traits 
Training Test Training Test 

N Equation R2 N R2 RMSE N Equation R2 N R2 RMSE 

L
an

d
races 2016

–2017 

Yield 84 
‒26.69 + 31.89GNDVI_1 + 

5.98NDVI_3 
0.18** 85 0.18** 0.45 84 

40.45 + 2.26GA_3 + 12.77S_3 ‒ 

0.91L_1 ‒ 0.15b*_2 
0.45** 85 0.28** 0.66 

Bio-

mass 
 

‒130.27 + 29.05MSAVI_2 + 

135.54GNDVI_2 
0.18**  ns 1.41  ‒17.65 + 40.58GGA_1 0.11**  ns 1.04 

NSm2  ‒2167.28 + 2958.35GNDVI_2 0.15*  ns 27.22  
‒731.73 + 8062.69I_3 ‒ 58.49L_3 ‒ 

64.60a*_2 
0.24**  0.10** 37.05 

NGm2  
‒73937 + 9059.90NDVI_3 + 

92920GNDVI_1 
0.27**  0.08** 1204  34836 ‒ 544.90L_2 0.12**  ns 867 

TKW  
172.87 ‒ 173.71GNDVI_2 + 

40.10GNDVI_3 
0.15**  ns 1.86  ‒115.24 + 614.25I_2 ‒ 106.53I_3 0.17**  ns 2.06 

L
an

d
races 2017

–2018 

Yield 84 0.006 + 7.01GNDVI_3 0.18** 85 0.36** 0.28 84 ‒4.53 + 0.08Hue_2 ‒ 0.18a*_3 0.33** 85 0.25** 0.34 

Bio-

mass 
 ‒26.24 + 46.70MSAVI_2 0.10**  ns 1.34  ns ns  ns ns 

NSm2  ns ns  ns ns  ns ns  ns ns 

NGm2  
‒2167724 + 2631346GNDVI_2 

+ 12018GNDVI_3 
0.24**  0.19** 768  19077 ‒ 25561I_2 ‒ 453.53a*_3 0.10**  0.16** 590 

TKW  ‒11.97 + 57.72RDVI_2 0.15**  ns 2.22  52.23 ‒ 209.47S_2 ‒ 1.72a*_2 0.29**  0.11** 2.92 

M
o

d
ern

 2016
–2017 

Yield 92 
‒9.23 + 8.09NDVI_3 + 

19.68MTVI_2 
0.28** 92 0.43** 0.39 92 4.93 ‒ 0.15a*_3 ‒ 0.27u*_1 0.34** 92 0.37** 0.49 

Bio-

mass 
 

‒63.23 + 21.86MSAVI_3 + 

102.20MTVI_2 
0.28**  0.11** 1.48  0.28 + 0.20Hue_2 0.24**  0.22** 1.14 

NSm2  

‒13857 + 

11036TCARI/OSAVI_2 + 

15315GNDVI_2 

0.22**  0.16** 56.49  916.14 ‒ 33.34L_1 ‒ 44.65a*_1 0.21**  0.18** 55.83 

NGm2  ‒221638 + 272852GNDVI_2 0.33**  0.35** 1863  
34087 + 5840.71GGA_3 ‒ 99931I_1 

‒ 1085.73a*_2 
0.45**  0.45** 1780 

TKW  292.96 ‒ 279.44GNDVI_2 0.17**  0.11** 2.23  
‒11.24 + 26.68GA_2 + 163.80I_1 + 

2.27a*_2 + 0.59v*_3 
0.36**  0.11** 5.17 

M
o

d
ern

 2017–2018 

Yield 92 ‒13 + 25.25NDVI_3 0.29** 92 0.24** 0.38 92 
‒1.04 ‒ 16.13GA_2 + 9.05GA_3 + 

0.19Hue_2 
0.45** 92 0.22** 0.54 

bio-

mass 
 ‒143.78 + 177.75MSAVI_2 0.07**  ns 1.28  ‒21.58 ‒ 55.66I_3 + 0.59Hue_2 0.12**  ns 1.84 

NSm2  
10710 ‒ 14953MTVI2_3 + 

2604GNDVI_2 
0.22**  0.08** 72.94  ‒594.57 ‒ 84.23u*_2 0.06*  0.06* 37.29 

NGm2  
‒52520 + 34921MSAVI_3 + 

59546GNDVI_2 
0.49**  0.38** 1835  34497 ‒ 447.30L_3 ‒ 2198.99u*_3 0.32**  0.21** 1825 

TKW  82.24 ‒ 52.04GNDVI_2 0.15**  0.10** 1.55  57.85 ‒ 0.87b*_2 0.14**  0.04* 1.34 

Table 8. Training and Test statistics of the models for the estimations of agronomic traits through UAV multispectral and 

RGB VIs aggregating the data of the two growing seasons for landraces and modern cultivars. *p < 0.05. **p < 0.01. N, 

number of genotypes; R2, determination coefficient; RMSE, root mean standard error; Yield (t/ha); NSm2, number of spikes 

per square meter; NGm2, number of grains per square meter; TKW, thousand kernel weight (g); I, intensity; L, lightness; 

S, saturation. Number after each VI means the flight occasion: 1, 128 DAS; 2, 151‒153 DAS; 3, 179‒184 DAS. 

UAV multispectral 

Set Traits 
Training Test 2016–2017 Test 2017–2018 

Test 2016–

2017+2017–2018 

N Equation R2 N R2 RMSE N R2 RMSE N R2 RMSE 

L
an

d
races  

2016–

2017+2017
–

2018 

Yield 168 0.30 + 11.26NDVI_3 ‒ 5.11MTVI2_3 0.25** 85 0.17** 0.27 85 0.27** 0.26 170 0.28** 0.32 

Bio-

mass 
  ‒50.03 + 35.23MTVI2_2 + 38.30GNDVI_2 0.11**   ns -   ns -   ns - 

NSm2   ns ns   ns -   ns -   ns - 
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NGm2   ‒713.21 + 21637GNDVI_3 0.44**   ns 545   0.17** 980.73   0.42** 1376 

TKW   ‒80.01 + 29.67RDVI_2 + 109.65GNDVI_2 0.16**   ns 0.99   ns -   0.14** 2.20 

M
o

d
ern

 

 2016–2017+2017–

2018 

Yield 184 ‒5.19 + 9.47GNDVI_2 + 13.63NDVI_3 ‒ 6.46MTVI2_3 0.30** 92 0.51** 0.34 92 0.33** 0.38 184 0.46** 0.38 

Bio-

mass 
  ‒63.23 + 102.20MTVI2_2 + 21.86MSAVI_3 0.28**   0.11** 1.48   0.01 2.38   0.20** 17.73 

NSm2   
‒1906.39 + 1047.64NDVI_2 + 1265.34GNDVI_2 + 

477.01GNDVI_3 
0.27**   0.24** 46.45   0.10** 55.94   0.29** 60.88 

NGm2   ‒69278 + 20340NDVI_2 + 22033NDVI_3 + 66300GNDVI_2 0.54**   0.49** 1419   0.32** 2058.47   0.53** 2091 

TKW   92.05 ‒ 37.35GNDVI_2 ‒ 26.21GNDVI_3 0.31**   0.19** 1.13   0.10** 1.67   0.33** 2.42 

Ground-based RGB 

L
an

d
races  

2016–2017+2017
–2018 

Yield 168 3.91 ‒ 0.07L_2 ‒ 0.10a*_2 ‒ 0.14b*_2 + 0.05Hue_3 + 9.19S_3 0.36** 85 0.21** 0.50 85 0.30** 0.28 170 0.28** 0.42 

bio-

mass 
  ns ns   ns -   ns -   ns - 

NSm2   412.15 ‒ 13.54u*_2 ‒ 84.37GGA_3 0.09**   ns -   ns -   0.09** 24.31 

NGm2   
25069 + 6675.08GGA_2 ‒ 34739I_2 ‒ 292.79L_2 + 11005GA_3 + 

426.02u*_3 
0.50**   ns -   0.14** 804.53   0.39** 1604 

TKW   32.37 ‒ 27.23GGA_2 ‒ 3.93b*_2 + 4.06v*_2 + 0.13Hue_3 0.28**   ns 1.94   0.04 2.50   0.15** 2.98 

M
o

d
ern

 

 2016–2017+2017–

2018 

Yield 184 10.64 ‒ 4.95GA_3 ‒ 7.68I_3 + 0.07Hue_3 ‒ 0.22u*_3 0.28** 92 0.27** 0.51 92 0.24** 0.39 184 0.30** 0.54 

Bio-

mass 
  ‒0.28 + 0.20Hue_2 0.24**   0.09** 1.90   ns -   0.20** 2.09 

NSm2   238.83 ‒ 18.41a*_2  0.19**   0.20** 30.24   0.05* 30.87   0.26** 50.66 

NGm2   21688 ‒ 37911I_3 + 143.07Hue_3 ‒ 373.30a*_2 0.45**   0.45** 1314   0.19** 1257.45   0.45** 2221 

TKW   24.78 + 39.88GA_2 + 0.63a*_2 + 1.04u*_2 0.36**   0.28** 1.45   0.11** 1.31   0.36** 2.37 

4. Discussion 

The current study evaluates the suitability of using a 4-band multispectral camera 

(Parrot Sequoia) on-board UAV and ground-based RGB images to predict yield in wheat 

under a rainfed Mediterranean-type environment. Despite remote sensing methods being 

nondestructive and cost-efficient approaches based on the information provided by visi-

ble and near-infrared (VIS-NIR) radiation reflection [39], care should be taken to stand-

ardize measurements across different plant architectures and sun elevation [6]. The light 

intensity, temperature, cloud cover, wind speed, and timing of measurements can also 

affect the accuracy of the estimation of traits evaluated in the field [40]. Digital photog-

raphy is also a promising approach due to the use of conventional cameras as a low-cost 

sensor to get the image and open-source software to process the data from it [25].  

The large year effect for the assessed traits found in the current study may be at-

tributed to the contrasting water availability in the two years of the experimental fields, 

which doubled in 2018 compared to the preceding year. The largest differences were ob-

served in April and beyond, coinciding with the grain-filling period, which likely was the 

main cause of the lower yield, spike number, and grain number recorded in 2017 com-

pared with 2018. It is well known that water scarcity after anthesis has significant effects 

on yield and yield components [12,33,41]. The heaviest kernels observed in 2017 were 

most probably a consequence of the compensation between yield components, since a 

lower NGm2 was observed in 2017. It has been shown that the value of each component 

strongly depends on the values of the components defined previously, and NGm2 is de-

fined before TKW [42]. The number of grains and their weight are established sequentially 

during plant development, with the potential number of grains being determined before 

anthesis, and the grain weight being fixed after it [42,43]. This is in accordance with the 

heaviest grains being obtained in the current study in 2017, the year with the lowest grain 

number. The high yields achieved in the two years are in agreement with those reported 

in previous studies at the same experimental site [44], where the high yields could be at-

tributed to the high soil fertility (about 3% organic matter) and the superficial subsoil wa-

ter layer at this site [45]. The CVs obtained in the current study for the analyzed traits are 

within the normal ranges reported for water-limited environments [10]. Moreover, the 

largest variability of agronomic traits found in landraces when compared with modern 

varieties is in agreement with the results of previous studies conducted in durum wheat 

[41,46]. 
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The remotely sensed estimates of LAI in both landraces and modern cultivars were 

higher in 2018 (Figure 3), as well as grain yield, which may be mostly explained by the 

higher rainfall received during the grain-filling period in that year. As reported by Ville-

gas et al. [47], drought severely affects the total above-ground biomass due to a decrease 

in the rate of growth. Although water stress affects the growth of wheat, the effects are 

less harmful at the early stages of the crop cycle than during the grain-filling period [48]. 

In 2018, the LAI of the landrace was slightly lower than that of the modern cultivar only 

at the end of the growing season (the dough development stage), suggesting that, under 

well-watered conditions, the vegetative growth capacity of the latter is higher or senes-

cence of the former starts earlier. Villegas et al. [42] and Royo et al. [49] reported similar 

conclusions. In 2017, however, the LAI of landraces was significantly higher than that of 

modern genotypes until anthesis, which could be due to the higher resistance to water 

stress of landraces [42,50], their superior water use efficiency before flowering [51], and 

their large root system [52], which is able to exploit deeper soil layers. Figure 3b shows 

that, despite the LAI of landraces in 2017 being higher than that of modern genotypes 

until anthesis, it started declining earlier than the latter. This anticipated decrease of LAI 

in the landrace genotypes could be partially explained by a higher water demand of land-

races, a consequence of their larger canopy, which could not be fulfilled at the end of the 

growing season, leading to the anticipated senescence. Moreover, it could be partially at-

tributed to the greater potential of modern cultivars, compared with the landraces, to use 

water during grain filling to achieve yield increases [51]. It is also important to mention 

that differences in remotely sensed estimates of LAI between phenological stages could 

also be influenced by differences in the chlorophyll content. It is well known that chloro-

phyll content decreases during senescence and as a consequence, also those VIs that uses 

bands mostly placed in the NIR and green regions [53]. Therefore, it may happen that 

plants with the same LAI at different growing stages had different value of a VI due to 

differences in the chlorophyll content. Despite of this, Din et al. [54] reported that the 

MTVI2 was one of the most consistent VIs to change through phenological stages. How-

ever, it is possible that the estimates of the low LAI values at the end of the growing season 

could also be affected by a low chlorophyll content due to senescence, as previously men-

tioned. 

A number of studies have estimated agronomic traits such as grain yield or biomass 

through UAV multispectral and RGB imagery in wheat and other cereals, but the majority 

of them have been conducted in irrigated environments [9,16,55] or under a wide range 

of phenotypic variability resulting from varying growing conditions [9,56,57]. A proper 

assessment of agronomic traits through remote sensing is expected when phenotypic var-

iability is present. This usually occurs in experiments conducted under irrigated condi-

tions, where genotypes are allowed to express their full potential, thus, maximizing dif-

ferences between them [17], or when a wide range of phenotypic values results from treat-

ments varying the agronomic management [9,56,57]. However, studies conducted in 

wheat under rainfed conditions are scarce and the precision of the assessments obtained 

on them is lower. A study by Kyratzis et al. [12], conducted on durum wheat, obtained R2 

values of ≤0.43 for the relationships between NDVI and yield at different growth stages, 

which are comparable to the values reported here. 

In this study, MTVI2 was the best VI to estimate LAI through multispectral imagery 

(R2 = 0.61). On the other hand, estimates of LAI through RGB VIs showed slightly lower 

R2, with Hue being the best predictor (R2 = 0.45). It is widely known that some vegetation 

indices, such as NDVI, show saturation when LAI reports high values [12,36,56]. Further-

more, estimating green LAI through the NDVI has several limitations since it is affected, 

for instance, by factors such as soil background, canopy shadows, atmospheric conditions, 

and variations in leaf chlorophyll concentration [58]. Haboudane et al. [36] stated that im-

proved VIs such as MTVI were more sensitive to chlorophyll variations and, therefore, 

responded better to LAI changes. In addition, it has been reported that MTVI2 is better 

than other VIs mitigating this saturation effect in wheat with LAI values ranging from 2 
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to 8 [54,56,59]. Despite LAI was obtained through destructive measurements, results from 

our study had similar LAI values and the regression with the MTVI2 showed a RMSE of 

1.17. This RMSE agrees with values obtained by Xing et al. [59], who reported RMSE val-

ues ranging from 1.1 to 1.6 when using different VIs calculated with a spectrometer and 

Sentinel 2 imagery. In particular, the RMSE of MTVI2 obtained by these authors was 1.26 

and 1.16 using the spectrometer and Sentinel 2 imagery, respectively, which agreed with 

the RMSE obtained in our study. Hassan et al. [60] also exhibited a strong relationship 

between VIs and LAI measured with an AccuPAR LP-80 ceptometer with values ranging 

from 2 to 5.5. 

The current study demonstrated that predictions of yield could be properly obtained 

using both multispectral and RGB VI, with the R2 of the latter tending to be higher. Alt-

hough models differed depending on the type of germplasm and the trait to be assessed, 

NDVI and GNDVI were the VIs mostly entered in all of the prediction equations obtained 

through UAV multispectral imagery, thus, confirming the feasibility of using such struc-

tural VIs to assess different agronomic traits in wheat [14,17,39,61]. On the other hand, as 

mentioned above, ground-based RGB imagery showed better estimations than UAV mul-

tispectral imagery for the prediction set. RGB indices such as GA, GGA, a*, and u* have 

been proven to be more suitable for predicting higher yield due to their capacity to calcu-

late a combination of physiological components related to biomass [25,26]. Kefauver et al. 

[27] and Gracia-Romero et al. [9] reported the feasibility of using RGB VI to estimate dif-

ferent agronomic traits. In this study, a positive and negative contribution of GA and a*, 

respectively, at the last image acquisition date (DAS 179‒184) were present in most of the 

algorithms for predicting yield. This confirms that the indices that performed better in 

assessing differences in yield were the ones related to canopy greenness and, thus, to veg-

etation cover [62]. GA quantifies the green pixels of the total pixels in the image, and, thus, 

is reliable to use for estimating the fraction of vegetation cover [63]. As most of the carbo-

hydrates for grain filling are formed after heading, a larger leaf area or vegetation cover 

is positively correlated with grain yield, determining the future number of grains and 

their weight [14,25]. Accordingly, a* and u* measurements are also related to ‘greenness’, 

where the values go from high negative (green) to low negative or even positive values 

(lack of green). Furthermore, Rezzouk et al. [64] observed that ground-based RGB imagery 

presented a higher resolution than aerial images, since they found that the number of pix-

els per plot decreased drastically when acquiring images aerially. In our case, this was 

probably not the case since the pixel resolution of RGB and UAV multispectral imagery 

were <1 cm and 5 cm, respectively. In addition, the use of relatively low-cost RGB sensors 

could be a feasible alternative to multispectral cameras from UAV measurements for plant 

phenotyping [57]. 

The lower R2 observed between VI and yield in landraces than in modern cultivars 

when the data of each year were analyzed separately could be partially due to the different 

size and structure of the canopy of both types of germplasm, as landraces were much taller 

and had a different canopy architecture, which probably saturated the VI at high LAI val-

ues. However, in all cases the R2 values were ≥0.22. GNDVI and NDVI were the VIs en-

tered into the equations to estimate yield, showing in all cases positive relationships with 

it. This is in agreement with previous studies showing positive correlations between yield 

and VI in different environments [65,66], as negative relationships are more frequent un-

der severe water stress conditions [67,68]. Yield predictions in modern genotypes through 

UAV multispectral VIs varied between the training and test datasets, mostly for the grow-

ing season 2016-2017. The R2 of the later was slightly higher, suggesting that the model is 

able to improve yield predictions on dry years. This could be explained because during 

years with water scarcity, the variability between genotypes in traits related to leaf bio-

chemical properties or canopy structural attributes, which can explain a part of the yield, 

could be higher. Biomass and the number of spikes per unit area could not be assessed in 

landraces in a reliable way as, although some models were statistically significant, they 

accounted for a small fraction of the observed variability. However, in modern cultivars 
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predictions of biomass were year-dependent as models accounted from 11% to 28% of the 

observed variation in 2017 but ≤12% in 2018. This could be due to the saturation of VI 

when LAI > 5, which was the case in the two germplasm sets in 2018 and in the landraces 

in 2017, as shown in Figure 3b. Despite this, the significant predictions of biomass were 

always obtained through the MSAVI index, which seeks to address some of the limitations 

of NDVI when applied to areas with a high degree of exposed soil surface. It was not 

surprising that the number of spikes per unit area could not be properly estimated 

through VI, as the reflectance of the spikes probably caused some distortion in measure-

ments made in the visible and near-infrared ranges, as demonstrated in previous studies 

[69]. Estimations of NSm2 with RGB indices were not properly assessed. The number of 

grains per unit area was better estimated in modern cultivars than in landraces, with both 

VI and RGB indices. This was not surprising given the strong relationship between the 

number of grains per unit area and yield in semidwarf cultivars [70,71]. Again, the rela-

tionships between VI and RGB indices with grain weight were more consistent in modern 

cultivars than in landraces. The negative correlations between grain weight and GNDVI 

revealed by some prediction models suggest that the plants with higher biomass pro-

duced lighter grains, likely as a consequence of competition between plants for allocating 

photosynthates in vegetative and productive structures during grain filling.  

Repeated measurements of the whole collection acquired on different dates through-

out the growing season are necessary to improve the prediction of agronomic traits [61]. 

According to this, in our study, predictions of agronomic traits improved when infor-

mation from different flights was analyzed together (Table 8). The highest R2 for grain 

yield predictions (R2 = 0.51) was obtained for modern genotypes in 2017 using combined 

data from flights acquired on DAS 151 (heading, anthesis, and milk development) and 179 

(dough development). Despite R2 being slightly lower in 2018, in all cases the RMSE var-

ied between 0.26 and 0.38 t/ha, which demonstrates the suitability of the models devel-

oped. It has been proven in several studies [9,33,72] that higher variability within a pop-

ulation can increase the determination coefficient and, therefore, the predictive ability of 

the model. 

5. Conclusions  

The efficiency of breeding programs and the agronomic research will increase con-

siderably depending on the reliability of models for HTP. This study demonstrated the 

potential of a 4-band multispectral camera (Parrot Sequoia) and RGB images for assessing 

agronomic traits—particularly yield and grain number per unit area—in bread wheat 

grown in a Mediterranean-type environment. However, the suitability of the models 

proved to be specific, as their consistency depended on the canopy structure, leaf dimen-

sions and orientation, and the environmental conditions during vegetative growth, which 

poses a difficulty for their general use in a random crop season. Thus, uniformity in the 

crop cycle among cultivars seems to be essential to improve prediction models minimiz-

ing environmental effects. The results of the current study demonstrate that the predictive 

value of the models developed for semidwarf varieties increased when the data of more 

than one crop season were aggregated to build them. For future studies, the assessment 

of biophysical parameters earlier during the growing season will improve the accuracy of 

LAI estimates, particularly when values are low, but not because of a reduction in the 

chlorophyll content caused by the senescence. This leads to the conclusion that more re-

search is needed to generate series of data from multiple years and growing stages in or-

der to improve the reliability of the predictions obtained with the models developed from 

the UAV 4-band multispectral (Parrot Sequoia) and RGB cameras. In addition, the use of 

machine learning techniques should be addressed. 

Supplementary Materials: The following are available online at www.mdpi.com, Table S1: List of 

accessions. Figures S1, S2, S3 and S4: ANOVA and Scatterplots for the agronomic traits. Table S2: 

Spectrometer calibration. 
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