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Abstract: Fuel load is the key factor driving fire ignition, spread and intensity. The current literature 
reports the light detection and ranging (LiDAR), optical and airborne synthetic aperture radar (SAR) 
data for fuel load estimation, but the optical and SAR data are generally individually explored. Op-
tical and SAR data are expected to be sensitive to different types of fuel loads because of their dif-
ferent imaging mechanisms. Optical data mainly captures the characteristics of leaf and forest can-
opy, while the latter is more sensitive to forest vertical structures due to its strong penetrability. This 
study aims to explore the performance of Landsat Enhanced Thematic Mapper Plus (ETM+) and 
Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar 
(PALSAR) data as well as their combination on estimating three different types of fuel load—stem 
fuel load (SFL), branch fuel load (BFL) and foliage fuel load (FFL). We first analyzed the correlation 
between the three types of fuel load and optical and SAR data. Then, the partial least squares re-
gression (PLSR) was used to build the fuel load estimation models based on the fuel load measure-
ments from Vindeln, Sweden, and variables derived from optical and SAR data. Based on the leave-
one-out cross-validation (LOOCV) method, results show that L-band SAR data performed well on 
all three types of fuel load (R2 = 0.72, 0.70, 0.72). The optical data performed best for FFL estimation 
(R2 = 0.66), followed by BFL (R2 = 0.56) and SFL (R2 = 0.37). Further improvements were found for 
the SFL, BFL and FFL estimation when integrating optical and SAR data (R2 = 0.76, 0.81, 0.82), high-
lighting the importance of data selection and combination for fuel load estimation. 

Keywords: fire risk; forest fuel load; partial least squares regression; ALOS PALSAR L-band SAR; 
Landsat ETM+ 
 

1. Introduction 
Wildfires are disturbances that exist in various ecosystems, which play an important 

role in the formation and succession of ecosystems [1]. Humankind benefited from fires 
for millennia, since wildfires help to control pests and contribute to the regulation of bio-
geochemical cycles which benefit plants in adapting to novel climates, thus providing a 
range of goods and services (food, fiber, pollination, tourism, hunting) to us [2]. However, 
with global climate change and urban expansion, the negative effects of wildfires in-
creased [3]. Wildfires are even increasingly recognized as a natural hazard that can cause 
significant social, economic, and environmental harms [4]. Besides, global meteorological 
studies show that fire seasons worldwide are lengthening, and the fire weather is becom-
ing more extreme [5–7]. Therefore, early fire prevention and extinction are urgent. Fuel 
load (FL) is the key factor for the assessment of fire flame length [8,9], fuel consumption 
[10] and fire severity [11], which is also an indispensable input of fire behavior models 
[12–14]. Generally, FL refers to the dry weight per unit area of all combustible materials 

Citation: Li, Y.; Quan, X.; Liao, Z.; 

He, B. Forest Fuel Loads Estimation 

from Landsat ETM+ and ALOS  

PALSAR Data. Remote Sens. 2021, 13, 

1189. https://doi.org/10.3390/ 

rs13061189 

Academic Editor: Alfonso  

Fernández-Manso 

Received: 23 February 2021 

Accepted: 18 March 2021 

Published: 20 March 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Remote Sens. 2021, 13, 1189 2 of 17 
 

 

[15,16]. Fires in the natural environment are always caused by extremely high-tempera-
ture conditions such as lightning strikes [17,18]. In this case, the fuel loads that support 
lightning fires in the forest include foliage fuel load (FFL), branch fuel load (BFL) and stem 
fuel load (SFL) [19–21], which are defined as the dry weight of foliage, branch and stem 
per unit area, respectively. Among which, canopy fuel load (i.e., the sum of BFL and FFL) 
is more important than SFL in fire warning as it contains the main potential energy source 
supporting crown fires [14] which have a faster spreading rate, stronger burning intensity, 
and more severe and lasting effects than surface fires [22,23]. Therefore, accurately pre-
dicting the spatiotemporal continuous distribution of above-ground forest fuel loads (i.e., 
SFL, BFL and FFL) will not only assist fire managers in removing excess FLs in advance 
to avoid large-scale fires but also provides decision support for firefighters in removing 
isolation zones and judging the spread of fire when fires occur [13]. 

Traditional ground measurement of FL estimates usually use statistical formulas to 
establish relationships between numerous destructive field measurements and forest 
stand structure parameters (e.g., height, diameter at breast height (DBH), etc.) or collect 
coarse resolution ground data (i.e., sparse destructive fuel load samples) combined with 
an interpolation method to obtain a relatively fine fuel load distribution, but both of them 
are time-consuming, labor-intensive and introduce greater uncertainty into the fire risk 
model [14,24,25].  

As a large-scale and long-term earth observation technology, remote sensing pro-
vides a favorable chance to create quantitative descriptions of FLs [13,26]. There are stud-
ies on the quantitative inversion of fuel load mainly employing light detection and rang-
ing (LiDAR) data [27–30], multispectral optical data [13,22,31,32] and synthetic aperture 
radar (SAR) [33]. 

LiDAR is an active mode of operation that emits a laser beam to receive backscattered 
or reflected light from the target [34,35]. Compared to other remote sensing data, LiDAR 
can provide three-dimensional information of forest structure and spatial characteristics 
of surface fuel depth and coverage, topography and canopy density, especially in forest 
surface fuel load estimation [27]. Additionally, strong correlations were found between 
LiDAR height distribution and canopy fuel parameters, among which the determined co-
efficient (R2) with canopy fuel loads reached 0.86 [12]. However, LiDAR has limitations 
for the wall-to-wall coverage of large-scales or engineering applications since it is costly 
[36,37].  

The multispectral optical remote sensing captures the spectral reflectance forest can-
opy at a two-dimensional distribution of fuel load, which can describe the leaf biochemical 
properties and standing woody material geometrical features [38]. The primary method 
of fuel load estimation using optical data is to classify vegetation types through spectral 
bands or vegetation indices (VIs) first, then predict fuel load with fire history information 
[13]. Moreover, for high spatial resolution optical data (e.g., Quickbird, IKONOS), some 
researchers used image texture information such as the shadow fraction of the tree crown, 
and then combining regression analysis to estimate canopy fuel load [16,31]. Nevertheless, 
optical data can only reflect some information about foliage distributed at the top of the 
canopy but lack the vertical structure information due to its limited penetration. 

Synthetic aperture radar (SAR), represented by active microwave with polarimetric 
information without being affected by weather conditions, has been applied to many earth 
surface variable observations [39,40]. Spaceborne SAR sensors transmit various wave-
length bands including X-, C- and L-band which have different capabilities of penetration, 
e.g., the C-band can penetrate foliage, but will be dispersed by small branches while the 
longer-wavelength L-band signal interacts with thick branches and trunks [41–44]. Within 
this context, SAR, especially those with long wavelengths, have great potential in forest 
fuel loads estimation. Saatchi et al. combined the airborne L-band and P-band HV  polar-
izations to estimate the canopy fuel load empirically, and R2 is greater than 0.7 [33]. How-
ever, airborne SAR is costly which limits its potential to monitor fuel loads on a large 
region or even global scale. 
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To date, the potential of optical and SAR data, as well as their combination for fuel 
load estimation, still lacks exploration. Optical and SAR data have different advantages 
in ground observation. The former is closely related to the biochemical characteristics of 
foliage but is less sensitive to the vertical structure information of the branches, while the 
latter can penetrate foliage to obtain branch and stem information. Within this context, the 
Landsat ETM+ optical data and the Advanced Land Observing Satellite (ALOS) PALSAR 
L-band SAR data were integrated to estimate the above-ground forest fuel loads in 
Vindeln, Sweden. We evaluated the performances of optical and SAR data as well as their 
combination on FL estimation individually to explore the feasibility of spectral band and 
backscattering information, which provided references for subsequent data selection of 
FLs estimation, and further increased the possibility of large-scale high-precision fire risk 
early warning. 

2. Materials and Methods 
2.1. StudyAarea and Field Measurements 

The study area is located in the Vindeln municipality, Västerbotten province of north-
ern Sweden about 50 km northwest of Umeå (64°14’ N, 19°46’ E) which is covered by 
mixed coniferous forest. The region is considered to be in between a coastal and an inland 
climate. The mean annual temperature is 1.42℃ and the mean annual precipitation is 600 
mm, of which approximately 50% is snowfall. The landscape is rugged, with a 239-meter 
difference in topography [45]. 

The field data of SFL, BFL and FFL were obtained from the BioSAR 2008 dataset, 
which was expressed as forest stands and measured in October 2008. The data are availa-
ble in the European Space Agency (ESA) Earth Observation campaigns (http://eopi.esa.int 
last access 22 February 2021). 

A total of 31 stands were investigated whose size varied between 2.4 and 26.3 ha. The 
trees which had a DBH (diameter at breast height) greater than 4 cm were measured and 
recorded. A number of 15 sample trees were randomly selected (selected with a probabil-
ity proportional to their basal area) per stand on average to measure their height and age. 
These stands are dominated by evergreen coniferous forest including Scots pine and Nor-
way spruce. The fuel load is calculated based on the allometric equations and field survey 
for different tree species [46]. More details about the field data can be found in [47]. Two 
stands were found located near bare land, which would bring errors to the analysis. There-
fore, we excluded these two stands, and finally kept 29 forest stands, shown as the red 
border polygon in Figure 1.  

 
Figure 1. Location of the study area. The background map is the 2008 PALSAR mosaic yearly 
product (red: HH, green: HH+HV, blue: HV,) and red border polygons are 29 stands. 
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2.2. Satellite Data 
The ALOS (Advanced Land Observing Satellite) PALSAR provides long-wavelength 

(23.6 cm) data in the L-band [48]. Large-scale PALSAR datasets compiling the ortho-recti-
fied and slope-corrected SAR long-strip images were produced by a mosaic algorithm, 
providing HH and HV polarizations at a spatial resolution of 25 m [49]. In this study, we 
used the mosaic product mentioned above in the year 2008, downloaded from Google 
Earth Engine (GEE) [50]. The radar signal of mosaic data can be transformed into either 
radar backscattering coefficients or gamma naught (γ0) values. Here, we converted the 
digital numbers into γ0 using Equation (1), because it can better capture the structure and 
distribution characteristics of the forest [51]. 

γ0 dB =10×log10 DN2 -83 (1) 

where DN is the digital number and γ0 is in the dB unit. 
All pixel in each forest stand was extracted and the averaged γ0 was used as the 

SAR observed value. 
The surface reflectance data of Landsat 7 ETM+ with a spatial resolution of 30 m were 

used in this study. In order to match the date of in situ measurements, a preprocessed 
Landsat 7 ETM+ ( 7 October 2008) product was selected and downloaded from GEE. How-
ever, since the Landsat 7 sensor was damaged in 2003 [52], part of the stands were affected 
by the lack of data due to scan-line-off strips in this image. A total of 28 stands were found 
with more than 50% valid observations (the ratio was calculated as the stands’ valid num-
ber of pixels divided by the total number of pixels) and only one stand had 44.36% valid 
observations. For the stands without the influence of strips, all pixel was extracted and 
averaged. For the stands partly affected by strips, we only used the pixels out of the strips 
to calculate the averaged reflectance. All satellite data used in this study are listed in Table 
1.  

Table 1. Detail information about variables used for fuel load modeling. ALOS: Advanced Land 
Observing Satellite. 

Sensor Parameters Description 

ALOS PALSAR  
HH HH channel 
HV HV channel 

Landsat ETM+ 

Band 1 Blue, 485nm 
Band 2 Green, 560nm 
Band 3 Red, 660nm 
Band 4 NIR, 830nm 
Band 5 SWIR1, 1650nm 
Band 7 SWIR2, 2215nm 

2.3. Modeling Algorithms 
Firstly, the dual-polarization of SAR data and all optical spectral bands were used to 

explore the correlations between satellite data and field measured fuel loads. Moreover, 
all the remote sensing data listed in Table 1. were exhaustively combined to estimate SFL, 
BFL and FFL, respectively. There were 8 variables involved in the analysis of the FL esti-
mation of different types. By exhaustively enumerating 8 variable combinations with dif-
ferent numbers of variables (from 1 to 8), a total of 255 combinations were obtained. Table 
2 shows the details of 255 variable combinations. To further investigate whether there 
would be a significant accuracy improvement in fuel load estimation when using the veg-
etation index (VI) instead of spectral bands, the normalized difference infrared index 
(NDII) [53] was selected to estimate SFL as a case experiment.  
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Table 2. Detailed information about variable combination generation, letters a–h present the 8 
parameters listed in Table 1.  

Number of variables Combination situation Number of combinations 
1 (a)(b)…(h) 8 
2 (a, b)(a, c)…(g, h) 28 
3 (a, b, c)(a, b, d)…(f, g, h) 56 
4 (a, b, c, d)(a, b, c, e)...(e, f, g, h) 70 
5 (a, b, c, d, e)(a, b, c, d, f)...(d, e, f, g, h) 56 
6 (a, b, c, d, e, f)…(c, d, e, f, g, h) 28 
7 (a, b, c, d, e, f, g)…(b, c, d, e, f, g, h) 8 
8 (a, b, c, d, e, f, g, h) 1 

All experiments in this study were conducted by partial least squares regression 
(PLSR). The PLSR analysis [54] is a method that solves the multiple correlations between 
independent variables and avoids the problems of model errors and instability. It decom-
poses and selects data information, extracts the most comprehensive explanatory varia-
bles for dependent variables and identifies information and noise in the data, to better 
overcome the adverse effects of multiple correlations of variables in system modeling 
[55,56]. The PLSR used in this experiment is based on the assumption that various FLs can 
be expressed by a linear combination of variables. Specifically, both the dependent varia-
ble (Y) and independent variable (X) are projected as follows: 

X=𝑇 𝑃 +E,  (2) 

Y=𝑈 𝑄 +E, (3) 

where X and Y are the predictor and response matrix, respectively, 𝑇  and 𝑈  are the cor-
responding mutually orthogonal variables that carry as much variation information as 
possible of their respective data and the correlation between them should be maximized, 
P and Q are the matrices of loading, E is the residuals of X and Y [57,58]. Then, linear 
regression is established between mutually orthogonal variables of X (i.e., Ti) and Y (i.e., 𝑈 ). 𝑈 =b𝑇  +e, (4) 

where b is the regression coefficient and e is the error of the relationship between Ti and 𝑈  and i refers to the number of the principal component. Finally, a linear expression 
about X and Y is acquired which is converted from Equation (4) [59]. 

Yi=α0+α1Xi1+α2Xi2+…+αnXin+εi, (5) 

where Yi is the fuel load, Xin are the n explanatory variables (satellite data listed in Table 
1. ) of i-th observation in Tons/ha, α0 is the intercept, α1,…αn are partial coefficients and 
εi is the random error. 

2.4. Model Evaluation 
The models were validated by using the leave-one-out cross-validation (LOOCV) 

method, which is a deterministic validation process that facilitates accurate reproduction 
by any other scholar with the same data set. The LOOCV process is certain because the 
data used for training and testing is fixed in each iteration. Specifically, LOOCV sets aside 
one set of data as the test set each epoch and uses the other 28 sets of data for PLSR in this 
study. Each time, the training data sets will fit a linear regression model (Equation (6)) 
about predictors and fuel loads: 

Y=w1X1+w2X2+…+wnXn+b, (6) 
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where Y is the fuel load (e.g., SFL, BFL, and FFL), Xn is the independent variable (e.g., 
HV, Green, etc.), wn is the coefficient for Xn , b is the intercept and n is the number of 
independent variables determined by different combinations. For testing, this fitted 
model was used to predict the FL value for the one left-out subject. Then,the above oper-
ation was repeated N times (N is the sample size which is 29 in this study), and different 
data was selected as test data each time to obtain a predicted FL. In each parameter com-
bination, a pair of predicted and observed values were obtained. The performance of dif-
ferent parameter combinations was tested based on the determined coefficient (R2, Equa-
tion (7)), root mean square error (RMSE, Equation (8)) and relative RMSE (rRMSE, Equa-
tion (9)). Finally, all pairs of predicted values and measured values were obtained and the 
corresponding R2 and RMSE were calculated as the indicators of accuracy evaluation. 

R2= ∑ (Pi-P)(Oi-O)n
i=1∑ (Pi-P)2n

i=1 ∑ (Oi-O)2n
i=1

, (7) 

RMSE= 1
n

∑ (Pi-Oi)
2n

i=1 , (8) 

rRMSE= RMSE
O

, (9) 

where Pi is the predicted fuel load, P is the mean of predicted fuel load, Oi is the ob-
served fuel load, O is the mean of observed fuel load, and n is 29 in this study. 

3. Results 
3.1. Correlation Analysis between Single Parameters and Fuel Loads 

Correlation analysis was executed between the satellite data and FLs in this section, 
as shown in Figure 2.  

 
Figure 2. Relationships between satellite data and stem fuel load (SFL), branch fuel load (BFL) and 
foliage fuel load (FFL). 

For SFL, HV polarization of the L-band has the highest correlation, followed by HH 
polarization. Compared with SAR data, optical data generally has a lower correlation, 
with an average R2 of about 0.4. SWIR1 has the highest correlation among the optical 
bands. 

For BFL, the correlation trend of each parameter is similar to SFL, HV polarization of 
the L-band is the most sensitive variable followed by HH polarization. Among optical 
bands, Green and SWIR1 bands have the highest correlation, while the correlation of the 
optical band with BFL is higher than that of SFL. 

For FFL, both HV and HH polarizations can indicate it well. All optical bands are 
more correlated with FFL than SFL or BFL, especially the Green band. The SWIR1 and 
SWIR2 bands also have a high correlation with FFL, producing an R2 of about 0.6. 

Overall, the HV polarization of L-band SAR data has the highest correlation with 
three types of forest fuel loads, and there is almost no correlation difference between dif-
ferent FLs. As for optical data, most bands have the highest correlation with FFL, followed 
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by BFL, and the lowest for SFL. Specifically, the Green band has a poor correlation with 
SFL but a relatively high correlation with BFL and FFL. The results are reasonable since 
the optical signal mainly comes from the foliage in the forest canopy. 

More detailed information on the relationships between satellite data and FLs is 
shown in Figure 3. . It can be found from Figure 3. a that both HV and HH polarizations 
increase with increasing SFL. The HV polarization has a strong positive correlation with 
SFL where the R2 is 0.75, while the HH backscattering coefficient has a relatively weaker 
positive relationship with SFL. In contrast, optical data have a weak negative correlation 
with SFL and the correlation is not as good as SAR data. Figure 3. b shows scatter plots 
between parameters and BFL. Similar to SFL, HV shows a strong positive relationship 
with BFL, while optical data shows a relatively weaker negative relationship with BFL. A 
similar correlation trend can also be found in Figure 3. c. However, we found optical data 
and HH polarization have a higher correlation with FFL than that of BFL and SFL. Spectral 
information can express FFL as more representative than SFL and BFL. These analyses 
may indicate that optical data are more suitable for FFL estimation but less so for SFL or 
BFL. 
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Figure 3. Scatterplots between satellite data and fuel loads. From top to bottom are SFL (a), BFL 
(b) and FFL (c), respectively. These figures were sorted by relevance from left to right. 

3.2. Fuel Load Estimation from Satellite Data 
Through the correlation analysis between the satellite data and FL in the previous 

section, it is found that the highest correlation with each kind of fuel load is HV polariza-
tion. Additionally, the relationship of optical data to FFL, BFL and SFL is weakened in 
turn. Figure 4 shows the results of further study on the capability of satellite data to esti-
mate various FLs using optical bands, SAR data and both of them, respectively. The R2 in 
Figure 4 is the optimal result of the combination situation of each number parameter in 
Table 2. Take the SFL estimation using both optical and SAR data as an example, the R2 is 
0.76 when the number of parameters is three, indicating that the best result was achieved 
when combining HV, NIR and SWIR2 variables. 

  
Figure 4. Parameter combination fitting results shows the best fitting results of multi-parameter models for above-ground 
forest fuel loads and the specific parameter combination information using optical data, SAR data, or both of them, re-
spectively. The black solid triangles representing the R2 of the optimal model combined with the number of parameters (1 
to 8), and the black solid circles representing the parameters corresponding to the right vertical axis are included in the 
optimal model. Each parameter on the right vertical axis corresponds to a dotted line, reflecting the frequency of the 
corresponding parameter in the optimal model. 

For SFL, the estimation effect of all optical bands is not good; the average R2 is 0.36, 
among which SWIR1, NIR and Blue bands are the variables with the highest frequency, 
while SAR has a good performance on SFL, and the prediction accuracy R2 of a single HV 
polarization reaches 0.71. When combining two kinds of satellite data, as the number of 



Remote Sens. 2021, 13, 1189 9 of 17 
 

 

parameters increases, the R2 slightly increases especially when NIR and SWIR2 are added 
based on HV, but then it begins to decrease. Compared to the individual SAR data (HV), 
the combination of optical and SAR data has little effect, with the R2 only increased by 
0.04. This indicates that optical data cannot provide more information to characterize SFL 
than SAR data, and the introduction of more optical parameters will bring more errors 
and uncertainties, resulting in a decrease in model accuracy. Therefore, it is recommended 
to use only SAR data or introduce a few optical variables to carry out SFL estimation.  

For the BFL, the performance of optical data is better than SFL. When selecting Green, 
Red and SWIR1 bands, the R2 reaches 0.56, and the Green band appears in every optimal 
model. The performance of SAR data is slightly inferior to that of SFL, but it can also char-
acterize BFL well, especially HV polarization (R2 = 0.70). As for the combination of them, 
the trend of the R2 is similar to that of SFL; the accuracy will not always increase with the 
increase in variables but tends to slightly decrease. When a model is composed of six var-
iables or more, the performance of predicting BFL begins to decrease since more variables 
may introduce uncertainty to the estimation. Compared to individual SAR data (HV), the 
combination of optical and SAR data (i.e., HV, Green and red) has a positive effect, with 
the R2 increased by about 0.1. This indicates that optical data also contributes to the esti-
mation of BFL. Therefore, the BFL estimation can mainly focus on SAR data and the com-
bination appropriate spectral bands. 

For FFL, the optical spectral bands perform best with an R2 of 0.66 when Blue, Green 
and Red bands are combined. The Green band is the best indicator of FFL among the six 
bands, followed by Blue. Additionally, SAR can predict FFL well individually. Besides, 
the addition of optical data to SAR has significantly improved the model performance (R2 
= 0.82) and outperformed any single data. The biggest contribution to the FFL estimate 
comes from HV, Green, HH and Red. However, after the number of variables is greater 
than four, the prediction accuracy tends to be stable and no longer increases. This is be-
cause that combination already contains the main information required by the FFL which 
not only has the forest structure information reflected by HV and HH, but also the spectral 
reflection information reflected by the optical band. Therefore, the FFL estimation should 
combine optical (especially the visible bands) and SAR (especially the HV polarization) 
data. 

Overall, SAR data performed better for three types of FLs than optical, which is con-
sistent with the correlation analysis in the previous section, while the combination of the 
two kinds of satellite data is better than either data alone. It is worth noting that the pre-
diction accuracy of SFL had a clear downward trend with the increase in variables, while 
BFL and FFL had no such phenomenon. Besides, it was found that the most sensitive var-
iables for the three types of FLs are different, indicating it is necessary to estimate them 
separately according to fuel load features (e.g., vertical structure in the forest) and differ-
ent imaging mechanisms. 

The relationships between variables explored in this study are shown in Table 3 and 
R2 higher than 0.75 displayed in bold font. It is found that the closer the wavelength is, the 
higher the correlation between variables, such as SWIR1 and SWIR2, Green and Red. In 
contrast, the correlation between optical band data and SAR polarization data is relatively 
low. Specifically, the correlation between HV and the data of various optical bands is rel-
atively low, especially with NIR. This may explain the phenomenon that the combination 
of HV and optical band can improve the FL prediction since they can carry more infor-
mation on the FL than any single data. However, the correlation between different varia-
bles is generally high, probably because the study sites in this experiment are stand scale 
which reduces the regional heterogeneity of the remote sensing data. In the final predic-
tion FL model selection, we select as few variables as possible (less than three) while con-
sidering the model performance to make the model more concise and avoid the introduc-
tion of redundant errors. 
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Table 3. Relationship between parameters, the R2 higher than 0.75 were displayed in bold font. 

 Blue Green Red NIR SWIR1 SWIR2 HH HV 
Blue --        

Green 0.62 --       
Red 0.69 0.85 --      
NIR 0.44 0.53 0.53 --     

SWIR1 0.76 0.72 0.76 0.72 --    
SWIR2 0.78 0.72 0.78 0.58 0.96 --   

HH 0.59 0.42 0.40 0.20 0.54 0.59 --  
HV 0.61 0.55 0.54 0.30 0.58 0.61 0.78 -- 

Based on the analyses above, we comprehensively considered the model perfor-
mance and correlation between variables. A total of nine models including Opt, SAR and 
SAR + Opt prediction models for SFL, BFL and FFL are selected. Each selected optimal 
model corresponds to no more than three parameters (i.e., FLs estimated by optical data 
alone choose the best model composed of three parameters; FLs estimated by SAR data 
alone choose the model composed of two parameters; FLs estimated by both optic and 
SAR data choose the best model composed of three parameters), and the corresponding 
parameters are all contributing the most. The detailed performance of these models is 
shown in Table 4 and Figure 5.  

Table 4. Fuel load estimation models. RMSE: root mean square error; rRMSE: relative RMSE. 

Fuel Load 
Variable 
Source Model R2 

RMSE 
(Tons/ha) rRMSE 

SFL Optical −4803.31 × Blue −  289.62 × NIR - 465.76 × SWIR1 + 281.59 0.37 25.50 0.35 
 SAR − 14.02 × HH + 40.40 × HV + 460.86 0.72 17.00 0.23 
 SAR+Optical − 568.46 × NIR + 2099.73 × SWIR2 + 36.00 × HV + 512.61 0.76 15.76 0.22 

BFL Optical − 1443.96 × Green + 836.04 × Red −  246.64 × SWIR1 + 60.54 0.56 4.10 0.26 
 SAR 5.97 × HV + 84.48 0.70 3.33 0.21 
 SAR+Optical − 1288.38 × Green + 797.83 × Red −  5.15 × HV + 99.56 0.80 2.74 0.17 

FFL Optical − 726.45 × Blue −  716.35 × Green + 400.67 × Red + 41.73 0.66 1.67 0.27 
 SAR 1.33 × HH + 1.87 × HV + 35.42 0.72 1.49 0.24 
 SAR+Optical − 589.02 × Green + 326.09 × Red + 2.2 × HV + 44.06 0.79 1.30 0.21 
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Figure 5. Scatterplot of estimated fuel load vs. measured fuel load. From top to bottom are SFL, BFL, FFL, and from left to 
right are Opt, SAR, SAR + Opt. 

Single optical data has the best prediction effect on FFL (R2 = 0.66) and the worst 
performance on SFL prediction (R2 = 0.37), while single SAR data performs similarly to 
SFL, BFL and FFL predictions (R2 = 0.72, 0.70, 0.72). Compared with the estimation with 
single SAR data, the addition of optical data has significantly improved the estimation 
accuracy for BFL and FFL (R2 increased by 0.1 and 0.07), but slightly for SFL (R2 increased 
by 0.04). Moreover, integrated L-band SAR and optical data can estimate three types of 
FL better than any single data (R2 = 0.76, 0.80, 0.79), indicating that the combination of 
optical spectral information (especially the Green, Red and SWIR2 bands), and SAR data 
polarization information (especially HV polarization), can describe the forest fuel load 
well. 
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3.3. Comparison between VI and Spetral Bands 
Based on the best model of SFL estimation in Section 3.2, we conducted a case exper-

iment for SFL estimation to further compare the performance of the VI and spectral bands. 
This experiment also used PLSR and was validated by LOOCV. The bands used for this 
experiment were NIR and SWIR2 (the most sensitive spectral bands to SFL), and the VI 
used was the NDII, which is composed of NIR and SWIR2 bands. NDII= , (10) 

Figure 6 shows the SFL estimation results using the combination of HV and spectral bands, 
and the combination of HV and the VI, respectively. It can be found that these two exper-
iments achieved similar accuracy (R2 = 0.76, 0.77), which indicates that the VI does not bring 
significant accuracy improvement. 

 
Figure 6. Comparison of SFL estimation using (a) HV and optical bands, and (b) HV and vegeta-
tion index (VI). 

4. Discussion 
The definition of canopy fuel load is not uniform in different studies. In previous 

studies, the researchers considered the canopy fuel load as the foliage fraction alone [60], 
or foliage and very fine branches with a diameter less than 0.63 cm [16,61], or foliage and 
all branches [19–21], etc. Therefore, starting from the physical essence of fuel load (dry 
weight of fuel per unit area) and previous studies [16,19–21], we consider the canopy fuel 
load as the sum of foliage and branch dry weight, and further define the above-ground 
forest fuel load as a sum of SFL, BFL and FFL. Although small and flammable fuels are 
consumed early in the fire, the burning intensity of the fire is mainly determined by large 
fuels such as thick branches or even trunks which provide more flammable substances to 
the fire and cause greater harm. 

The results of this study show that the HV polarization of L-band SAR data and the 
Green, Red and SWIR2 bands of optical data are suitable for FL estimation. However, the 
best variables varied among the three types of FL estimation, which is attributed to their 
spatial structure position in the forest stand and the detection characteristics of satellite 
data. This indicates that it is necessary to select appropriate parameters to estimate SFL, 
BFL and FFL separately. 

Specifically, for the estimation of SFL, HV has the main contribution, and the addition 
of optical data does not notably improve the estimation accuracy. This is because the long-
wavelength SAR data can penetrate the forest canopy and detect the stem, while the pen-
etrating ability of optical data only captures the information on the top of the canopy 
[62,63] and contain less information about SFL.  

The selected best model component variables for predicting the spatial distribution 
of SFL are HV, SWIR2 and NIR which is consistent with the result [64] that NIR and SWIR2 
bands indicate biomass well (Figure 4). For the estimation of BFL, the addition of spectral 
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information (Green and Red bands) has significantly improved the results (R2 was in-
creased by about 0.1). The optical data is more suitable to estimate BFL than SFL due to 
their different spatial position distributed along with tree vertical structure. Branches can 
influence standing woody material geometrical features which change optical spectral in-
formation [38]. However, not all spectral bands help to improve BFL estimation. As the 
number of optical variables increases to a certain extent, the prediction performance of the 
model slightly decreases. It seems that too many variables may introduce more estimation 
uncertainty. For the estimation of FFL, both HV and HH contribute greatly, and adding 
optical data (Green and Red bands) significantly improves the results (R2 was increased 
by about 0.12). Since foliage distributes at the top of the canopy, the canopy biophysical 
features such as pigment content have a significant influence on optical reflectance [65].  

The field sample of this study is the 29 stand scale data. These data are representative 
although the numbers are relatively small. The datasets have been used and validated for 
biomass estimation in different studies [66–68]. Figure 7. shows the FL value distribution 
of 29 stands. It can be found that these stands cover a wide range of FL values.  

 
Figure 7. Fuel load (FL) value distribution of 29 stands. 

This study focuses on exploring the utility of different satellite data as well as their 
combination for fuel load estimation. For optical data, we only analyzed the spectral 
bands but not vegetation indices (VIs). On one hand, spectral bands contain the original 
information, while VIs are derived from them by the different combinations of bands and 
formats. The results on spectral band selection for different FLs could provide a reference 
for the band selection of VIs construction. On the other hand, although VIs could help to 
alleviate some of the atmosphere and under layer influence which may help to further 
improve FL estimation, we think that the linear combination of optical bands can already 
utilize most of the usable information for FL estimation, and the additional use of VIs may 
not bring significant accuracy improvement. The results in Section 3.3 demonstrated this 
hypothesis that the band selection is effective for VIs selection and the VI does not bring 
significant accuracy improvement compared with spectral bands. 

In the future, the performances of VIs, derivatives of SAR data, and the multi-tem-
poral data, especially data covering the vegetation growth phenology cycle, are conducive 
to the estimation of FL [69] and will be further explored. Moreover, the long time series 
feature of these derivatives on fuel load estimation will also be explored in the future as 
there have been studies using time series information of optical data to detect forest dis-
turbances [70,71] and have achieved great success. In this study, the applicability of SAR 
data is only evaluated at the L-band. The spaceborne polarimetric radar measurements at 
other wavelengths such as the P-band and C-band can be used as a potential tool for FL 
estimation [72,73].  
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5. Conclusions 
This study integrated ALOS PALSAR L-band SAR and Landsat ETM+ optical data to 

estimate FLs and explored their performance on SFL, BFL, and FFL estimation at the stand 
scale in mixed coniferous forest. Based on the PLSR and LOOCV methods, we found that 
the variables sensitive to the three types of forest FLs are different. The optical data is 
more suitable for BFL and FFL estimation than that of SFL. The SAR data performed best 
for SFL estimation, followed by BFL and FFL. Specifically, the Green and Red bands con-
tribute significantly to the BFL and FFL, and the SWIR2 band contributes the most to the 
SFL in this landscape. HV polarization is the variable that contributes the most to all three 
types of FL. The combination of appropriate optical and SAR data can further improve 
estimations. However, the accuracy did not always increase by using more variables, and 
it generally decreased when all variables were used. Therefore, predictor selection in FL 
estimation is important and necessary. The analyses in this study can provide valuable 
information for the predictor selection of FL estimation. The production of high accuracy 
FL spatiotemporal distribution information is the crucial factor for fire risk assessment 
and guide the fuel management for fire suppression and response, such as prescribed 
burning, and increasing the distance between fuels. 
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