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Abstract: In the light of the “Biological Diversity” concept, habitats are cardinal pieces for biodiversity
quantitative estimation at a local and global scale. In Europe EUNIS (European Nature Information
System) is a system tool for habitat identification and assessment. Earth Observation (EO) data,
which are acquired by satellite sensors, offer new opportunities for environmental sciences and
they are revolutionizing the methodologies applied. These are providing unprecedented insights
for habitat monitoring and for evaluating the Sustainable Development Goals (SDGs) indicators.
This paper shows the results of a novel approach for a spatially explicit habitat mapping in Italy
at a national scale, using a supervised machine learning model (SMLM), through the combination
of vegetation plot database (as response variable), and both spectral and environmental predictors.
The procedure integrates forest habitat data in Italy from the European Vegetation Archive (EVA),
with Sentinel-2 imagery processing (vegetation indices time series, spectral indices, and single bands
spectral signals) and environmental data variables (i.e., climatic and topographic), to parameterize a
Random Forests (RF) classifier. The obtained results classify 24 forest habitats according to the EUNIS
III level: 12 broadleaved deciduous (T1), 4 broadleaved evergreen (T2) and eight needleleaved forest
habitats (T3), and achieved an overall accuracy of 87% at the EUNIS II level classes (T1, T2, T3), and
an overall accuracy of 76.14% at the EUNIS III level. The highest overall accuracy value was obtained
for the broadleaved evergreen forest equal to 91%, followed by 76% and 68% for needleleaved and
broadleaved deciduous habitat forests, respectively. The results of the proposed methodology open
the way to increase the EUNIS habitat categories to be mapped together with their geographical
extent, and to test different semi-supervised machine learning algorithms and ensemble modelling
methods.

Keywords: forest habitat; habitat classification; habitat mapping; habitat monitoring; Random
Forests; supervised machine learning modelling; Sentinel-2; Copernicus

1. Introduction

Global-scale environmental issues, from climate change to biosphere integrity [1], are
creating an intense social pressure and a growing need for information with appropriate
reliability and suitable spatial scale (from the local to global analysis and vice versa) that
must be provided by the scientific community [2–5].

Therefore, it is strictly urgent to ensure the integrity of the Bio, Hydro, and Geosphere
by following the advance of the high technologies. The High-Tech frontier looks further
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ahead than the growing results obtained from environmental sciences research, which, in
certain fields, still trudges due to the inaccessibility of large datasets [6].

It is reasonable that the potential availability of a huge amount of “big data” in the
future will allow for the use of advanced analytic techniques, extracting useful information
from different large datasets, including those observing and measuring the ecosystem pro-
cesses in response to environmental drivers of changes [7]. A multidisciplinary approach,
including machine learning techniques, data mining, big data analytics, and ecological
modelling, is highly recommended to interpret ecological processes and identify adequate
solutions for the Anthropocene environmental issues [8]. However, the use of big data
today represents a big challenge, from detailed analysis on specific topics or geographic
areas to issues at wider scales and over broader timescales [5].

In light of the “Biological Diversity” concept [9,10], habitats are cardinal pieces for
biodiversity quantitative estimation at the local and global scale. They are basic units of
ecosystems and biomes, which are identified by abiotic environmental factors, such as
climate, geomorphology, pedology, as well as by plant species composition (i.e., vegetation
units) [11–13]. The main criterion that assesses spatial symptoms of habitat collapse is
the reduction of the area of occupancy over time, according to the European Red List
of Habitats [14]. Indeed, records of occurrence and abundance of plant species, which
represent the origin of data for the habitat identification, are an irreplaceable source of
information needed to evaluate and monitor the favourable/unfavourable conservation
status of the habitats [15]. Starting from 2010, efforts in establishing vegetation databases
at a continental scale e.g., [16–18], led to the renewing of the EUNIS (European Nature In-
formation System) classification, the comprehensive hierarchical pan-European system for
habitat identification [19–21], with clearly defined units that are useful for their assessments
and with a coherent ecological and biogeographical background [22].

The EUNIS habitat classification is developed and maintained by the European Envi-
ronmental Agency, for policy-related ecosystem and habitat assessments [23]. It constitutes
the mandatory reference lists for national and regional classifications for geospatial main-
stream data sharing.

Moreover, Earth Observation (EO) data that are acquired by satellite sensors offer
new opportunities for environmental sciences and are revolutionizing the methodologies
applied, from experimental/theoretical to computational science [24], projecting big data
from space in the mainstream of the ecological analysis. Therefore, it is easily foreseeable
that, in the next decades, new technologies that are based on EO data will affect ecosystem
surveys, mapping, and monitoring, thus opening a new era [25]. Recently, several scientific
projects and studies have focused on natural habitats detection and the monitoring of
their conservation status by using EO products [26–31]. Satellite data have been used for
mapping grasslands using multitemporal high resolution optical and multispectral optical
data [32], forest communities using NDVI time series [33], coastal habitats using spectral
mixing analysis [34,35], phenological analysis using Sentinel-2 vegetation indices time
series [36,37], or the assessment of plant functional types using radar backscatter [38].

The requirements of global, continental, and national policies on environment sustain-
ability give a new impulse in this direction [39,40], as stated in the European Biodiversity
Strategy 2030, a core part of the European Green Deal, and in the 2030 Agenda for Sustain-
able Development [41,42]. The increasing demand from national institutions for updated
information to monitor ecosystems and detect their changes in time and space plays a
crucial role in demonstrating spatial products as an essential tool for biodiversity assess-
ments [28,43]. In this direction, the EU Copernicus Programme, especially through the
Copernicus Land Monitoring Service (CLMS) [44] and the launch of Sentinel Earth ob-
servation satellite constellations, provides information services and it is promoting and
supporting common frameworks for an updated land environmental monitoring at a
European (local and in situ) [45,46] and global scale [47].

In the last decades, the habitat distribution modelling (HDM) has been used to predict
the distribution of habitats across landscapes using their relationship with the environ-
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mental variables, similarly to the species distribution models [48–50]. Although HDM
often uses environmental big data, such as climate or geomorphology variables, to de-
tect the habitat distribution, only recently has their combination with the EO data been
applied [50–53]. Moreover, many research initiatives experimented with several multidisci-
plinary approaches, including: the use of ensemble modelling (i.e., Random forests) for
mapping individual tree species at high spatial resolution [50], the hierarchical habitat
classification models using very high resolution satellite optical multispectral data [54],
and the evaluation of input features for tree species classification [55].

Along with supporting policies on environment sustainability using spatial products
on biodiversity assessments, comes the need for procedures to generate habitat mapping
products that could cover wide geographical areas with standard classification coding
and legend, and reasonably undertake a multidisciplinary approach combining big data
analytics, ecological modelling, and Earth Observation data, providing unprecedented
insights for the monitoring of Sustainable Development Goals (SDGs) indicators [56].

This article shows a first result of a novel approach for a spatially explicit habitat
mapping of forest in Italy using a supervised machine learning model and the combination
of vegetation dataset, high resolution EO data, and environmental variables. The obtained
results could be useful for monitoring the spatial patterns of ecosystems in space and time.

The specific objectives of this study are: (i) to present a procedure to generate habitat
mapping products combining environmental, EO, and vegetation big data with high
spatial and thematic resolution; (ii) to evaluate the importance of predictor variables
deriving from different data source for the classification of forest habitat types; and, (iii) to
demonstrate the effectiveness of the developed hierarchical classification scheme for the
habitat identification in the Italian national territory.

2. Materials and Methods

In ecology, HDMs link data on the distribution of habitat to abiotic or biotic condi-
tions [57] that are also derived from remote sensing data. Typically, the starting point of
HDM is location data on the occurrence of a habitat as response variable, and mapped
environmental or satellite data as predictors [58]. Statistical methods, such as Random
Forests, are used to estimate the presence of habitat as a function of the predictor variables.

2.1. Research Step Flowchart

Describing the classification procedure of forest habitats used here was not effortless,
so the flowchart that is presented in the Figure 1 summarizes and visualizes the single
stages processed in the text.
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Figure 1. Flowchart of the approach for forest habitat mapping using a supervised machine learning model. For more
details about EUNIS codes (i.e., II and/or III level) see Table 3.

2.2. Study Area

The study area encompasses Italy (Figure 2), which covers about 300.000 km2, and it
is characterized by a noteworthy geo-morphological and land use heterogeneity (there are
two mountain ridges, the Alps in the northern, and the Apennines in the southern), as a
result of complex tectonics processes starting from the Upper Cretaceous and centuries-old
land management, respectively [59]. The area also shows a marked climatic variability,
from the Mediterranean climate along the central and southern coasts, up to the alpine in
the mountains [60].



Remote Sens. 2021, 13, 1231 5 of 28

The land use is characterized by three main classes: croplands (51.46%), natural
(43.05%), and urban areas (5.49%) [44,61]. Within the natural areas, the woodlands and
forests cover 85830 km2, corresponding to the 28.5% of total land surface [62]. The forest
habitat (shrublands and tree plantations excluded) was subdivided in nine forest types [63],
as shown in Table 1.

Table 1. The forest types present in Italy according to the National Forest Inventory of 2005 1 and the European Atlas of
Forest Tree Species 2.

FOREST TYPE DOMINANT SPECIES

Hemiboreal forest and nemoral coniferous and mixed
broadleaved coniferous forest

Picea abies (Norway spruce), Pinus pinaster (Maritime pine),
Pinus sylvestris (Scots pine) and Pinus nigra (Black pine)

Alpine coniferous forest P. abies, Larix decidua (European larch), Pinus mugo (Bog pine),
Pinus cembra (Swiss pine) and Abies alba (European silver fir)

Coniferous forests of the Mediterranean, Anatolian and
Macaronesian regions

P. pinaster, Pinus halepensis (Aleppo pine), Pinus pinea (Stone
pine), Pinus heldeeicrii (Bosnian pine)

Mesophytic deciduous forest Carpinus betulus (Common hornbeam)
Mountainous beech forest Fagus sylvatica (Europe beech) and A. alba (European silver fir)

Thermophilus deciduous forest Deciduous Oaks, Tilia spp. (little leaf linden), Ostrya carpinifolia
(European hop-hornbeam) and Castanea sativa (sweet chestnut)

Broadleaved evergreen forest Quercus ilex (evergreen oak) and Quercus suber (cork oak)

Floodplain forest Salix spp (Willow), Populus spp. (Poplar) and Alnus glutinosa,
(Common alder)

Not riverine alder, birch, or aspen forest Alnus cordata (Italian alder)
1https://www.sian.it/inventarioforestale/ (accessed on 14 December 2020); 2 https://forest.jrc.ec.europa.eu/en/european-atlas/ (accessed
on 23 October 2020).

Over centuries, along the Italian peninsula these climatic, morphological, and land use
features have defined peculiar geographic regions with similar environmental conditions,
which support plant and animal species with comparable life strategies and adaptations
(i.e., the biogeographical regions) [64]. Indeed, in 2011 from EU Member States consultation
meetings, following Article 17 of the Habitats Directive (92/43/EEC) and Natura 2000
Biogeographical processes, the biogeographical regions were defined for the whole Eu-
rope [65]. Italy is included in three Biogeographical regions (see Figure 2): Mediterranean
(characterized by hot dry summers and humid, cool winters); Alpine (where extreme
temperatures and annual precipitation are strictly related to the physiography and in late
fall and winter all precipitation above 1500 m a.s.l. is in the form of snow); and, Continental
(with significant annual variation in temperature, hot summers, and cold winters, and
precipitation tends to be moderate, being mostly concentrated in the warmer months) [60].

https://www.sian.it/inventarioforestale/
https://forest.jrc.ec.europa.eu/en/european-atlas/
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2.3. Data Gathering and Processing
2.3.1. Response Variable

The primary source for producing the EUNIS forest habitat classification is a dataset
extracted by the European Vegetation Archive [17,66]. The archive collects records of
vegetation plots, which include: a full list of vascular plant species; the estimates of cover
abundance for each species; georeferenced point location; and, additional information on
vegetation structure and environmental plot features. Vegetation plots that are larger than
200 m2 and that only reported species composition without cover abundance information
have been excluded.

The final forest vegetation dataset (see Table 3) was obtained according to the following
stepwise procedure:

1. resampling data: to perform the habitat classification only on the natural woodland
areas, a forest mask was generated to resample the vegetation plots. The mask was
obtained by combining Copernicus Land Monitoring Service products, specifically
the High-Resolution Layers Tree Cover Density (TCD, [67]), the Imperviousness [68],
and the CORINE Land Cover [69]. All of the records outside the forest mask were
excluded;

2. clustering data: from the whole dataset only forest habitats were extracted and
clustered according to the EUNIS hierarchical classification nomenclature, following
the EUNIS-ESy definitions [22]; and,

3. filtering data: all data assigned at more than one EUNIS codes (e.g., bias plots
assignment of mixed forest that linked at two different EUNIS groups) and all data
recorded with the same geographic coordinates (i.e., plots of re-surveying monitoring
research activities) were also excluded. Finally, a visualization data test was performed
to identify spatial mismatches errors and/or spatial bias occurrences.

2.3.2. Predictor Variables

A spatially explicit dataset of predictors was produced to generate classified habitat
maps by the classification approach selected.

Dataset of predictors includes three main categories:

1. environmental data: variables related to geographic, topographic, climatic, and soil
properties;
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2. spectral data: variables extracted from EO satellite sensors; and,
3. temporal data: variables representing temporal statistics and phenological metrics

estimated from the biophysical index time series, generated from satellite EO data.

All of the variables were collected or calculated from dataset distributed under open-
access policy and spatially resampled at 20 m resolution. See Table A1 for a complete list of
variables, with name, description, units, and data sources.

Reference spatial grid has been set to 20 m spatial resolution for the coordinate ref-
erence systems EPSG 32632 and EPSG 32633. The environmental variables were selected
based on the relevance as drivers of plant distribution [55,70]. Among the geographic
variables, the linear distance in km from both shoreline and river network were com-
puted for each grid cell [71]. A digital elevation model [72] at 20 m spatial resolution
was used to calculate elevation, slope, and aspect using a 3 × 3 pixel neighbourhood.
Northerness and easterness components were later calculated form aspect, using sine or
cosine transformation, in order to obtain continuous variables. The total rainfall [73] and
average temperature [74] at 1 km resolution were interpolated from cell centroid coor-
dinates to reference grid resolution using regularized spline with tension. The average
temperature was normalized for the altitude effect [75]. Daily average solar irradiance was
estimated at 20 m spatial resolution using the equations for computation of solar energy
related parameters [76] and while considering local topography. Daily solar irradiance
was aggregated to calculate monthly averages, and later daytime cloud cover collected
from the ESA–Climate Change Initiative cloud dataset, for the period 2004–2014, were
used to calculate the monthly average climatology cloud cover percentage [77]. Cloud
cover percentage has been resampled to 20 m spatial resolution using regularized spline
with tension and then used to weight solar irradiance with a factor of 0.75, to account for
sky-diffuse solar radiation on cloudy days [78]. Finally, monthly weighted solar irradiance
was used to calculate daily average solar radiation. Datasets representing soil properties at
250 m, specifically the soil organic carbon stock, pH, and absolute depth to bedrock, were
collected from the SoilGrids (see Table A1) repository and interpolated to reference grid
resolution using a Bartlett filter with 750 m radius.

Spectral variables, specifically spectral reflectance bands and spectral indices, were
calculated from EO data that were acquired by Multi-Spectral Instrument (MSI) sensor on-
board Sentinel-2 satellites. MSI is a multispectral sensor with a high spatial resolution (10 m,
20 m, and 60 m), high revisit capability (five days with a two satellite constellations), an
orbital swath width of 290 km, and a spectral band set from the visible to shortwave infrared.
Sentinel-2 MSI L2A data used for the analysis, distributed by Theia in MUSCATE format,
represent the bottom of the atmosphere (BOA) reflectance, orthorectified, terrain-flattened,
and atmospherically corrected with MACCS-ATCOR Joint Algorithm (MAJA) [79,80].

All of the satellite acquisitions of the period 2016–2019 with cloud cover lower than
90% were collected for the entire study area, for a total of around 26000 images distributed
in 61 granules and corresponding to around 34 Terabyte (TB) of data stored. For each
satellite image, all 10 surface reflectance spectral bands were first spatial resampled at 20 m,
to obtain a full consistent set of spectral bands, namely the B2 (blue), B3 (green), B4 (red),
B5 (Red edge 1), B6 (Red edge 2), B7 (Red edge 3), B8 (NIR1), B8a (NIR2), B11 (SWIR1), and
B12 (SWIR2). Later, pixels corresponding to clouds, cloud shadows, snow, and water in
the product quality flag masks or corresponding to topographic shadows (identified by
product quality flags representing the topographic mask and low-sun mask, with the latter
considering the pixel aspect, slope, and sun zenith angle) were masked out from further
analysis. Sentinel-2 MSI surface reflectance spectral bands for the period March–October
have been used for the classification. Spectral information from satellite data sensed
during late fall and winter period were not considered among the predictors, since they
are often hampered by snow cover and topographic shadows, and they have already been
demonstrated to have a scarce result on forest habitat detection [55]. However, temporal
predictors included the winter period with seasonal statistics (i.e., average, maximum,
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and standard deviation), since they allowed for the distinction between evergreen and
broadleaved forest patterns.

In addition to Sentinel-2 MSI spectral bands, four spectral indices were selected
to account for green, red, and yellow photosynthetic leaf pigments, during flowering
and senescence, which is the period when the plant is curtailing chlorophyll production
revealing various accessory pigments [81] and, consequently, determining the starting of
fall foliage (Table 2).

Table 2. Spectral indices adopted, equation with Sentinel-2 Multispectral Instrument (MSI) bands,
and bibliographic references.

Spectral Index Equation Reference

Enhanced Vegetation Index EVI 2.5×(B8−B4)
(B8+6×B4−7.5×B2+1)

[82]

Normalized Difference Yellow Index NDYI (B3−B2)
(B3+B2)

[83]

Normalized Difference Red/Green Redness Index RI (B4−B3)
(B4+B3)

[84]

Carotenoid Reflectance Index CRI1 (1÷B2)
(1÷B3)

[85]

The Leaf Area Index (LAI), a biophysical index defined as half of the total green (i.e.,
photosynthetically active) leaf area per unit horizontal ground surface area, was estimated
from the surface reflectance data using the biophysical processor [86] available in SNAP
software version 7. Finally, for each spectral band and selected index, annual monthly
averages were calculated from all of the available satellite images to produce the final set
of spectral predictors.

Temporal variables were calculated from LAI time series, stacked in a large multidi-
mensional datacube after applying an image co-registration step [87]. LAI time series were
later temporally smoothed and daily interpolated using the procedure based on second
order weighted polynomial fitting and the Whittaker smoothing, as described in [88]. LAI
daily time series were used to calculate the annual (average, minimum, maximum, delta,
standard deviation) and seasonal (winter and summer average, minimum, maximum)
temporal statistics and to estimate phenological metrics using the method that is described
in [89]. The phenological metrics have only been used as predictors for T1 classification (i.e.,
deciduous broadleaved), since plant phenology of evergreen plants has lower temporal
fluctuation in terms of LAI values, which makes their estimation uncertain. Other studies
attempted to use EO time series to describe plant phenology in vegetation mapping, with-
out an in-depth exploitation through the phenological metrics estimates [90]. The median
value of each temporal variable calculated for the years 2016–2019 has been selected as
temporal predictor used for the training, validation and testing phases of the classification
algorithm.

All of the procedures used to obtain the dataset of predictors were performed using
GRASS GIS for the processing of environmental predictors, SNAP for the Sentinel-2 MSI
data processing, and R software for the processing of temporal predictors.

2.4. Classification
2.4.1. Predictors Selection

The Pearson correlation coefficient and the variance inflation factor (VIF) among
all variables were performed to test for multi-collinearity to reduce the high number of
predictors and improve model accuracy removing redundancy. All of the predictors with a
Pearson correlation coefficient higher than 0.7 and a VIF higher than 10 [91] were removed.
R-package ‘Boruta‘ [92] was used to test whether the remaining variables were correlated.
Boruta is a wrapper algorithm around a Random Forest (RF) classification model, in which
several runs of RF are performed to generate shadow features and test the significance of
each variable, in order to confirm or reject them. Finally, RF [93] was used to investigate
the importance of predictors and assess their contribution to the prediction of the response
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variable, through the calculation of the importance value and the Gini index. RF was
executed with a default set of hyperparameters using the ‘ranger’ R-package [94], and
selecting the variables on an expert-based decision. All of these steps were done for each RF
model (see the following section). Finally, the variable selection procedure was amended,
based on expert knowledge and scientific reference [29,50,95], in order to reconsider a few
variables that have a high significance for the habitat detection (see Figure 4).

2.4.2. Supervised Machine Learning Model

For classifying all of the forest habitats, RF was used as supervised machine learning
model [93], which has been successfully applied for classification purpose in the context
of vegetation remote sensing (see Kattenborn et al. [52] for an exhaustive list of reference).
RF is a decision tree algorithm and is currently the most popular ensemble method for
classifying and predicting forest habitat types [96]. Because RF produced several indepen-
dent trees by intensive resampling of different subset of predictors, it is natural to consider
this adapted bootstrapping scheme for big data context [97]. In addition, in some studies
of comparison between different classification algorithms, RF was found to be the most
performing [30,52,96,98], or at least comparable with other. Hence, when considering that
the proposed study was not a comparison of classification methods, but a demonstrative
procedure, the final choice was to apply the RF classifier. To build and grow trees, RF
involves several hyperparameters that control both the structure of each individual tree
(e.g., nodesize) and the structure and the size of the forest (e.g., mtry, ntree). Despite that
it is well known that RF works reasonably well with the default set of hyperparameters,
their tuning can improve the performance of RF [99]. R package ‘mlr’ [100] was used to
tune the best RF hyperparameters combination, evaluating the following value ranges:
mtry from squared root of the number of variables predictors to the number of variables
predictors minus 1; min.node.size from 1 to 3; and, ntree from 401 to 1001. The best set
of hyperparameter was chosen selecting the higher Cohen’s kappa coefficient calculated
using five-fold cross-validation with 20 repetitions.

A two-stage hierarchical classification scheme using ‘ranger’ R-package [94] was built
by training a total of 4 RF models, each one setup with a distinct set of predictors and hy-
perparameters. The first stage RF model classified EUNIS II level forest classes: deciduous
broadleaved, evergreen broadleaved, and needleleaved (T1, T2, and T3, respectively). At
the second stage, the other three RF models classified EUNIS III level for each EUNIS II
class identified in the first stage.

Each RF model was trained using a stratified random sample of 70% of data, and
the model performance was tested using the remaining 30% (internal evaluation). The
accuracy assessment of the procedure depends on a confusion matrix (error matrix) and
the following accuracy measures derived from that: the Overall accuracy, the User’s and
Producer’s accuracy, and their Standard error. The formulas to obtain the accuracy metrics
and the standard error were presented in Stehman & Foody, 2019 [101]. The computing of
the Cohen’s kappa was also made.

The trained RF models were applied to the selected sets of environmental, spectral, and
temporal predictors in order to classify the forest habitat types for the entire Italian national
territory. The Gini index was calculated to evaluate the importance of each predictor.

The model classification was spatialized for the entire Italian territory to produce
maps of habitat forest types according to EUNIS II and III levels. An additional qualitative
check of the obtained results was done by expert judgment and the validity/accuracy was
confirmed.

3. Results
3.1. Response Variable

From the vegetation database, 14385 plots were selected and classified in 24 forest
habitats according to the EUNIS III level: 12 broadleaved deciduous (T1), four broadleaved
evergreen (T2), and eight needleleaved forest habitats (T3) (Table 3).
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Table 3. Selected habitat plots by expert system classification according to EUNIS code (II and III level).

EUNIS Code II
Level

EUNIS Code III
Level EUNIS 2020 Habitat Name Records

T1 Broadleaved Deciduous forest habitat-type 8328

T11 Temperate Salix and Populus riparian forest 1027
T15 Broadleaved swamp forest on non-acid peat 772
T17 Fagus forest on non-acid soils 2404
T18 Fagus forest on acid soils 614
T19 Temperate and sub-mediterranean thermophilous deciduous forest 1389
T1A Mediterranean thermophilous deciduous forest 815
T1B Acidophilous Quercus forest 147

T1C Temperate and boreal mountain Betula and P. tremula forest on
mineral soils 32

T1D Southern European mountain Betula and P. tremula forest on
mineral soils 36

T1E Carpinus and Quercus mesic deciduous forest 260
T1F Ravine forest 541
T1G A. cordata forest 291

T2 Broadleaved Evergreen forest habitat-type 3776

T21 Mediterranean evergreen Quercus forest 3015
T22 Mainland laurophyllous forest 145
T24 Olea europaea and Ceratonia siliqua forest 492
T27 Ilex aquifolium forest 124

T3 Needleleaved forest habitat-type 2281

T31 Temperate mountain Picea forest 412
T32 Temperate mountain Abies forest 500
T33 Mediterranean mountain Abies forest 98
T34 Temperate subalpine Larix, P. cembra and P. uncinata forest 461

T36 Temperate and sub-mediterranean montane P. sylvestris–P. nigra
forest 295

T37 Mediterranean montane P. sylvestris–P. nigra forest 84
T3A Mediterranean lowland to submontane Pinus forest 365
T3C Taxus baccata forest 63

The records are representative of natural forest cohorts existing on the Italian terri-
tory, according to Italian National Forestry Inventory [62]. The distribution of vegetation
database is shown in Figure 3, according to the EUNIS II level classification.
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and, T3: needleleaved forest habitat-type).

3.2. Classification
3.2.1. Predictor Variables and Selection

A set of 163 variables grouped in four categories has been used as predictors: 13
environmental variables (three geographic, four geomorphologic, three climatic, and three
soil properties); 124 spectral variables (80 spectral bands, 44 spectral indices); and, 26
temporal variables (10 temporal statistics, 16 phenological metrics) (see Table A1 for the
complete list). After the variable selection procedure, a total of 68 variables have been
retained as predictors for the RF classification (see Figure 4). Successively, some of the
predictors excluded in the previous step (i.e., elevation, normalized annual temperature,
minimum value of LAI, maximum value of LAI, and latitude) were reconsidered in the
classification procedure of the four RF models (see Figure 4). All of the selected variables
reported a higher importance value than the shadow features generated by the Boruta
algorithm.
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3.2.2. Supervised Machine Learning Model

From the five-fold cross-validation tuning with 20 repetitions, the selected hyperpa-
rameters for the EUNIS II level classification were: mtry = 20; num.trees = 908; min.node.size
= 2. For the EUNIS III level classification, a different hyperparameters set has been tuned
for each EUNIS II level class. For the T1 classification, the mtry was set to 24, the num.trees
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was set to 989, and the min.node.size was set to 3; for the T2 classification, the mtry was
set to 16, the num.trees was set to 527, and the min.node.size was set to 2; and, for the T3
classification, the mtry was set to 15, the num.trees was set to 981, and the min.node.size was
set to 2.

The forest habitat types classification, using the RF modelling approach based on all
input records (i.e., response variable) and including the variables selected (i.e., predictor
variables), achieved an overall accuracy of 87% at the EUNIS II level classes (i.e., T1, T2,
and T3). The highest misclassification was found between the broadleaved deciduous and
the broadleaved evergreen habitat-type forests. The three EUNIS II level classes of forest
(broadleaf and conifer forest) achieved very high producer’s and user’s accuracies (>85%;
see Table 4).

Table 4. Confusion matrix of RF result for the EUNIS II level classification. T1: broadleaved
deciduous forest habitat-type, T2: broadleaved evergreen forest habitat-type, T3: needleleaved forest
habitat-type. OA: Overall Accuracy, PA: Producer’s Accuracy, UA: User’s Accuracy, SE: Standard
Error.

Map Class
Reference Class

T1 T2 T3 Sum UA (SE)
T1 1037 80 63 1180 89.9 (0.00)
T2 93 564 0 657 87.6 (0.01)
T3 23 0 162 185 72 (0.02)

Sum 1153 644 225 OA (SE) 87.2% (0.75)

PA (SE) 87.9 (0.00) 85.8 (0.03) 87.6 (0.13) Kappa 0.77

The second stage of habitat-type classification has been performed at EUNIS III hi-
erarchical level, achieving an overall accuracy of 76.14%. The highest overall accuracy
was the one of the broadleaved evergreen forest, equal to 91%, followed by 76% and 68%
for needleleaved and broadleaved deciduous habitat forests, respectively (see Tables 5–7).
Within the broadleaved evergreen habitat type classes, the mainland laurophyllous forest
(EUNIS III T2) obtained the lowest classification accuracy (29.4%), and its highest mis-
classification was with the Mediterranean evergreen Quercus forest; instead, regarding
the Mediterranean evergreen Quercus forest, a user’s accuracy of 96.5% was achieved (see
Table 5). The needleleaved forest (EUNIS II T3) classes were, on average, well classified;
indeed, the user’s accuracy was higher than 65% for each class. On the contrary, classes of
broadleaved deciduous forests (EUNIS II T1) were classified worst: six classes had a user’s
accuracy below 50%, three classes had a user’s accuracy between 50% and 60%, and only
three classes had a user’s accuracy higher than 60%.

Table 5. Confusion matrix of RF result for the broadleaved deciduous forest habitat-type EUNIS III level classification.
T11: temperate Salix and Populus riparian forest, T15: broadleaved swamp forest on non-acid peat, T17: Fagus forest on
non-acid soils, T18: Fagus forest on acid soils, T19: temperate and submediterranean thermophilous deciduous forest, T1A:
mediterranean thermophilous deciduous forest, T1B: acidophilous Quercus forest, T1C: temperate and boreal mountain
Betula and Populus tremula forest on mineral soils, T1D: southern european mountain Betula and P. tremula forest on mineral
soils, T1E: Carpinus and Quercus mesic deciduous forest, T1F: ravine forest, T1G: A. cordata forest. OA: Overall Accuracy, PA:
Producer’s Accuracy, UA: User’s Accuracy, SE: Standard Error.

Map
Class

Reference Class

T11 T15 T17 T18 T19 T1A T1B T1C T1D T1E T1F T1G Sum UA (SE)
T11 36 4 1 1 6 1 4 0 0 2 2 0 57 50.7 (0.06)
T15 5 22 1 2 0 1 0 0 0 0 0 0 31 55 (0.08)
T17 6 3 357 22 27 2 5 3 0 0 20 4 449 85.6 (0.02)
T18 1 0 16 17 0 0 1 1 0 1 1 0 38 37.8 (0.08)
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Table 5. Cont.

Map
Class

Reference Class

T11 T15 T17 T18 T19 T1A T1B T1C T1D T1E T1F T1G Sum UA (SE)
T19 13 6 20 0 206 54 2 0 3 17 8 6 335 73.3 (0.03)
T1A 6 0 3 0 30 87 0 0 0 1 1 2 130 58.8 (0.04)
T1B 3 1 2 0 2 0 9 0 0 2 2 0 21 39.1 (0.11)
T1C 0 0 1 1 0 0 1 2 0 0 1 0 6 33.3 (0.21)
T1D 0 0 0 0 1 0 0 0 2 0 0 0 3 40 (0.33)
T1E 0 1 0 0 2 0 1 0 0 5 1 0 10 16.1 (0.10)
T1F 0 3 6 2 4 1 0 0 0 3 11 0 30 23.4 (0.09)
T1G 1 0 10 0 3 2 0 0 0 0 0 20 36 62.5 (0.08)
Sum 71 40 417 45 281 148 23 6 5 31 47 32 OA (SE) 67.6% (1.50)

PA
(SE)

63.2
(0.16)

71
(1.23)

79.5
(0.00)

44.7
(0.23)

61.5
(0.01)

66.9
(0.07)

42.9
(0.69)

33.3
(0.78)

66.7
(13.03)

50
(0.77)

36.7
(0.26)

55.6
(0.65) Kappa 0.57

Table 6. Confusion matrix of RF result for the broadleaved evergreen forest habitat type
EUNIS III level classification. T21: mediterranean evergreen Quercus forest, T22: mainland
laurophyllous forest, T24: Olea europaea-Ceratonia siliqua forest, T27: Ilex aquifolium forest.
OA: Overall Accuracy, PA: Producer’s Accuracy, UA: User’s Accuracy, SE: Standard Error.

Map Class
Reference Class

T21 T22 T24 T27 Sum UA (SE)
T21 551 12 19 4 586 96.5 (0.01)
T22 4 5 0 0 9 29.4 (0.18)
T24 11 0 29 0 40 60.4 (0.07)
T27 5 0 0 4 9 50 (0.18)
Sum 571 17 48 8 OA (SE) 91.5% (1.12)

PA (SE) 94 (0.00) 55.6 (3.44) 72.5 (0.57) 44.4 (4.17) Kappa 0.55

Table 7. Confusion matrix of RF result for the needleleaved forest habitat type EUNIS III level classification. T31: temperate
mountain Picea forest, T32: temperate mountain Abies forest, T33: mediterranean mountain Abies forest, T34: temperate
subalpine Larix, P. cembra and P. uncinate forest, T36: temperate and sub-mediterranean montane P. sylvestris–P. nigra forest,
T37: mediterranean montane P. sylvestris–P. nigra forest, T3A: mediterranean lowland to submontane Pinus forest, T3C: T.
baccata forest. OA: Overall Accuracy, PA: Producer’s Accuracy, UA: User’s Accuracy, SE: Standard Error.

Map
Class

Reference Class

T31 T32 T33 T34 T36 T37 T3A T3C Sum UA (SE)
T31 44 17 0 4 0 0 0 0 65 67.7 (0.06)
T32 9 46 0 2 6 0 0 0 63 65.7 (0.06)
T33 0 0 21 0 0 1 2 1 25 84 (0.07)
T34 8 3 0 25 1 0 0 0 37 73.5 (0.08)
T36 3 4 0 3 34 0 0 0 44 75.6 (0.06)
T37 0 0 1 0 0 10 0 1 12 90.9 (0.11)
T3A 1 0 3 0 4 0 53 1 62 94.6 (0.05)
T3C 0 0 0 0 0 0 1 10 11 76.9 (0.09)
Sum 65 70 25 34 45 11 56 13 OA (SE) 76.2% (5.86)

PA (SE) 67.7 (0.04) 73 (0.04) 84 (0.04) 67.6 (0.11) 77.3 (0.09) 83.3 (0.36) 85.5 (0.31) 90.9 (0.19) Kappa 0.72

Overall, the environmental variables were, by far, the most important factor for
explaining the classification of the forest habitat-types, regardless of the EUNIS level. The
variables exhibiting higher Gini index values for the EUNIS II level classification were:
latitude; distance from shoreline; elevation; annual standard deviation LAI; pH index;
Sentinel-2 MSI spectral index RI value at yearly month 03; annual cumulated rainfall;
annual delta LAI; Sentinel-2 MSI spectral index EVI value at yearly month 03; and, absolute
depth to bedrock (see Figure 4). For the two broadleaved classification at EUNIS III level
(T1 and T2), the most important variables were: latitude; distance from shoreline (Log10);
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elevation; pH index; and, annual cumulated rainfall. The variables with high Gini index
values were latitude and distance from river network for T1 and T2 forest habitat-types,
respectively (see Figure 4). Even for the T3 habitat-type EUNIS III level classification, the
most important variables were: distance from shoreline; soil organic carbon stock; annual
cumulated rainfall and normalized annual average air temperature; Sentinel-2 MSI LAI
value at yearly month 05; absolute depth to bedrock; annual standard deviation LAI; and,
distance from river network (see Figure 4).

The following figures show the results of the projected classified map of forest habitat
for the entire of Italy (Figure 5) and at local resolution (Figure 6), within the forest mask
at the EUNIS III level T1-3. Figure A1 also shows pictures of woodland landscapes
according to: T1 Broadleaved Deciduous (Figure A1 panel a); T2 Broadleaved Evergreen
(Figure A1 panel b); and, T3 needleleaved forest habitat type (Figure A1 panel c). Finally,
of the 240 million pixels potentially detectable (spatial extension of the Forest Mask layer),
approximately 9.15% was not classified. Most of the area not classified were distributed on
mountainous regions.
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4. Discussion

This study proposed an approach to map forest habitats according to EUNIS classifi-
cation (II and III levels), when considering the great habitat variability of the study area,
in order to support the elaboration of conservation strategies and the environmental as-
sessment. It combined nationwide biodiversity database, environmental information, and
satellite EO data (Sentinel-2 MSI at 20 m spatial resolution) to train a supervised machine
learning model for forest habitat classification. Previous studies on forest habitat mapping
in Italy used satellite data for classification at coarse spatial and thematic resolutions, often
investigating small areas (regional or sub regional scale areas) [37,90,103] or focusing on
single tree species [96].
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Spectral and temporal features from Sentinel-2 MSI big datacubes were fully exploited
in order to generate spectral and temporal predictor dataset (e.g., the estimation of pheno-
logical metrics). Such predictors dataset, combined with geomorphological, climate, and
pedological variables, allowed for training a supervised machine learning model using a
two-stages hierarchical classification scheme.

A potential feature of the current study concerns the updatability of the approach
proposed, which allows for the habitat maps to be updated using EO temporal predictors,
providing a dynamic and key contribution to ecological monitoring and assessment. The
change detection metrics derived from the proposed procedure could be relevant for en-
vironmental issues, having a strong impact on the conservation status of habitats [104].
The approach can also improve predictive distribution models of endangered animal
species, which are based on the use of high resolution EO data to identify fine-scale habitat
features [105]. Moreover, it could be useful to evaluate the effects of global changes on
resilience and species composition of habitats [106]. When considering that Sentinel-2 satel-
lite mission systematically acquires data worldwide over land, the proposed approach can
be reproduced and extended to all of the vegetated geographical areas in the earth, thanks
to the existing high resolution layers (i.e., Copernicus product) [44] and the availability
of plant species archive (i.e., EVA) [17]. Moreover, in the absence of high resolution land
cover and thematic maps, they could be generated from the time series analysis of satellite
derived vegetation indices (e.g., NDVI, EVI, and LAI). The evaluation of the importance
of the predictor categories used for the classification models was one of the scopes of this
research. Using the VIF and correlation analyses, a reduced set of predictors was selected
to remove the high multi-collinearity for each classification model (see Table A2). The
spectral predictors that result in a higher importance for discriminating forest habitats are
those related to plant greening (Sentinel-2 MSI EVI value at yearly month 04, Sentinel-2
MSI B2 and B12 value at yearly month 03), flowering and browning (Sentinel-2 MSI NDYI
value at yearly month 04, 05, and 10, Sentinel-2 MSI RI value at yearly months 03, 04, and
10). This result confirms that the spring and fall seasons show the highest heterogeneity
of radiometric signals due to the variability on vegetation growing and senescing pattern
along the altitudinal and latitudinal gradients in Italy. Among the spectral bands, B2 (blue)
showed the greater Gini index values and resulted in being more frequently selected among
the predictors than other spectral bands, while the redness indices (RI and CRI1) were the
spectral indices with higher Gini index values and more frequently selected.

LAI biophysical information was selected as variable for the estimation of temporal
predictors. Apart from its reduced saturation in forest sites as compared to spectral
indices (e.g., NDVI) [107], LAI derived predictors played a key role in the forest habitats
discrimination. In fact, its derived temporal statistics resulted in high importance values
within the classification model (annual standard deviation LAI, annual delta LAI, and
Sentinel-2 MSI LAI value at yearly month 05), being even higher than single spectral
predictors.

Overall, this study demonstrates the suitability of the Sentinel-2 MSI derived infor-
mation for the separability of broad cover forest habitat types (i.e., EUNIS II level, based
on plant functional traits), as well as for the identification of detailed EUNIS classification
types (i.e., III level), based on their ecological features (i.e., species composition) [55].

The Gini index confirms how the environmental predictors remarkably contribute
to the final habitat classification (see also [58]), for both the EUNIS II and III levels (see
Table A2) [29,108]. In terms of explanatory variable importance, the results show how the
variability of climatic and geographic pattern of the Italian territory play a paramount
role in affecting the plant community trait responses and, consequently, determining a
wide diversity of forest habitat types along the peninsula, which includes some of most
important forest ecosystems in southern Europe (i.e., the Mediterranean biogeographical
region) [109]. The high elevation-relief ratio between elevation versus distance from the
shoreline, and the presence of high mountain ranges (i.e., reaching a maximum of over
2500 m for the Apennine and 4500 in the Alps), are all considered to be determining
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factors that affect the bio-climate in Italy (i.e., from Mediterranean to Alpine through the
Continental climate zones) [110]. According to the hypotheses that was proposed by Miller
& Franklin [50] regarding the proportional increasing of importance of the topo-climatic
variables with the increasing of study area and pixels grain size, a different importance
weight between environmental and spectral predictors was observed. However, looking
at the predictors importance at EUNIS II level of classification, our results show that the
information related to plant phenology (leaf longevity, greening, flowering, browning, and
leaf senescence) estimated from EO spectral and temporal predictors plays an important
role in the separability of broadleaved deciduous, broadleaved evergreen, and needleleaved
forests, according to [108].

The mismatching between the classified pixels and not classified pixels along the
mountain ranges are due to the undetermined values of spectral variables, where cloud
cover and shadows are affected by both topographic (i.e., slope and aspect) and climate
conditions [111].

The results of classified tiles show an underestimation of needleleaved forests in
central and southern Italy (see panel a of Figure 6), where most of them are afforested
areas not available in the vegetation database (see Table 3). The natural distribution of
native conifer forests in central and southern Italy is limited by environmental and climatic
conditions and it often overlaps the broadleaved forests belts [112].

In the Apennine needleleaved forests, there are scarce data on the impact of foresta-
tion/afforestation on the indigenous stands (eg. forests of P.pinea, P.halepensis, P. nigra, and
Picea abies in northern Apennine), with the exception of the well-known natural mixed
coniferous-broadleaved forests [113,114], such as the woods with European silver fir (A.
alba) in southern Italy, or Bosnian Pine (P. heldeeicrii) in the southernmost western part
of the peninsula. Indeed, afforested stands are excluded from most of the surveys from
botanists compiling biogeographic archives, thus determining a geographical bias [30,115]
with an underestimation of the afforested coniferous stands in the Apennine. Conversely,
in the Alps (see panel c of Figure 6), the high contribution of vegetation surveys on forest
consortia dominated by native tree species of Firs, Larches, and Pines, the low impact
of forestation/afforestation activities, give a more accurate classification. Moreover, the
evident discrepancy of data that are available for the semi-automatic classification (i.e., re-
sponse variable) can also be seen in Table 3, where, out of a total of 2281 plots of coniferous
forest, only the 24% are within the Mediterranean biogeographical regions (i.e., most of all
the Apennine mountain chain).

The classification of the 24 forests habitat-types revealed different results for each of
the EUNIS II level classes. The overall accuracy for the detection of tree species distribution
with spectral indices analysis, obtained within the T2 (91.5%) and T3 (76.2%), is in line
with similar studies [55]. The low (67.6%) overall accuracy within T1 EUNIS III classes, is
confirmed by previous studies, where the accuracy of the broadleaved deciduous species
was always below of the broadleaved evergreen and coniferous forests [55].

The performance of habitat detection using EUNIS classification based on the stepwise
approach of pre-defined hierarchical habitat schemes demonstrates that the mismatching
between categories depends solely on ecological and biogeographic factors that reflects the
real altitudinal gradient and coexistence in natural woodlands in southern Europe, thus
revealing a good predicting capability of the method [116].

The misclassification in the confusion matrix of broadleaved deciduous (T1, Table 4)
and evergreen (T2) forests (at the EUNIS II level) is mainly due to the similar ecological
drivers and partial overlapping pattern at the edge of their own distribution, determining
mixed forests along the elevation belt. The same driver on altitudinal contacts acts for
the needleleaved forests that partially mismatch the broadleaved deciduous forests on the
Alpine chain. Natural forests clearly reflected this condition. In the Apennines, the driver
(ecological filtering on biogeographical pattern, see “Species Pool” theory) is different, but
the results in detection capability are similar. Coniferous forests are relics [114], because
of historical and biogeographic transformation, and the needleleaved trees are enveloped
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in broadleaved forests (F. sylvatica), again mismatching the net detection between the two
categories.

The natural elevation pattern also explains the highest misclassification found between
the broadleaved deciduous and broadleaved evergreen habitat-types at the III level of
EUNIS classification (Tables 5 and 6). In needleleaved forest stands, Mediterranean and
temperate coniferous trees show a net separability in forest classification as the result
of a clear distinct chorological and ecological pattern, thus reflecting the quite different
species composition (Table 7). Otherwise, Larix forest, the only deciduous conifer, was well
classified (UA 73.5 % and PA 67.6 %). The misclassification with temperate mountain Picea
forest is explained by ecological and altitudinal overlapping of the two habitats, while the
coexistence with temperate and sub-mediterranean montane P. sylvestris–P. nigra forest is
frequent on stone slopes. Another justification of the misclassification of RF results could
be the “class imbalances”, as proposed by other researchers [30,55]. The EUNIS detection
can be affected by the class with more samples, which is preferred by the RF classifier
and, consequently, highlights the importance of an equilibrate sample design [116,117].
However, when a research includes several targets and refers to a wide extent, the only
database available is collected from different sources over a large span of time, and it
is difficult to manage (i.e., resampling thematic plots versus geographic). Moreover, in
practice, some habitat-types often bring about mixed stands (i.e., see “Coexistence Theory”)
with others, and it is difficult to detect at fine spatial resolution data.

The results suggest that further pathways, to overcome some weaknesses shown, will
aim to: (i) increase the EUNIS habitat categories to be mapped (i.e., grasslands, shrubs,
wetlands, and coastal area); (ii) amplify the geographical extent to a wider area (i.e., from
national to continental scale), obtain homogeneous classification within single biome unit
(i.e., Mediterranean Basin); (iii) test different semi-supervised machine learning algorithms
(e.g., Convolutional Neural Network, [118]) to obtain a more suitable habitat classification;
and, (iv) also consider C-band Synthetic Aperture Radar (SAR) satellite data as candidate
predictors for habitat classification purposes (e.g., forest canopy structure [119]).

5. Conclusions

Data-driven decisions are increasingly emerging as a turning point for policy makers.
Sound scientific evidence and the availability of reliable and replicable data are key ele-
ments supporting informed decisions. In accordance with the renewed European Union
ambition settled in the European Green Deal and in the targets of the 2030 Biodiversity
Strategy, to protect nature as a whole, and strictly protect forests, the procedure presented
here can contribute to detect forest types and changes over time and space, thus enhancing
their conservation and restoration.

The combination of EO data, observing and measuring ecosystem processes, big data
analytics, making use of advanced computational analytic techniques. like RF machine
learning algorithm, allowed for demonstrating the applicability of up-to-date technologies
for habitats classification. To this end, an operational example of how EO processing chains
can support forest habitats assessment and monitoring is attempted in this paper. Several
studies on habitat mapping by remote sensing products at the regional or sub-regional
scale are available, but this is a first attempt to map EUNIS forest habitat-types in Italy at
the national scale with the integration of nationwide biodiversity databases.

The approach presented here will allow an information technology procedure to
be sped up with annual or seasonal updating, depending on the extension of the study
area and the monitoring objectives. The obtained procedures could be applied on several
environmental data in order to cyclically and promptly repeat spatial analysis to detect
changes in space and time in support of ecosystem conservation issues, especially to
evaluate the impact of illegal actions (e.g., forest harvesting) or natural hazards (e.g.,
destructive storms or other natural disasters) on habitat distribution.
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Appendix A

Table A1. List of variables used as predictors for the analysis of forest habitat types classification. River network and
shoreline used to calculate distance from shoreline and distance from river network was MATTM National Geoportal
(http://www.pcn.minambiente.it/mattm/catalogo-metadati/, accessed on 12 January 2020); the source for soil properties
variables was SoilGrids (https://soilgrids.org, accessed on 16 January 2020); the source for all the others predictors was
ISPRA Database (http://www.sinanet.isprambiente.it/it/sia-ispra, accessed on 28 January 2020).

CATEGORY SUBCATEGORY NAME DESCRIPTION UNITS

Environmental

Geographic
Lat Latitude 20 m cellcentroid Degrees

dCoastLog Distance from shoreline (Log10) km
dRivLog Distance from river network (Log10) km

Geomorphologic

Elev Elevation m a.s.l.
Slope Slope degrees

NorthN Northerness Polar units
EastN Eastness Polar units

Climatic
TannNorm Normalized annual average air temperature Celsius degrees

CRFann Annual Cumulated Rainfall mm/year
sRad Daily average solar radiation WH/m2

Soil properties
ORCDRC Soil organic carbon stock permille
PHIHOX pH index measured in water solution pH
BDTICM Absolute depth to bedrock cm

Temporal Temporal statistics

LAI_min Annual minimum LAI m2/m2

LAI_avg Annualaverage LAI m2/m2

LAI_max Annual maximum LAI m2/m2

LAI_std Annual standard deviation LAI m2/m2

LAI_delta Annual delta LAI m2/m2

LAI_djf_min Winter (December, January, February)
minimum LAI m2/m2

LAI_djf_avg Winter (December, January, February) average
LAI m2/m2

LAI_djf_max Winter (December, January, February)
maximum LAI m2/m2

LAI_jja_avg Summer (June, July, August) average LAI m2/m2

LAI_jja_max Summer (June, July, August) maximum LAI m2/m2

http://www.pcn.minambiente.it/mattm/catalogo-metadati/
https://soilgrids.org
http://www.sinanet.isprambiente.it/it/sia-ispra
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Table A1. Cont.

CATEGORY SUBCATEGORY NAME DESCRIPTION UNITS

Temporal Phenological metrics

SGS_doy Start of Growing Season (DoY) DoY
SGS_value Start of Growing Season LAI m2/m2

PoS_doy Peak of Season (DoY) DoY
PoS_value Peak of Season LAI m2/m2

EGS_doy End of Growing Season (DoY) DoY
EGS_value End of Growing Season VI m2/m2

EoS_doy End of Season (DoY) DoY
EoS_value End of Season VI m2/m2

greenup_doy Greenup (DoY) DoY
greenup_rate Greenup rate VI m2/m2

senescence_doy Senescence (DoY) DoY
senescence_rate Senescence rate LAI m2/m2

amplitude LAI amplitude m2/m2

DoS Duration of season Days
LMP Length of Maturity Plateau Days
STI Seasonal time integrated LAI m2/m2

Spectral

Spectral data

B2_m03 Sentinel-2 MSI B2 value at yearly month 03 reflectance
B2_m04 Sentinel-2 MSI B2 value at yearly month 04 reflectance
B2_m05 Sentinel-2 MSI B2 value at yearly month 05 reflectance
B2_m06 Sentinel-2 MSI B2 value at yearly month 06 reflectance
B2_m07 Sentinel-2 MSI B2 value at yearly month 07 reflectance
B2_m08 Sentinel-2 MSI B2 value at yearly month 08 reflectance
B2_m09 Sentinel-2 MSI B2 value at yearly month 09 reflectance
B2_m10 Sentinel-2 MSI B2 value at yearly month 10 reflectance
B3_m03 Sentinel-2 MSI B3 value at yearly month 03 reflectance
B3_m04 Sentinel-2 MSI B3 value at yearly month 04 reflectance
B3_m05 Sentinel-2 MSI B3 value at yearly month 05 reflectance
B3_m06 Sentinel-2 MSI B3 value at yearly month 06 reflectance
B3_m07 Sentinel-2 MSI B3 value at yearly month 07 reflectance
B3_m08 Sentinel-2 MSI B3 value at yearly month 08 reflectance
B3_m09 Sentinel-2 MSI B3 value at yearly month 09 reflectance
B3_m10 Sentinel-2 MSI B3 value at yearly month 10 reflectance
B4_m03 Sentinel-2 MSI B4 value at yearly month 03 reflectance
B4_m04 Sentinel-2 MSI B4 value at yearly month 04 reflectance
B4_m05 Sentinel-2 MSI B4 value at yearly month 05 reflectance
B4_m06 Sentinel-2 MSI B4 value at yearly month 06 reflectance
B4_m07 Sentinel-2 MSI B4 value at yearly month 07 reflectance
B4_m08 Sentinel-2 MSI B4 value at yearly month 08 reflectance
B4_m09 Sentinel-2 MSI B4 value at yearly month 09 reflectance
B4_m10 Sentinel-2 MSI B4 value at yearly month 10 reflectance
B5_m03 Sentinel-2 MSI B5 value at yearly month 03 reflectance
B5_m04 Sentinel-2 MSI B5 value at yearly month 04 reflectance
B5_m05 Sentinel-2 MSI B5 value at yearly month 05 reflectance
B5_m06 Sentinel-2 MSI B5 value at yearly month 06 reflectance
B5_m07 Sentinel-2 MSI B5 value at yearly month 07 reflectance
B5_m08 Sentinel-2 MSI B5 value at yearly month 08 reflectance
B5_m09 Sentinel-2 MSI B5 value at yearly month 09 reflectance
B5_m10 Sentinel-2 MSI B5 value at yearly month 10 reflectance
B6_m03 Sentinel-2 MSI B6 value at yearly month 03 reflectance
B6_m04 Sentinel-2 MSI B6 value at yearly month 04 reflectance
B6_m05 Sentinel-2 MSI B6 value at yearly month 05 reflectance
B6_m06 Sentinel-2 MSI B6 value at yearly month 06 reflectance
B6_m07 Sentinel-2 MSI B6 value at yearly month 07 reflectance
B6_m08 Sentinel-2 MSI B6 value at yearly month 08 reflectance
B6_m09 Sentinel-2 MSI B6 value at yearly month 09 reflectance
B6_m10 Sentinel-2 MSI B6 value at yearly month 10 reflectance
B7_m03 Sentinel-2 MSI B7 value at yearly month 03 reflectance
B7_m04 Sentinel-2 MSI B7 value at yearly month 04 reflectance
B7_m05 Sentinel-2 MSI B7 value at yearly month 05 reflectance
B7_m06 Sentinel-2 MSI B7 value at yearly month 06 reflectance
B7_m07 Sentinel-2 MSI B7 value at yearly month 07 reflectance
B7_m08 Sentinel-2 MSI B7 value at yearly month 08 reflectance
B7_m09 Sentinel-2 MSI B7 value at yearly month 09 reflectance
B7_m10 Sentinel-2 MSI B7 value at yearly month 10 reflectance
B8_m03 Sentinel-2 MSI B8 value at yearly month 03 reflectance
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Table A1. Cont.

CATEGORY SUBCATEGORY NAME DESCRIPTION UNITS

Spectral data

B8_m04 Sentinel-2 MSI B8 value at yearly month 04 reflectance
B8_m05 Sentinel-2 MSI B8 value at yearly month 05 reflectance
B8_m06 Sentinel-2 MSI B8 value at yearly month 06 reflectance
B8_m07 Sentinel-2 MSI B8 value at yearly month 07 reflectance
B8_m08 Sentinel-2 MSI B8 value at yearly month 08 reflectance
B8_m09 Sentinel-2 MSI B8 value at yearly month 09 reflectance
B8_m10 Sentinel-2 MSI B8 value at yearly month 10 reflectance

B8A_m03 Sentinel-2 MSI B8A value at yearly month 03 reflectance
B8A_m04 Sentinel-2 MSI B8A value at yearly month 04 reflectance
B8A_m05 Sentinel-2 MSI B8A value at yearly month 05 reflectance
B8A_m06 Sentinel-2 MSI B8A value at yearly month 06 reflectance
B8A_m07 Sentinel-2 MSI B8A value at yearly month 07 reflectance
B8A_m08 Sentinel-2 MSI B8A value at yearly month 08 reflectance
B8A_m09 Sentinel-2 MSI B8A value at yearly month 09 reflectance
B8A_m10 Sentinel-2 MSI B8A value at yearly month 10 reflectance
B11_m03 Sentinel-2 MSI B11 value at yearly month 03 reflectance
B11_m04 Sentinel-2 MSI B11 value at yearly month 04 reflectance
B11_m05 Sentinel-2 MSI B11 value at yearly month 05 reflectance
B11_m06 Sentinel-2 MSI B11 value at yearly month 06 reflectance
B11_m07 Sentinel-2 MSI B11 value at yearly month 07 reflectance
B11_m08 Sentinel-2 MSI B11 value at yearly month 08 reflectance
B11_m09 Sentinel-2 MSI B11 value at yearly month 09 reflectance
B11_m10 Sentinel-2 MSI B11 value at yearly month 10 reflectance
B12_m03 Sentinel-2 MSI B12 value at yearly month 03 reflectance
B12_m04 Sentinel-2 MSI B12 value at yearly month 04 reflectance
B12_m05 Sentinel-2 MSI B12 value at yearly month 05 reflectance
B12_m06 Sentinel-2 MSI B12 value at yearly month 06 reflectance
B12_m07 Sentinel-2 MSI B12 value at yearly month 07 reflectance
B12_m08 Sentinel-2 MSI B12 value at yearly month 08 reflectance
B12_m09 Sentinel-2 MSI B12 value at yearly month 09 reflectance
B12_m10 Sentinel-2 MSI B12 value at yearly month 10 reflectance

Biophysical index

LAI_m01 Sentinel-2 MSI LAI value at yearly month 01 m2/m2

LAI_m02 Sentinel-2 MSI LAI value at yearly month 02 m2/m2

LAI_m03 Sentinel-2 MSI LAI value at yearly month 03 m2/m2

LAI_m04 Sentinel-2 MSI LAI value at yearly month 04 m2/m2

LAI_m05 Sentinel-2 MSI LAI value at yearly month 05 m2/m2

LAI_m06 Sentinel-2 MSI LAI value at yearly month 06 m2/m2

LAI_m07 Sentinel-2 MSI LAI value at yearly month 07 m2/m2

LAI_m08 Sentinel-2 MSI LAI value at yearly month 08 m2/m2

LAI_m09 Sentinel-2 MSI LAI value at yearly month 09 m2/m2

LAI_m10 Sentinel-2 MSI LAI value at yearly month 10 m2/m2

LAI_m11 Sentinel-2 MSI LAI value at yearly month 11 m2/m2

LAI_m12 Sentinel-2 MSI LAI value at yearly month 12 m2/m2

EVI_m03 Sentinel-2 MSI EVI value at yearly month 03 dimensionless
EVI_m04 Sentinel-2 MSI EVI value at yearly month 04 dimensionless
EVI_m05 Sentinel-2 MSI EVI value at yearly month 05 dimensionless
EVI_m06 Sentinel-2 MSI EVI value at yearly month 06 dimensionless
EVI_m07 Sentinel-2 MSI EVI value at yearly month 07 dimensionless
EVI_m08 Sentinel-2 MSI EVI value at yearly month 08 dimensionless
EVI_m09 Sentinel-2 MSI EVI value at yearly month 09 dimensionless
EVI_m10 Sentinel-2 MSI EVI value at yearly month 10 dimensionless

NDYI_m03 Sentinel-2 MSI NDYI value at yearly month 03 dimensionless
NDYI_m04 Sentinel-2 MSI NDYI value at yearly month 04 dimensionless
NDYI_m05 Sentinel-2 MSI NDYI value at yearly month 05 dimensionless
NDYI_m06 Sentinel-2 MSI NDYI value at yearly month 06 dimensionless
NDYI_m07 Sentinel-2 MSI NDYI value at yearly month 07 dimensionless
NDYI_m08 Sentinel-2 MSI NDYI value at yearly month 08 dimensionless
NDYI_m09 Sentinel-2 MSI NDYI value at yearly month 09 dimensionless
NDYI_m10 Sentinel-2 MSI NDYI value at yearly month 10 dimensionless

RI_m03 Sentinel-2 MSI RI value at yearly month 03 dimensionless
RI_m04 Sentinel-2 MSI RI value at yearly month 04 dimensionless
RI_m05 Sentinel-2 MSI RI value at yearly month 05 dimensionless
RI_m06 Sentinel-2 MSI RI value at yearly month 06 dimensionless
RI_m07 Sentinel-2 MSI RI value at yearly month 07 dimensionless
RI_m08 Sentinel-2 MSI RI value at yearly month 08 dimensionless
RI_m09 Sentinel-2 MSI RI value at yearly month 09 dimensionless
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Table A1. Cont.

CATEGORY SUBCATEGORY NAME DESCRIPTION UNITS

Biophysical index

RI_m10 Sentinel-2 MSI RI value at yearly month 10 dimensionless
CRI1_m03 Sentinel-2 MSI CRI1 value at yearly month 03 dimensionless
CRI1_m04 Sentinel-2 MSI CRI1 value at yearly month 04 dimensionless
CRI1_m05 Sentinel-2 MSI CRI1 value at yearly month 05 dimensionless
CRI1_m06 Sentinel-2 MSI CRI1 value at yearly month 06 dimensionless
CRI1_m07 Sentinel-2 MSI CRI1 value at yearly month 07 dimensionless
CRI1_m08 Sentinel-2 MSI CRI1 value at yearly month 08 dimensionless
CRI1_m09 Sentinel-2 MSI CRI1 value at yearly month 09 dimensionless
CRI1_m10 Sentinel-2 MSI CRI1 value at yearly month 10 dimensionless

Table A2. Spectral characteristics of Sentinel-2 MSI sensor.

Spectral
Band Band Name S2A Central

Wavelength (nm)
S2A Band Width

(nm)
S2B Central

Wavelength (nm)
S2B Band Width

(nm)
Resolution

(m)

B1 Coastal aerosol 443.9 27 442.3 45 60
B2 Blue 496.6 98 492.1 98 10
B3 Green 560.0 45 559.0 46 10
B4 Red 664.5 38 665.0 39 10
B5 Red edge 1 703.9 19 703.8 20 20
B6 Red edge 2 740.2 18 739.1 18 20
B7 Red edge 3 782.5 28 779.7 28 20
B8 Near infrared 835.1 145 833.0 133 10

B8A Near infrared narrow 864.8 33 864.0 32 20
B9 Water vapor 945.0 26 943.2 27 60

B10 SWIR Cirrus 1373.5 75 1376.9 76 60
B11 Shortwave Infrared 1 1613.7 143 1610.4 141 20
B12 Shortwave Infrared 2 2202.4 242 2185.7 238 20
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