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Abstract: Hyperspectral image classification is an emerging and interesting research area that has
attracted several researchers to contribute to this field. Hyperspectral images have multiple narrow
bands for a single image that enable the development of algorithms to extract diverse features. Three-
dimensional discrete wavelet transform (3D-DWT) has the advantage of extracting the spatial and
spectral information simultaneously. Decomposing an image into a set of spatial–spectral components
is an important characteristic of 3D-DWT. It has motivated us to perform the proposed research
work. The novelty of this work is to bring out the features of 3D-DWT applicable to hyperspectral
images classification using Haar, Fejér-Korovkin and Coiflet filters. Three-dimensional-DWT is
implemented with the help of three stages of 1D-DWT. The first two stages of 3D-DWT are extracting
spatial resolution, and the third stage is extracting the spectral content. In this work, the 3D-DWT
features are extracted and fed to the following classifiers (i) random forest (ii) K-nearest neighbor
(KNN) and (iii) support vector machine (SVM). Exploiting both spectral and spatial features help the
classifiers to provide a better classification accuracy. A comparison of results was performed with
the same classifiers without DWT features. The experiments were performed using Salinas Scene
and Indian Pines hyperspectral datasets. From the experiments, it has been observed that the SVM
with 3D-DWT features performs better in terms of the performance metrics such as overall accuracy,
average accuracy and kappa coefficient. It has shown significant improvement compared to the state
of art techniques. The overall accuracy of 3D-DWT+SVM is 88.3%, which is 14.5% larger than that of
traditional SVM (77.1%) for the Indian Pines dataset. The classification map of 3D-DWT + SVM is
more closely related to the ground truth map.

Keywords: discrete wavelet transform; support vector machine; machine learning; K-nearest neigh-
bor; random forest; classification; hyperspectral image

1. Introduction

The importance of HSI has accurate discrimination of different materials in spectral
resolution and analysis of a small spatial structure in spatial resolutions [1,2]. The anomaly
detection based on the auto encoder (AE) has attracted significant interest in the study
of hyperspectral images (HSI). Both spatial and spectral resolution are powerful tools for
accurate analysis of the Earth surface. HSI data provide useful information related to size,
structure, and elevation. HSI deals with big data because it has huge information available
in several bands, and it has a good impact on classifying different urban areas. For the
selection of classifiers for processing of fusion, data must satisfy the properties such as (i)
accurate and automatic (ii) simple and fast [3,4]. Let x be an input attributes, and f (x) be a
projecting or mapping function, then, predicted class “y” is given as

y =
N

∑
i=1

f (xi) (1)
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According to the Equation (1), x = x1, x2, x3, xN , which are the set of attributes x to
N of sample data [1]. Hyperspectral imaging is highly advanced remote sensing imagery
consisting of hundreds of continuous narrow spectral bands compared to traditional
panchromatic and multispectral images. Additionally, it allows a better accuracy for object
classifications. Discrete wavelet transform (DWT) provides better precision in case of
HSI image classification [3]. It is a time-scale methodology that can be used in several
applications [3]. Ghazali et al. [4] has developed 2D-DWT feature extraction method and
image classifier for hyperspectral data. Chang et al. [5] proposed the improved image
denoising method using 2D-DWT for hyperspectral images.

Sparse representation of signals (images, movies or other multidimensional signals)
is very important for a wide variety of applications, such as compression, denoising,
attribute extraction, estimation, super-resolution, compressive sensing [1], blind separation
of mixtures of dependent signals [2] and many others. In most cases, discrete cosine
transform (DCT) is applied for sparse representation, and DWT is applicable for both
linear transformations and filter bank. Thus, several versions of these transformations are
involved in contemporary approaches for signal encoding (MP3...), image compression
(JPEG, JPEG2000...), as well as in several other implementations. Low computational
complexity is an important benefit of the DWT when it is implemented using wavelet filter
banks. Usually, for decomposition and reconstruction, finite support filters are used. For
a large class of signals, the wavelet transform offers sparse representation. DWT filter
banks, however, have several drawbacks: ringing near discontinuities, shift variance and
the lack of decomposition function directionality. A lot of studies and publications have
recently focused on solving these issues. Adaptive wavelet filter bank [3,4] is one of the
methods for obtaining spectral representation and lower dissipation in the wavelet domain.
A lower ringing effect is achieved when the norm of L2 or L1 is minimized by adapting
wavelet functions in some neighborhoods of each data sample [5,6]. With the help of
dual-tree complex wavelet transform [7], the directionality and shift variance problem
may be reduced in high dimensional data. In addition, the adaptive directional lifting-
based wavelet adjusts directions on every pixel depending on the image orientation in the
neighborhood [8]. Enhancement can be achieved in all implementations using multiple
representations. The better quality of the estimation will be provided by more statistical
estimators with known properties for the same estimated value. The referred advantages
of the wavelet transform motivated us to apply it for HSI classification.

In this work, 3D-DWT features are extracted from HSI data, which has both spatial and
spectral information. It has various applications and the ability to collect remote sensed
data from visible to near infrared (NIR) wavelength ranges, delivering multi-spectral
channels from the same location. An attempt is made to perform hyperspectral data
classification using the 3D-DWT. The 3D-DWT features are extracted and applied to the
following classifiers: (i) random forest (ii) K-nearest neighbor (KNN) and (iii) support
vector machine (SVM). A comparison of results was performed with the same classifiers
without DWT features. The aim of this work to exploit both spatial and spectral features
using suitable classifiers to provide better classification accuracy. By using 3D-DWT, it is
possible to achieve better relative accuracy of about 14.5% compared with classifier without
using DWT, which is the contributions of the proposed work.

The rest of the work is organized as follows. Section 2 describes related work. Method-
ology is elaborated in Section 3. Section 4 deals with results and discussion on various HSI
image classification. Conclusions are given in Section 5.

2. Related Work

HSI has a very fine resolution of the spectral information with the use of hundreds
of bands. These bands give more information about the spectral details of a scene. Many
researchers have attempted to perform HSI image classification using various techniques.
First, a classification task that attempts to assign a hyperspectral image pixel into many
categories can be converted to several hyperspectral applications. State-of-the-art classifi-
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cation techniques were tried for this role, and appreciable success was achieved for some
applications [1–4]. However, these approaches also tend to face some difficulties in realistic
situations. Second, the available labelled training samples in the HSI classification are
usually small because of the high cost of image marking [5], which contributes to solve the
issue of high-dimension and low sample size classification. Third, considering the high
spectral resolution of HSI, the same material may have very different spectral signatures,
while different materials may share identical spectral signatures [6].

Various grouping methods have been studied to solve these problems. A primary
strategy is to find the critical discriminatory features that gain classification, while reducing
the noise embedded in HSIs that impairs classification efficiency. It was pointed out
in [7] that spatial information is more relevant in terms of leveraging discriminatory
characteristics than the spectral signatures in the HSI classification. Therefore, a pixel-wise
classification approach becomes a simple but successful way of applying this technique [4,8]
after a spatial-filtering preprocessing stage. Square patch is a representative tool for the
strategy of spatial filtering [9–11], which first groups the adjacent pixels by square windows
and then extracts local window-based features using other subspace learning strategies,
such as low-rank matrix factorization [12–17], learning dictionary [4,18] and clustering
subspace [19]. Compared to the initial spectral signatures, the filtered characteristics
derived by the square patch process have less intra-class heterogeneity and greater spatial
smoothness, with much decreased noise.

The spectral–spatial method, which incorporates spectral and spatial information
into a classifier, except for the spatial filtering method, is another common technique
to manipulate spatial information. Unlike the pixel-wise classification approach that
does not consider spatial structure details, this approach integrates the local accuracy of
the neighboring pixel labels. Such an approach has been suggested to unify the pixel-
wise grouping with a segmentation map [20]. In addition, 3D-DWT is also a common
technique for a spectral–spatial approach that can be implemented to incorporate the local
association of adjacent pixels into the classification process. The classification task can then
be formulated into a maximum posterior (MAP) problem [21,22]. Finally, the graph-based
segmentation algorithm [23] can efficiently solve this problem.

As for the above two approaches to improving classification efficiency, most of the
existing methods typically use only one of them, i.e., either the spatial-filtering approach in
feature extraction or the spectral–spatial approach in the prior integration of the DCT into
the classification stage. These strategies can also not help us to achieve the highest results
because of the lack of full use of spatial knowledge. A natural idea is to combine all the two
methodologies into a specific structure to further promote the state-of-the-art potential for
this HSI classification challenge to leverage spatial knowledge more comprehensively. A
novel methodology is recommended in the proposed work for supervised HSI classification.

Firstly, to produce spectral–spatial features, a spatial-filtering method is used. These
techniques were used to extract either spatial or spectral features. Then, wavelets are intro-
duced for hyperspectral image classification, which allows extraction of both spectral and
spatial features. A 3D-DWT [24] is used in our work to extract spectral–spatial characteris-
tics that have been validated to be more discriminatory than the original signature of the
spectrum. Secondly, to exploit the spatial information, the local correlation of neighboring
pixels should also be introduced. In this work, the model has a local correlation using
3D-DWT, which assumes that adjacent pixels likely to belong to the same class. In addition,
the spatial features of 3D-DWT function are included in SVM. The extensive experimental
results show that such amelioration is insightful to this problem and can always guarantee
a significant improvement in scenarios both with relatively less labeled samples and with
noisy input training samples beyond state-of-the-art techniques. The author suggested that
an enhanced hybrid-graph discriminant learning (EHGDL) approach is used to evaluate the
dynamic inner relationship of the HSI and to derive useful low-dimensional discriminant
characteristics [25]. First, we create two discriminant hypergraphs, namely an intraclass
hypergraph and an interclass hypergraph, based on intraclass and interclass neighbors, to
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expose the high-level structures of HSI. Then, a supervised locality graph is constructed
with a class mark and a locality-restricted coding to represent the HSI’s binary relationship.
Therefore, it is expected that the proposed approach will further prompt the frontier of
this line of study. The author developed a modern unsupervised dimensionality reduction
algorithm called local a geometric structure feature learning (LNSPE) algorithm [26] for
the classification of HIS and achieved good accuracy rather than other dimensionality
reduction techniques. Lei J et al. suggest a new approach for the reconstruction of hyper-
spectral anomaly images with spectral learning (SLDR) [27]. The use of spatial–spectral
data, which will revolutionize the conventional classification strategies posing a huge
obstacle in distinguishing between different forms of land use cover and classification [28].
The following section deals with methodology of this paper.

3. Methodology

Figure 1 depicts the schematic representation of the proposed system. For this work,
Indian Pines [29] and Salinas [30] airborne HSI datasets were used to experiment the pro-
posed model. A hyperspectral image is a vector in high-dimensional space. The principal
component analysis method (PCA) is used to reduce the subspaces in high dimensional
data, producing computably compact image representation [31]. This represents all the
pixels in an image using a new basis function along with the directions of maximum
variation [26]. The DWT maps an image into other basis functions. These basis functions
must have properties such as capture scale, invertible, orthogonal, square, pixel reduction,
multi-scale representation, invertibility and linearity. Initially, the 1D-DWT is applied on
the rows, and then, the output of 1D-DWT is fed along with the columns. This creates
four sub-bands in the first stage of transformed space such as Low-Low (LL), LowHigh
(LH), HighLow (HL) and HighHigh (HH) frequencies [32]. The LL band is equivalent to a
downsampled (by a factor of two) version of the original image. Then, these features are
applied to the random forest [33], KNN [33] and SVM [34] classifiers, and the results are
compared with existing classification algorithm as decision tree, KNN and SVM without
the use of the wavelet features.
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Figure 1. Schematic representation of proposed hyperspectral data processing flow.

3.1. Overview of DWT

In this section, we initially define the terminologies used in this paper and the proce-
dure to extract feature from HSI images by using 3-dimensional discrete wavelet transform.
Here, HSI data have X ∈ R̂(w ∗ h ∗ λ), where w and h are width and height of the HSI
images, and λ is the wavelength or band of the entire HSI image spectrum. Here, input
training samples are x = x1, x2, x3, x4 . . . . . . xn ∈ R̂(b ∗ n), where b is the translating func-
tion, and n should be less than “w” and “h”, y = y1, y2, y3, . . . yn ∈ K̂n, where K is the
number of classes. Wavelet transform is the best mathematical tool for performing time–
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frequency analysis and has a wider spectrum of applications in image compression and
noise removal technique. The equation given below denotes the general wavelet transform

W f (a, b) =
1√
a

+∞∫
−∞

x(t)ϕ∗
(

t− b
a

)
dt (2)

where a is the scaling parameter, and b is the shifting parameter. ϕ(t) indicates the mother
wavelet of the kernel function, and it is used to generate all the basic functions as prototypes.
The translation parameter or the shifting parameter “b” gives the time information and
location of the input signal. The scaling parameter “a” gives the frequency and detailed
information of the input signal. DWT is given in Equation (3)

Wϕ
p,q(x) =

1√
a

+∞∫
−∞

x(t)a
−p
2

0 ϕ

(
t− nb0ap

0

ap
0

)
dt (3)

where a0, b0 are the dyadic scaling parameter and the shifting parameter, respectively. In
multistage analysis, the signal x(t) will be recovered by the combination of different levels
of wavelet and scaling function ∅(t) and ψ(t). Generally, Equation (3) can be rewritten for
discrete signal x(n) as

x(n) =
1√
M

∑
d

Cψ[i0, d]ψi0,d[n] +
1√
M

∞

∑
i=i0

∑
d

Dϕ[i, d]ϕi0,d[n] (4)

where x(n), ψi0,d [n] and ϕi0,d[n] are discrete set functions that generally vary from [0, M−1],
totally M points. Since ψi0,d [n] and ϕi0,d [n] are orthogonal to each other, the inner product
can be obtained from the following wavelet coefficient equations

Cψ[i0, d] =
1√
M

∑
n

x(n)ψi0,d[n] (5)

Dϕ[i, d] =
1√
M

∑
n

x(n)ϕi0,d[n] (6)

In this work, we have used 3D-DWT feature extraction for hyperspectral images,
which can be obtained from the expressions given in Equation (3) using different 1-D DWTs.
This 3D-DWT generates several features with different scaling, orientations and frequen-
cies. Haar wavelet is used as the mother wavelet in this work. The scaling and shifting
functions are represented by the different filter bank (L, H) given by low-pass and high-pass

filter coefficients l(d) and h(d). Generally, Haar wavelet has l(d) =
(

1√
2

,
1√
2

)
and

h(d) =

(
− 1√

2
,

1√
2

)
; Fejér-Korovkin and Coiflet filters are used as wavelet filters in

this paper and compared the same. Three-dimensional DWT is performed for hyperspec-
tral imaging by expanding the standard 1-D wavelet to the image’s spectral and spatial
domains, i.e., by applying the 1-D DWT filter banks in turn to each of the three dimensions
(two for the spatial domain and one for the spectral direction). A tensor product is used to
construct the 3-D DWT, which is shown in Equations (7) and (8).

X(x,y,z) = (Lx ⊕ Hx)⊗ (Ly ⊕ Hy)⊗ (Lz ⊕ Hz) (7)

X(x,y,z) = LxLyLz ⊕ LxLy Hz ⊕ Lx Hy Hz ⊕ Lx Hy Hz ⊕ HxLyLz ⊕ HxLy Hz ⊕ Hx HyLz ⊕ Hx Hy Hz (8)

where ⊕ and ⊗ denote the space direct sum and the product of the tensor, and X denotes
the hyperspectral image, respectively. Figure 2 demonstrates the decomposition of 3D
data into eight sub-bands after single-level decomposition implementation. The sub-band
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that has gone horizontally through the lowpass filter is called LLL in the vertical and
spectral directions. This band is talking to data cube approximations. The vertex angle of
the knowledge cube is seen by HHH band that went horizontally through the high-pass
filter in vertical directions and spectral directions. The low- and high-pass filters along the
x, y and z axes are expressed by L and H. The x and y directions, in practice, denote an
image’s spatial coordinates, and the spectral axis is z. The volume data are broken down
into eight sub-bands after single-level processing, i.e., LLL, LLH, LHL, LHH, HLH, HHL
and HHH, which can be divided into three categories: approximation sub-bands (LLL),
spectral variation (LLH, LHH, HLH) and spatial variation (LHL, HLL, HHL), respectively.
At each scaling level, the convolution between the input and the corresponding low- or
high-pass coefficients is performed. In the third stage of the filter bank, eight separate
filtered hyperspectral cubes can be obtained. Then, these cubes again filtered with low-pass
filter in all three dimensions to get the next level of wavelet coefficients, which is shown
Figure 2. Here, this hyperspectral cube is decomposed into two levels, and it has 16 sub
cubes (U1, U2, U3, . . . , U15) as Equation (9).

xi,j = (U1(i, j), U2(i, j), U3(i, j), . . . . . . , U15(i, j)) (9)
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Figure 2. Three-dimensional DWT flowchart.

Consider the relationship between neighboring cubes to prevent edge blurring effects
and lack of spatial information. The 3D wavelet features are derived from each local cube
to integrate spatial and spectral information. In this work, the 3D wavelet coefficients
of the entire cube are extracted after the first and second 3D-DWT levels. The LLL sub-
band extracts the spatial information in the second-level 3D-DWT and the LLH band
extracts the HSI data spectral information. The first and second stage knowledge vectors
of all eight sub-bands are concatenated to make a vector with a size of 15 coefficients
(removing approximate bands). It is called 3D data cube correlation, which helps to boost
the compression. The basic concept is that a signal is viewed as a wavelet superposition.
In comparison to 2D-DWT that decomposes only in horizontal and vertical dimensions,
3D-DWT has the advantage of decomposing volumetric date in horizontal, vertical and
depth directions [35]. Three-dimensional DWT is performed for hyperspectral images by
applying one-dimensional DWT filter banks to three spatio-spectral dimensions.

3.2. Hyperspectral Image Classification Using 3D-DWT Feature Extraction

The main objective of this work is to classify hyperspectral images using 3D DWT
features. Random forest [36] is a classification algorithm that uses many decision trees
models built on different sets of bootstrapped features. This algorithm will work with the
following steps: Bootstrap the training set multiple times, the algorithm adopts a new set
to build a single tree in the ensemble during each bootstrap. Whenever the sample of tree
is split, a portion of features are selected randomly in the training sets for finding the best
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split variable and new features are evaluated. The random forest has taken more time to
compute the process to validate the results, but its performance was good.

To overcome this issue, these algorithms are compared with KNN and SVM. K-nearest
neighbors [KNN] is the second classifier adopted in the proposed method [36]. Given N
training vectors, with “a” and “o” letters as input training features in this 2 dimensional
feature space, this algorithm classifies the vector “c”, where “c” is another feature vector to
be evaluated. In this case, it identifies the k-nearest neighbors regardless of labels. Consider
the distribution of classes “a” and “o” as shown in Figure 3 with k equals 3. The aim of
the algorithm is to find the class for “c”. Since k is 3, the three nearest neighbors of “c”
must be identified. Among the three nearest neighbors, one belongs to class “a”, and the
other two belong to class “o”. Hence, we have 2 votes for “o” and 1 vote for “a”. The
“c” vector will be classified as class “o.” When k is equal to 1, the first nearest neighbor
of the element will define the class. In KNN prediction, computation time is very slow,
but training computation time is better than random forest. Even though training timing
better compared to other algorithms, it requires more memory power to compute the HSI
data. So, these algorithms are compared with SVM. This algorithm finds the most similar
observation to the one we must predict and from which you derive a good intuition of
the possible answer by averaging the neighboring values. The k-value, an integer number,
is the neighbors that the algorithm must consider finding the solution. The smaller the
k parameter, the more than the algorithm will adapt to the data we are using, risking
overfitting but nicely fitting complex separating boundaries between classes. The larger
the K-parameter, the more it abstracts from the ups and downs of real data, which derives
nicely smoother carvers between classes in data. In KNN prediction, computation time
is very slow but training computation time is better than random forest. Even though
training timing is better than other algorithms, it requires more memory power to compute
the HSI data. So, these algorithms are compared with SVM.
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The SVM [32] model is a supervised learning method that looks at data and sorts
it into one of the two categories. For example, in binary classification, SVM starts with
a perception formulation and enforces certain constraints that are trying to obtain the
separate line according to certain rules. This algorithm divides samples with the help of
feature space using a hyperplane. Equation (8) will help to frame the SVM classification part

y
(

xTw + b
)
≥ M (10)

where “x”, ”w” and”b” indicate the input feature vector, weight vector and bias, respec-
tively, and y is the predicted class. It provides a single value whose sign is indicative of the
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class, because y can be only −1 or +1 and may be equal or more than zero when the opera-
tions between parentheses have guessed the same sign as y. In the preceding expression, M
is the constraint representing the margin. It is positive and the largest possible value to
assure the best separation of predicted classes. The weakness of SVM is the optimization
process. Since the classes are seldom linearly separable, it may not be possible for all the
labels of training images to force the distance to equal or exceed constraint M. In Equation
(10), the epsilon parameter is an optimization parameter for SVM, it allows us to handle
with noisy or non-linearly separable data

y
(

xTw + b
)
≥ M(1 + εi) (11)

The epsilon (ε) value will be zero for correctly classified classes. If the values of epsilon
are between 0 and 1, the classification is correct, but the points fall within the margin. If
the epsilon value is greater than 1, it means misclassification occurs, and it may be in the
wrong side of the separating hyperplane. The general flowchart of 3D-DWT-based feature
extraction and machine-learning classification is shown in Figure 4.

Algorithm 1: 3D-DWT-based feature extraction for hyperspectral image classifications

Input: Airborne hyperspectral image data X∈Rˆ(w*h*λ), K is the number of classes.
Output: Predicted labels y.

• The input feature vector X is converted into 3D-DWT features, U∈Rˆ(w*h*15).
• A certain amount of input features is selected for training randomly and remaining samples

are used as ε testing samples.
• The KNN, SVM, random forest machine-learning algorithm are trained using training

samples.
• The labels for testing samples are computed using all the machine-learning algorithms.
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4. Results and Discussions

In this work, our proposed 3D-DWT-random forest, 3D-DWT-KNN and 3D-DWT-
SVM methods are validated for two standard datasets such as Salinas Scene and Indian
Pines hyperspectral data [37]. The results are compared with the same classifiers but
without using information from the DWT. All coding required for this research has been
carried out using MATLAB 2020b on a personal computer with 4GHz CPU and 8GB RAM.
All the above mentioned algorithms are compared analytically using overall accuracy (OA),
average accuracy (AA) and kappa coefficient [38]. Generally, OA gives the information
about the number of correctly classified samples divided by the total number of samples.
AA provides information about average accuracies of individual classes, whereas kappa
coefficient (κ) indicates the two errors (omission and commission) and overall accuracy
performance of the classifier. A confusion matrix as shown in Equation (12) is utilized to
calculate the performance metrices.

Con f usion matrix (H) =

∣∣∣∣∣∣∣
H11 H12 · · · H1K

...
. . .

...
HK1 HK2 · · · HKK

∣∣∣∣∣∣∣ (12)
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where Hij indicates the number of pixels, here “i” denotes the actual class, “j” denotes the
predicted class and K indicates the total number of classes. The OA equation is shown in
Equation (13).

OA =
1

Ntest_samples

K

∑
i=1

Hii (13)

where Ntest_samples is the total number of testing samples. The average accuracy is computed
as shown in Equations (14) and (15).

CAi =
Hii
Ni

(14)

AA =
1
K

K

∑
i=0

CAi (15)

where Ni is the total test samples in class i, and it varies from 0 to K. The kappa coefficient
can be calculated by

κ =
OA− Pe

1− Pe
(16)

where pe =
K
∑

i=1
(P.i ∗ Pi.) is the projected agreement, Pi. = Ri

Ntest_samples
, P.i = Ci

Ntest_samples
,

Ri and Ci represent the summation of ith row and ith column in confusion matrix, respec-
tively. Higher values of OA, AA and κ are expected by a good classifying algorithm.

4.1. 3D-DWT-Based Hyperspectral Image Classification Using Indian Pines Data

The Indian Pines dataset was collected by an airborne visible/infrared imaging spec-
trometer (AVIRIS) sensor. This dataset has been taken in North-West part of India in the
year 1992. Each sample has 224 spectral bands with the spatial dimension of size 145 * 145
with ground truth data as shown in Figure 5. It includes 16 different vegetation classes, as
shown in Table 1.
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Table 1. Indian Pines hyperspectral dataset.

Indian Pines Classes Training Dataset Testing Dataset

Label 0 Background 6465 4310

Label 1 Alfalfa 27 19

Label 2 Corn-no till 857 571

Label 3 Corn-min till 486 333

Label 4 Corn 142 94

Label 5 Grass-pasture 290 194

Label 6 Grass-trees 438 292

Label 7 Grass-pasture-mowed 17 11

Label 8 Hay-windrowed 287 191

Label 9 Oats 12 8

Label 10 Soybean-no till 583 389

Label 11 Soybean-min till 1473 982

Label 12 Soybean-clean 356 237

Label 13 Wheat 123 82

Label 14 Woods 759 506

Label 15 Buildings-Grass-Trees-Drives 232 154

Label 16 Stone-Steel-Towers 56 37

Total 12,602 8411

Initially, the 3D-DWT+random forest method is evaluated with labeled samples that
have 60% data as training and 40% of data as testing samples. Principal component
analysis (PCA) [39] is used to reduce the number of feature parameters to 15, to extract
the significant information. the parameters considered in this work are (i) gamma value
and (ii) epsilon value, which are tuned up to boost the performance of the proposed
experiment. All the machine-learning algorithms were validated by K-cross validation
(K = 10). Splitting the training dataset into k folds is part of the k-fold cross-validation
process. The first k−1 folds are used to train a model, while the remaining kth fold serves
as a test range. In each fold, we can use a variant of k-fold cross-validation that maintains
the imbalanced class distribution. It is known as stratified k-fold cross-validation, and it
ensures that the class distribution in each split of the data is consistent with the distribution
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of the entire training dataset. It also emphasizes the importance of using stratified k-fold
cross-validation of imbalanced datasets to maintain the class distribution in the train and
test sets for each model evaluation. In SVM, kernel function with 3rd order polynomial
were used. Classification results of all the methods on Indian Pines dataset are shown in
Figure 6, and the overall accuracy, average accuracy and kappa coefficients are reported
and compared in Table 2. The best obtained results are highlighted in Table 2. Three-
dimensional DWT+SVM performs better in terms of all performance metrices and larger
improvement in this scenario; 3D-DWT+KNN and 3D-DWT+decision tree trail somewhat
behind (79.4 and 76.2% OA, respectively). As shown in Table 1, 12,602 training samples
from the Indian Pines data are selected. The overall accuracy of 3D-DWT+SVM is 88.3%,
which is 14.5% larger than that of traditional SVM (77.1%). The classification maps of
3D-DWT+SVM are more closely related to the ground truth map. The observed results
lead to misclassification due to the consideration of only spatial information, which can be
rectified by including both spectral and spatial information. Wavelet coefficients from eight
sub-bands capture the variations in the respective dimensions by implementing 3D-DWT
over spatial–spectral dimensions. The local 3D-DWT structure is represented in three ways
by the energy of the wavelet coefficients.
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described in parentheses).

The confusion matrix for 3D-DWT + SVM in Indian Pines hyperspectral data is shown
in Figure 7. The hyperspectral image classification outputs obtained by all the methods
have more salt and pepper noise. This is because only spectral information is considered
in both KNN and random forest methods. When both spectral and spatial information of
Indian Pines hyperspectral data are used, it results in better OA. For a better understanding
for calculating AA the steps are as follows: A sample calculation for computing AA is
given as follows, for we consider true class Label 2, the total number of test sample of class
2 is 571, the predicted output of SVM of class 2 is 512, so the AA = 512

571 = 89.6% , which is
shown in Table 2 (third row fourth column). In a similar way, we evaluated all the average
accuracy of each class. Table 3 shows the OA, AA and kappa coefficient of entire class with
different algorithms with help of Equation (14).
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Table 2. Classification accuracy of all the computing methods in Indian Pines dataset.

Class Random
Forest

KNN SVM AWFF-
GAN

3D-DWT+ Random Forest 3D-DWT+KNN 3D-DWT+SVM

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

0 79.7 79.6 93.6 100 85.4 86.0 86.1 91.6 92.1 92.2 91.1 91.6 91.2
1 93.8 66.7 89.5 98.00 100 100 100 94.4 84.2 100 100 68.4 93.3
2 70.9 56.6 89.6 90.17 90.6 89.6 92.0 87.9 86.2 90.2 91.8 91.4 93.1
3 78.4 63.4 90.7 94.1 91.2 91.1 91.0 90.3 88.6 90.9 93.8 89.0 94.5
4 62.1 55.9 86.2 92.6 92.5 92.5 90.5 88.9 88.2 84.7 93.1 95.2 96.6
5 91.3 86.7 91.2 92.4 92.7 96.8 97.0 94.6 94.5 97.8 95.2 95.1 97.3
6 85.0 70.3 93.8 93.7 96.9 95.1 97.6 93.4 91.3 93.9 94.5 93.1 98.6
7 87.5 71.4 71.4 98.6 100 85.7 90.0 90.9 81.8 90.9 100 63.6 100
8 89.5 77.6 96.2 96.9 91.4 95.2 93.4 94.0 94.5 92.7 96.8 97.3 96.9
9 100 92.2 87.5 88.1 100 100 100 100 100 100 100 100 100

10 73.8 58.9 91.6 94.5 88.1 91.5 89.9 86.6 86.8 84.5 92.2 93.8 91.3
11 76.8 69.3 94.2 92.6 92.1 90.3 91.9 91.0 90.3 90.2 93.1 93.1 93.0
12 74.9 66.8 82.2 94.5 90.8 88.9 90.7 88.0 86.2 92.2 94.7 91.9 96.3
13 91.5 78.8 91.5 97.9 96.1 97.2 96.2 97.4 97.4 94.0 98.7 98.8 96.4
14 62.3 58.0 81.6 91.4 87.6 97.8 85.4 82.6 82.8 82.5 82.4 83.3 92.0
15 50.0 51.1 68.0 88.1 97.8 97.4 91.4 91.5 91.0 85.4 89.7 83.8 91.2
16 78.2 74.3 96.8 92.6 91.4 85.4 79.1 91.2 84.2 78.6 92.3 87.8 84.6
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The proposed 3D-DWT features-based classifiers perform better compared to existing
algorithms. The overall accuracy of test data is achieved SVM (77.1%), KNN (60.2%),
random forest (67.7%), 3D-DWT+KNN (79.4%) and 3D-DWT+random Forest (76.2%) are
less than the 3D-DWT+SVM method’s (88.3%) relative accuracy by 14.5, 46.7, 30.4, 11.2
and 15.9%, respectively. Table 3 discussed the comparison of adaptive weighting feature
fusion (AWFF) with generative adversarial network (GAN) [40], and our proposed method
of 3D-DWT-based KNN and SVM based on our test dataset. In this Table 3, we can say
our proposed method has some improvement in terms of accuracy of individual classes
because both spatial and spectral information are extracted to improve the performance
of the classifications. Only few classes of AWFF-GANs have achieved more accuracies
compared to our proposed method.
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Table 3. OA, AA and kappa coefficient of entire class with different algorithms for Indian Pines hyperspectral data.

Class Random
Forest

KNN SVM AWFF-
GAN

3D-DWT+Random Forest 3D-DWT+KNN 3D-DWT+SVM

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Overall
Accuracy (OA) 67.7 60.2 77.1 87.5 76.2 74.1 78.4 79.4 78.2 78.6 88.3 86.2 90.4

Average
Accuracy (AA) 72.1 66.4 89.6 90.8 88.3 85.2 82.7 90.7 86.6 90.4 91.7 90.4 92.6

Kappa
Coefficient 6.92 5.83 6.24 8.11 7.76 7.54 7.24 7.94 7.83 7.81 8.14 8.01 8.36

Initially 60:40 ratios are used for training and testing. Later, the effectiveness of our
proposed method is evaluated with different number of training samples such as 50, 55, 60,
65, 70, 75 and 80% of supervised samples of each class from the Indian Pines HSI dataset.
The overall accuracy for different training ratio is shown in Figure 8. The plot shows that
out of several approaches proposed, the 3D-DWT+SVM achieves better performance in all
aspects. Meanwhile, 3D-DWT+KNN and 3D-DWT+random forest obtain the second and
third highest OA.
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4.2. 3D-DWT-Based Hyperspectral Image Classification Using Salinas Scene Hyperspectral Data

The Salinas Scene dataset was collected by AVIRIS Sensor. This dataset was taken in
Salinas Valley, California in the year 1998. These data have 224 spectral bands with the
size of 512*217 spatial dimension with ground truth data and have 17 different landcover
classes as given in Table 4. All the machine-learning algorithms were validated by K-cross
validation. In SVM, kernel function with 3rd order polynomial were used.

The confusion matrix (3D-DWT+SVM) for Salinas hyperspectral data is shown in
Figure 9. Classification results of all the challenging methods on the ground truth of
Salinas Scene hyperspectral data are shown in Figure 10. The overall accuracy, average
accuracy and kappa coefficients of test datasets are reported and compared in Table 5. For
a better understanding for calculating AA, the steps are as follows: A sample calculation
for computing average accuracy is as follows, for we consider, true class Label 2, the total
number of test sample of class 2 is 3725, the predicted output of 3D-DWT + SVM (Fejer-
Korovkin filters) of class 2 is 3699, so the AA = 3725

3699 = 99.3% , which is shown in Table 5
(third row thirteenth column). In a similar way, we evaluated every average accuracy of
each class. Table 6 shows the OA, AA and kappa coefficient of entire class with different
algorithms with help of Equation (14).
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From Figure 11 and Table 4, one and two best accuracies are highlighted: 3D-DWT+
SVM performs better in terms of all performance metrices and larger improvement in this
scenario; 3D-DWT+KNN and 3D-DWT+decision tree trail behind 3D-DWT+SVM with 96.1
and 86.2% OA, respectively [41]. Table 3 shows that 159,206 samples from Salinas Scene
hyperspectral dataset were selected for training. The overall accuracy of 3D-DWT+SVM is
96.9%, which is about relative accuracy 7.54% larger than that of traditional SVM (90.1%).
The classification maps of 3D-DWT+SVM is more closely related to the ground truth map.

Table 4. Salinas Scene hyperspectral data.

Salinas Scene Classes Training Dataset Testing Dataset

Label 0 Background 85,463 56,975
Label 1 Brocoli green weeds 1 3014 2009
Label 2 Brocoli green weeds 2 5588 3725

Label 3 Fallow 2964 1976
Label 4 Fallow rough plow 2091 1394

Label 5 Fallow smooth 4017 2678
Label 6 Stubble 5939 3959
Label 7 Celery 5369 3579

Label 8 Grapes untrained 16,907 11,271
Label 9 Soil Vinyard develop 9305 6203

Label 10 Corn senesced green weeds 4917 3278
Label 11 Lettuce romaine 4wk 1602 1068
Label 12 Lettuce romaine 5wk 2891 1927
Label 13 Lettuce romaine 6wk 1374 916
Label 14 Lettuce romaine 7wk 1605 1070

Label 15 Vinyard untrained 10,902 7268
Label 16 Vinyard vertical trellis 2711 1807

166,655 111,103



Remote Sens. 2021, 13, 1255 15 of 19

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 20 
 

 

Table 6. OA, AA and kappa coefficient of entire class with different algorithms for Salinas Scene hyperspectral data. 

Class Random 
Forest KNN SVM 

3D-DWT+ 
Random Forest 

3D-DWT+ 
KNN 

3D-DWT+ 
SVM 

Haar 
Filters 

Coiflets 
Filters 

Fejer-
Korovkin 

Filters 

Haar 
Filters 

Coiflets 
Filters 

Fejer-
Korovkin 

Filters 

Haar 
Filters 

Coiflets 
Filters 

Fejer-
Korovkin 

Filters 

Overall Accuracy 
(OA) 84.2 88.2 90.1 86.2 88.7 86.2 96.1 78.4 96.1 91.9 88.5 96.7 

Average 
Accuracy (AA) 

86.6 90.2 92.4 89.6 90.7 92.9 91.2 88.5 93.2 92.4 89.5 97.1 

Kappa 
Coefficient 

6.92 5.83 6.24 8.13 7.88 7.67 8.42 7.82 7.86 8.42 8.51 8.62 

The hyperspectral image classification output is obtained by all the computing meth-
ods. Three-dimensional DWT performs better than other methods, which is evident from 
the overall accuracy values. The OAs of SVM is 90.1%, KNN is 88.2%, random forest is 
84.2%, 3D-DWT+KNN is 96.1% and 3D-DWT+random Forest is 76.2%. 

    

(a) Salinas Ground 

Truth 

(b) 3D-DWT+ 

RandomForest 

(86.2%) 

(c) 3D-DWT+ KNN 

(96.1%) 

(d) 3D-DWT+ SVM 

(96.9%) 

 

 

Figure 10. Classification output maps obtained by all computing methods on Salinas Scene hyperspectral data (OAs are 
described in parentheses). 

Figure 10. Classification output maps obtained by all computing methods on Salinas Scene hyperspectral data (OAs are
described in parentheses).

Table 5. Classification accuracy of all the computing methods in Salinas Scene hyperspectral data.

Class Random
Forest

KNN SVM

3D-DWT+Random Forest 3D-DWT+KNN 3D-DWT+SVM

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

0 83.1 88.2 96.2 95.0 84.1 88.3 98.2 92.1 95.2 97.3 92.2 95.9
1 46.2 90.2 86.4 96.7 100 92.2 95.3 92.1 100 92.8 92.1 98.4
2 88.4 83.7 82.4 90.2 87.6 94.2 95.4 88.2 94.4 94.4 89.2 99.3
3 87.9 68.4 91.3 67.0 68.1 92.4 92.5 89.7 93.5 93.1 90.3 98.7
4 70.3 82.4 89.4 72.6 84.5 92.7 91.6 86.5 92.6 83.4 85.6 95.4
5 81.2 80.2 86.2 93.1 94.8 84.8 92.3 96.2 92.3 89.2 97.0 96.0
6 91.2 72.2 93.1 83.9 85.4 92.8 94.1 92.6 94.1 93.0 93.3 98.6
7 88.4 86.5 91.4 89.5 85.7 92.2 94.8 86.4 94.8 94.0 88.6 98.7
8 84.5 90.7 90.2 76.2 95.2 95.6 92.9 93.6 95.9 96.3 93.2 97.0
9 84.5 92.6 92.7 89.2 100 100 97.9 100 94.9 96.6 100 97.4

10 87.5 90.2 92.6 52.8 62.3 72.1 96.8 85.65 93.8 96.3 85.1 97.7
11 83.3 87.5 88.5 95.6 92.1 90.7 93.7 90.3 92.7 90.7 90.2 96.5
12 75.6 88.6 82.7 85.7 88.9 92.9 92.7 89.2 92.7 86.4 90.7 98.7
13 82.2 86.2 88.6 97.8 96.9 98.4 92.0 95.7 92.4 92.8 94.9 94.8
14 84.5 88.4 92.4 92.8 93.8 87.6 91.5 82.7 93.5 90.7 82.6 94.5
15 86.5 85.2 90.2 89.7 90.2 93.6 91.4 88.2 92.4 89.8 86.8 95.7
16 81.5 89.1 92.3 96.6 93.4 78.2 96.7 81.4 89.7 96.2 80.0 98.9

Table 6. OA, AA and kappa coefficient of entire class with different algorithms for Salinas Scene hyperspectral data.

Class Random
Forest

KNN SVM

3D-DWT+Random Forest 3D-DWT+KNN 3D-DWT+SVM

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Haar
Filters

Coiflets
Filters

Fejer-
Korovkin

Filters

Overall
Accuracy (OA) 84.2 88.2 90.1 86.2 88.7 86.2 96.1 78.4 96.1 91.9 88.5 96.7

Average
Accuracy (AA) 86.6 90.2 92.4 89.6 90.7 92.9 91.2 88.5 93.2 92.4 89.5 97.1

Kappa
Coefficient 6.92 5.83 6.24 8.13 7.88 7.67 8.42 7.82 7.86 8.42 8.51 8.62
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Figure 11. OA of all computing methods with a different percentage of Salinas Scene training samples.

The hyperspectral image classification output is obtained by all the computing meth-
ods. Three-dimensional DWT performs better than other methods, which is evident from
the overall accuracy values. The OAs of SVM is 90.1%, KNN is 88.2%, random forest is
84.2%, 3D-DWT+KNN is 96.1% and 3D-DWT+random Forest is 76.2%.

Later, the effectiveness of our proposed method was evaluated with different num-
ber of training samples such as 50, 55, 60, 65, 70, 75 and 80% of supervised samples of
each class from the Salinas Scene hyperspectral dataset. The OA of different training
samples are shown in Figure 11; from this, it is observed that the proposed method of
3D-DWT+SVM achieves better performance in all aspects. Meanwhile, 3D-DWT+KNN
and 3D-DWT+random forest obtain the second and third highest OA. The computation
time taken for training and testing datasets for our proposed method are as follows: the
training times of 3D-DWT and testing times is 4 to 6 times greater than SVM, KNN and
random forest, because it has both spatial and spectral features and a number of object
prediction (testing data) in terms of seconds also shown in the Table 7. Figures 12 and 13
show the average accuracy for a different ratio of training and testing images of Indian
Pines (50:50, 55:45, 60:40, 65:35, 70:30, 75:25) and Salinas Scene (50:50, 55:45, 60:40, 65:35,
70:30, 75:25), respectively. In this, if we are increasing the number of training samples,
increasing average accuracy of each class because both are directly proportional. From the
analysis of Figure 11, if we are varying a different ratio of training and testing samples, the
overall accuracy is not varying that much because of the unbalanced dataset.

Table 7. Computation time of training phase and prediction speed of testing data.

Algorithms

Indian Pines Salinas Scene

Training Time
(Sec)

Object Prediction
Speed (Sec) Training Time Object Prediction

Speed (Sec)

Haar Wavelet
Random Forest 91.6 8000 98.3 8000

KNN 85.58 4100 93.5 4100
SVM 107.26 5000 130.42 5000

Coiflets filters
Random Forest 88.03 5900 95.42 5900

KNN 86.3 4200 92.66 4200
SVM 104.85 4800 110.35 4800

Fejer-Korovkin
filters

Random Forest 103.45 8900 113.54 8900
KNN 82.82 4200 101.23 4200
SVM 118.88 5000 142.47 5000
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5. Conclusions

In this work, a method of classifying hyperspectral image datasets is proposed by
integrating spatial and spectral features of the input images. Based on the performance
metrics such as overall accuracy, average accuracy and kappa coefficient, 3D-DWT+SVM
achieves better performance in all aspects and has shown significant improvement in
the results compared to the state-of-the-art techniques. Meanwhile, 3D-DWT+KNN and
3D-DWT+random forest attain the second and third highest OA for both widely used
hyperspectral image datasets such as Indian Pines and Salinas. As a result, the intrinsic
characteristics of 3D-DWT+SVM can be effectively represented to improve the discrimina-
tion of spectral features for HSI classification. The comparison of different ratio of training
and testing images are providing a sufficient information about average accuracy of each
class. Our future research will concentrate on how to efficiently represent spatial–spectral
data and increase computational performance with the help of deep-learning algorithms.
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