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Abstract: Compared to various optical remote sensing data, studies on the performance of dual-pol
Synthetic aperture radar (SAR) on lithology discrimination are scarce. This study aimed at using
Sentinel-1 data to distinguish dolomite, andesite, limestone, sandstone, and granite rock types.
The backscatter coefficients VV and VH, the ratio VV–VH; the decomposition parameters Entropy,
Anisotropy, and Alpha were firstly derived and the Kruskal–Wallis rank sum test was then applied to
these polarimetric derived matrices to assess the significance of statistical differences among different
rocks. Further, the corresponding gray-level co-occurrence matrices (GLCM) features were calculated.
To reduce the redundancy and data dimension, the principal component analysis (PCA) was carried
out on the GLCM features. Due to the limited rock samples, before the lithology discrimination, the
input variables were selected. Several classifiers were then used for lithology discrimination. The
discrimination models were evaluated by overall accuracy, confusion matrices, and the area under the
curve-receiver operating characteristics (AUC-ROC). Results show that (1) the statistical differences
of the polarimetric derived matrices (backscatter coefficients, ratio, and decomposition parameters)
among different rocks was insignificant; (2) texture information derived from Sentinel-1 had great
potential for lithology discrimination; (3) partial least square discrimination analysis (PLSDA) had
the highest overall accuracy (0.444) among the classification models; (4) though the overall accuracy
is unsatisfactory, according to the AUC-ROC and confusion matrices, the predictive ability of PLSDA
model for limestone is high with an AUC value of 0.8017, followed by dolomite with an AUC value of
0.7204. From the results, we suggest that the dual-pol Sentinel-1 data are able to correctly distinguish
specific rocks and has the potential to capture the variation of different rocks.

Keywords: lithology discrimination; Sentinel-1; PLSDA; AUC-ROC

1. Introduction

Lithology identification is essential for geological investigation and mineral resource
exploration. Accurate information on lithology provides a profound basis to trace the
process of planetary formation [1]. The traditional way to discriminate lithology is usually
based on field investigation and laboratory experiments, which is expensive and time-
consuming. Remote sensing technology makes it possible to identify lithology on a large
scale efficiently and timely, especially when the terrain is rugged and the topography is
complex [2,3].

The performance of remote sensing on lithology classification has been widely ex-
plored and most of the studies concentrated on the use of spectral features. The spectra of
rocks and minerals usually have special absorption features and these features can be due
to various physical and chemical properties like the size of grains in rock, the composition,
texture, element content, etc. [4,5]. Lyon [6] found that the depth of the spectra could
be affected by the grain size in igneous rock and the spectral features caused by Si-O
bond vibration were influenced by the silica content. Kahle [7] utilized the multispectral
thermal infrared (TIR) data obtained by airborne NASA’s (National Aeronautics and Space
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Administration) Bendix scanner to separate silicic igneous rock, Paleozoic quartzite, and
carbonate rock. TIR spectra were further utilized for sedimentary rocks discriminant by
Bihong and Xiaowei [8]; they used the data from Airborne Thermal Infrared Multispectral
Scanner data and corresponding laboratory analysis to distinguish sandstones, siltstones,
and carbonate rocks. Several other airborne TIR remote sensing instruments also manifest
the usefulness of TIR in lithological and mineralogical mapping [9,10]. These airborne
measurements, compared to satellite instruments, are only available at a few places and
have a higher operational cost. As an alternative and comparable way, satellite remote
sensing is more widely used due to the low cost and large-scale observations.

Various optical satellite data were applied and deployed fruitful results in lithol-
ogy mapping. The spectral ratio of selected bands [11] and diagnostic mineralogical in-
dices [12,13] extracted from ASTER was proposed for lithology mapping, according to the
TIR spectral properties of typical rocks. The spectral region from visible and near-infrared
(VNIR) to shortwave infrared (SWIR) also contributed a lot to lithology mapping and
mineral exploration [14–17]. The efficiency of different band combinations and false-color
composite for lithology differentiation using Landsat series data were studied by [18–20].
Ge [21] assessed the potential of Sentinel-2A imagery for lithology mapping and concluded
that Sentinel-2A can yield higher accuracy than ASTER and Landsat 8 imagery because
of the high spectral resolution in VNIR and SWIR range. In addition to the broadband
spectral imagery, hyperspectral data like Earth Observing-1 Hyperion data can offer de-
tailed spectral information which enables the subtle difference in spectrum among rocks
that can be detected, though satellite-based hyperspectral data often contain poor spatial
resolution [22,23]. In addition to spectral information, several researchers also attempted to
integrate texture (spatial) features and Digital Elevation Model (DEM) [21,24,25] to enhance
the accuracy of lithology mapping.

Normally, lithology mapping using satellite-based imagery requires a cloud-free en-
vironment, high outcrop density, and less vegetation cover. Moreover, unlike spectral
imagery which can only provide information about the topmost part of the surface, syn-
thetic aperture radar (SAR) technique can penetrate through the cloud and show high
sensitivity to terrain surface physical properties. The amount of the backscatter SAR waves
can be affected by the surface roughness and dielectric constant [26]. The dielectric constant
is strongly influenced by the moisture content and conductivity. As for different rock types,
the corresponding porosity, which can contain water, and the conductible metal content can
result in various dielectric constants. Surface roughness can be influenced by the grain size
of the rock and the general topography. Meanwhile, SAR images are also rich in textural
characteristics [27]. Thus, SAR data show great potential in structural, lithology mapping,
and geological investigation [28–30].

Recently, full-polarization SAR data have already been employed in lithology mapping.
Xie et al. [31] found that the full-polarization Advanced Land Observation Satellite (ALOS)
data can result in good lithology classification using Cloude-Pottier decomposition and
support vector machine (SVM). Yuan et al. [32] evaluated the supplementary effect of radar
on optical data in lithology identification by superimposing RADARSAT-2 on ASTER and
found that full-polarization SAR images can effectively boost up the accuracy of lithology
classification. Ghafouri et al. [33] used TerraSAR-X SAR data to measure the surface
roughness of geological rocks, and then improve the description of geological rock surface.
Radford et al. [34] made an accurate classification of geology in an environment with
thick vegetation, limited outcrop, rugged terrain using airborne Terrain Observation with
Progressive Scans SAR (TopSAR), coupled with geophysical (gravity and magnetics) data.
Wang et al. [35] proposed a novel lithology classification method based on dual-frequency
Pol-SAR data and a deep learning method. They integrated superpixels produced by
stacked sparse autoencoder and contextual information of the neighborhood to increase the
class separability of lithology. The above literature indicates that SAR has advantages for
lithology mapping. However, most of the studies used high-cost commercial data, and the
SAR data are often full-polarization data (HH, HV, VV, VH). Sentinel-1 as a good trade-off
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between cost and spatial-temporal resolution offers dual polarization (VV and VH) data.
The potential of dual-pol Sentinel-1 data for lithology mapping or discrimination still needs
further study.

Among the discrimination or classification methods, pixel-based methods are a com-
mon technique used for mapping or classifying lithological units [36]. The pixel-based
classifiers consist of parametric (maximum likelihood) and non-parametric (SVM, neural
networks, and tree-based) classifiers. Contrary to the parametric classifiers, the normally
distributed data are not required by the non-parametric classifiers. Due to the fact that
remote sensing data cannot provide data with normal distribution in most cases, the non-
parametric classifiers are more preferred [22]. Partial least square discriminant analysis
(PLSDA), as a non-parametric machine learning tool, combines the PLS regression and
classification techniques. Unlike the neural network classifiers, partial least square (PLS)can
still show robust and effective results with a small sample size [22,37]. Whereas PLSDA has
shown great potential in many fields like bioinformatics, agriculture, and chemometrics,
the usage of PLSDA in lithology discrimination is rarely mentioned.

2. Study Area and Materials

2.1. Study Area and Field Samples

The study area is located in Huludao, a southwest coastal city with many hills in
Liaoning Province, China. This region is on the West Block of North China Craton, which
is one of the oldest Archean cratons in the world, and experienced widespread tectono-
thermal activity since the late Mesozoic [38,39]. The various lithological rock outcrops with
different characteristics can be found in this area.

Fifty-four rock samples were randomly distributed in Huludao (Figure 1). GPS posi-
tions and physical properties like color, grain size, and texture were recorded. In general,
the sample was grouped into five kinds of rock as follows: andesite (n = 17), dolomite
(n = 7), granite (n = 9), limestone (n = 15), and sandstone (n = 6). To reduce the effect from
the dense vegetation cover with plenty of forest and cropland, most of the samples were
located in open and unobstructed places.
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2.2. Sentinel-1 Products and Elevation Data

The Sentinel-1 mission is part of the Copernicus Programme developed by the Euro-
pean Agency, containing Sentinel-1A and Sentinel-1B constellations. Level-1 single-look
complex (SLC) and Ground range detected (GRD) Sentinel-1 products providing dual-
polarization (VV and VH) data, in Interferometric Wide Swath (IW) mode were utilized
in this study. SLC products consist of focused SAR data geo-referenced using orbit and
attitude data from satellite and provide in zero-Doppler slant-range geometry. GRD prod-
ucts consist of focused SAR data that have been detected, multi-looked, and projected to
ground range using the WGS-84 Earth ellipsoid model. To reduce the effect of vegetation
and snow cover, data acquired on 8 October 2020 were selected.

Due to the close relationship between topography, tectonic process, and lithology [40],
elevation data were also involved in this study. SRTM (The Shuttle Radar Topography
Mission) 1 Arc-Second Global elevation data generated from C-band Spaceborne Imaging
Radar and the X-band SAR instrument onboard the space shuttle were used here.

3. Methodology

The methodology (Figure 2) mainly consists of 4 parts: (1) preprocessing of Sentinel-1
GRD and SLC data and the extraction of corresponding polarimetric parameters of samples;
(2) statistical analysis of polarimetric parameters; (3) discriminant analysis on the sample
and cross-validation; (4) accuracy assessment.
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3.1. Sentinel-1 Preprocessing

The preprocessing for Sentinel-GRD data was similar as described in [41]. As such, the
orbit information was firstly updated to obtain the precise position of the satellite. Radio-
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metric calibration was then done to convert the digital value to radiometrically calibrated
SAR backscatter. The images were cropped to reduce image size and processing time. The
speckle noise generated from the interference of waves from elementary scatterers was
filtered by the refined Lee filter, as it can preserve point target and texture information [42].
Range Doppler terrain correction compensates the geometry distortion caused by side-
looking working mode and topographical variations. The pixel values were converted to a
log scale in decibels (dB). To obtain more information, the ratio (represented as VV-VH)
between the polarization VV and VH was also calculated.

The preprocessing for SLC data was also started from orbit file correction. The three
subswaths (IW1, IW2, and IW3) acquired by the TOPSAR technique in IW mode were split.
Each subswath can be processed independently and therefore only the slice that contains
samples was processed. Then radiometric correction was applied followed by a deburst
operation which removes the black-fill demarcations between the nine burst in the azimuth
direction to get a seamless image. Speckle filters, terrain correction, and subset come next
as the operation is done for the GRD data. H/ /A polarimetric decomposition helps extract
scattering mechanisms in this study. Entropy (H), scattering angle (α), and anisotropy (A)
were calculated based on the eigenvalues and eigenvectors of the polarimetric coherency
matrix. The H plane was linearly separated into nine zones to determine the nine different
scattering mechanisms [43]. The H ranges from 0 to 1, indicating the randomness of the
scattering. The α represents the scattering-type such as surface scatter, dipole scatter, and
multiple scatter. The anisotropy (A), as a complementary parameter to entropy, can provide
information about surface roughness [44].

Meanwhile, textural information and textural characteristics obtained from SAR
images have also been proved to be useful in the recognition of lithological units [27,34].
The backscatter coefficients VV and VH were chosen for grey level co-occurrence matrix
(GLCM) [45] analysis. The contrast features (contrast, dissimilarity, and homogeneity),
orderliness features (angular second moment, maximum probability, energy, and entropy),
and statistics features (mean, variance, and correlation) were calculated respectively for
VV and VH. Thus, there were 20 features in total that can be achieved based on the GRD
data. Compared with the number of available samples, a principal component analysis
(PCA) was applied to these features to reduce the feature number and redundancy.

All the preprocessing procedures for both GRD and SLC products were conducted by
the Sentinel’s Application Platform (SNAP) toolbox from ESA (European Space Agency).
After the preprocessing, the pixel values of the backscatter coefficient VV, VH, ratio (VV-
VH), entropy, alpha, anisotropy, the corresponding elevation values from SRTM, and
GLCM features were extracted using the position of samples. The features used in this
study were illustrated in Table 1.

Table 1. Summary of features used for lithology discrimination.

Features Bands (Serial Number) Source Data

Decomposition parameters H (1), A (2), and Alpha (3) Sentinel-1 SLC

Backscatter coefficients and ratio VV (4), VH (5), VV-VH (6) Sentinel-1 GRD

Topography Elevation (7) SRTM 1 Arc-Second Global data

GLCM GLCM component1/2/3 (8, 9, 10),
GLCM component4/5 (11, 12) Sentinel-1 GRD

3.2. Statistical Analysis of Polarimetric Parameters and Backscatter Coefficients

Before the discriminant analysis, the statistical analysis of the polarimetric derived
matrices of different kinds of rock was performed in Matlab 2020a. A Kruskal–Wallis rank
sum test [46] was firstly carried out on the rock samples to see the difference between
the polarimetric features and whether the difference can differentiate various rock groups
significantly. The Kruskal–Wallis rank sum test is a nonparametric test that does not assume
a normal distribution of the data. The test helps a lot when comparing the difference
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between more than two groups by assessing the statistical differences of the sample means
among the rock groups. Moreover, box-plots of different polarimetric parameters derived
from Sentinel-1 data were also plotted for further analysis.

3.3. Discriminant Analysis and Cross-Validation

The 12 variables (Table 1) used for lithology discrimination were measured in different
scales and units, a centroid centering and scaling step was conducted for each variable. Due
to the complexity (dense vegetation cover and structure) of the study area, the sample size
is limited. To avoid overfitting of the model, the input variables with useful information
and little redundancy were attempted to be selected for further model building. It is worth
noting that the discriminative information of different rocks can be subtle and be removed
as noise. We carried out the variable selection via the toolbox PLS v8.9 in Matlab from
Eigenvector Research, Incorporated [47]. The importance of all the variables was first
measured in the XGBoost module. The gain of each variable was summed up on each node
when we made an XGBoost analysis and the gain refers to the reduction in the loss function
being optimized. Simultaneously, the variable importance in projection (VIP) which was
widely used for variable selection in a PLS model was also conducted. Normally, the bigger
the VIP score, the more important the variable across all the components further used for
the model. The union of the variables selected by these two ways was used as the final
input variable set.

PLS aims to find a hyper-plane in multi-dimensional space to divide space into multi-
regions [48]. Similarly, like the PCA, PLSDA also attempts to transform the data to a
lower-dimensional space with a small error while dealing with colinearity in between
the input variables. One difference between PLSDA and PCA is that PLSDA achieves
dimensionality-reduction with full awareness of class labels. The response matrix y is
recorded as a dummy block matrix that records the membership of each sample. Both the
response matrix and the independent block x are involved to find the latent variables (LV)
which can best describe y matrix [49]. Given the limited sample size, PLSDA implemented
via the toolbox PLS v8.9 was selected to discriminate the rock in this study. In theory, the
number of predictor variables for the model is fewer than the number of LV to reduce
the chance of overfitting [50]. The predictor variables of the model were optimized using
cross-validation iteratively and the LVs were adding to the model one by one until the
cross-validation error rate stopped decreasing [51]. In this study, the sample was first
sorted according to the rock types and a 10-fold cross-validation was utilized to guarantee
the rock type proportion is preserved in both the training and the validation data. Note
that 10% of the samples were treated as validation data and the other 90% of the data were
treated as training data each time.

To find a suitable discrimination model, in addition to XGBoost analysis and PLSDA,
classification learners implemented in Matlab 2020a were also used for the lithology
discrimination. Cross-validation was set to be 10-fold and other parameters use default
values. The classification learners included discriminant analysis classifiers, Naïve Bayes
classifiers, support vector machines, nearest neighbor classifiers, decision trees classifiers,
and ensemble classifiers.

3.4. Accuracy Assessment

The accuracy of the model was assessed by the confusion matrix and the AUC-ROC
(area under the receiver operating characteristics curve) curve. The confusion matrix is
a specific table that contains the performance information of the model [52]. The confu-
sion between different rock classes was demonstrated and the accuracy from different
viewpoints was calculated such as the overall accuracy, kappa coefficient, and F1-score.

AUC-ROC curve is another way to score the performance of the binary classification.
ROC is the probability curve and AUC shows the separability between the classes. The
ROC curve is plotted with the true positive rate (TPR, also called sensitivity) as x-axis and
false positive rate (FPR, also represented as 1-specificity) as y-axis. AUC takes values from
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0 to 1, where a value of 0 means a totally inaccurate test and a value of 1 reflects a perfectly
accurate test [53]. When AUC is 0.5, it means the model has no class separation capacity.
The higher the AUC usually means the better the model can be classed from other classes.
AUC-ROC offers a more reasonable measurement of the model performance when the
class is imbalanced than the overall accuracy [54].

4. Results

After the extraction of corresponding features, the statistical boxplots were demon-
strated in Figure 3, which presents the variation in backscatter coefficients (VV, VH, VV-VH)
and decomposition parameters (H/α/A) derived from different rock types. In general, the
mean value of backscatter coefficient VH for dolomite, andesite, and granite varies around
−17 db. Sandstone has a relatively lower mean VH value (−18.3 db) and limestone has a
slightly higher mean VH around −16 db. The mean VV of limestone (−9.2 db) shows an
obviously higher value than that of andesite (−10.7 db), sandstone (−11.1 db), and granite
(−11.2 db), whilst the mean VV of dolomite locates around −10 db. From Figure 3a, we can
also notice that granite has a lower mean (VV-VH) value at around 5.6db than that of the
other 4 lithological classes. The differences of the mean VV-VH among dolomite, andesite,
limestone, and sandstone are unobvious. Whereas for the decomposition parameters, the
variations of mean H and A for dolomite, andesite, limestone, granite, and sandstone
are small, and H and A values are around 0.65 and 0.6, respectively. As for the Alpha,
limestone has a substantial-high mean value at around 21 degrees compared to that of
andesite and sandstone (around 19 degrees). Dolomite and granite almost have a same
mean Alpha (around 20 degrees). According to Figure 3b and [43], the majority of the rock
samples have a medium entropy surface scattering with the mean alpha values clustered
around 20 degrees and entropy values clustered around 0.7.
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Figure 3. Boxplots presenting the variations in (a) backscatter coefficients VV, VH, and VV-VH;
(b) decomposition parameters entropy, anisotropy, and alpha among different rock types. The black
circle with each box is the mean value.

Though differences can be seen from the boxplots, the result of Kruskal–Wallis rank
sum test (Table 2) reveals a statistical insignificance difference among the rock samples
based on the backscatter coefficients and decomposition parameters, with all the p values
larger than 0.05 at 95% confidence level. Thus, a single backscatter coefficient (VV/VH/VV-
VH) or decomposition parameter (H/A/Alpha) cannot be treated as a solid discriminator
among the 5 lithological classes. Multiple sources of information should be considered
together to discriminate lithology.

Table 2. Results of Kruskal–Wallis rank sum test.

Features P-Value

Entropy 0.424

Anisotropy 0.424

Alpha 0.672

VH 0.582

VV 0.2961

VV-VH 0.1672

In total, there were 12 variables (Table 1) considered for lithology discrimination in
this study. To avoid redundancy and colinearity, the variable selection was carried out.
From Figure 4a, it can be seen that the GLCM component4 (11), GLCM component1 (8), and
the elevation data (7) contribute most of the information, followed by GLCM component3
(10), the GLCM component5 (12), and Alpha (3). While from Figure 4b, except for A (2),
all the other variables provide more or less information for discrimination when using
XGBoost analysis. The elevation data (7), VV-VH (6), and the GLCM component5 (12)
therein show great importance, followed by VV (5), H (1). To heed both, 10 variables (1,
3, 4, 5, 6, 7, 8, 10, 11, and 12) were selected. These variables were used as input for later
discrimination analysis.
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The overall accuracy of different classification learners is shown in Figure 5. In light
of the variable selection methods used here are embedded type selection, which works
well with a particular learning process, the total variables before selection were also used
as a comparison. From Figure 5, except for fine Gaussian SVM, cubic SVM, bagged tree,
and subspace discriminant, the other classification learners showed higher or comparable
results using selected variables compared to using total variables. Only results related to
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PLSDA with selected variables, which yields the highest overall accuracy (0.444), were
discussed in this section.
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Both estimated and cross-validated ROC curves used for assessing the specificity and
sensitivity for different rock classes using PLSDA are illustrated in Figure 6. Plots on the
left and right describe the same thing in different ways. Each plot on the right shows the
1-specificity versus the sensitivity as a function of the selected threshold, while the plot on
the left demonstrates the change of specificity and sensitivity with various thresholds. The
corresponding AUC values for each rock class are listed in the ROC graphs. According
to [53], AUC with a value of 0.7 to 0.8 indicates the predictive ability of the models is
acceptable, AUC with a value of 0.8 to 0.9 indicates the predictive ability is excellent and
AUC bigger than 0.9 means the predictive ability is outstanding. As can be seen from
Figure 6, the predictive ability of the model for limestone is excellent, with an AUC larger
than 0.8. The predictive capability for dolomite is acceptable, with an AUC larger than 0.7.
As for the andesite, sandstone, and granite, models are a little overfitting and models are
with poor predictive capability (AUC ranges from 0.5 to 0.7).

With respect to the confusion matrix (Table 3), it is clear that the model shows a ‘fair’
agreement (kappa = 0.249) among all the rock classes [55]. F1 scores were calculated as
a harmonic mean of user’s accuracy and producer’s accuracy (not listed here). F1 score
ranges from 0.125 for granite to 0.629 for limestone. Accordingly, limestone was reliably
discriminated, which is consistent with the result from Figure 6. Andesite and granite were
severely mixed with other rock classes. While some degree of moderate mixing exists in
dolomite and sandstone classes.
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Table 3. Confusion matrix of cross-validation using PLSDA.

Ground Truth

Dolomite Andesite Limestone Sandstone Granite F1 Score

Predicted

Dolomite 4 2 0 0 1 0.571

Andesite 0 6 1 0 3 0.444

Limestone 2 5 11 1 1 0.629

Sandstone 1 1 3 2 3 0.350

Granite 0 3 0 3 1 0.125

OA 0.444 Kappa Coefficient 0.249

5. Discussion

The main aim of this study was to assess the capacity of dual-pol Sentinel-1 SAR data
for lithology discrimination in dolomite, andesite, limestone, sandstone, and granite rock
classes. The backscatter coefficients, decomposition parameters, and GLCM information
of all rock classes were first derived from SAR data. These SAR derived features were
then analyzed via Kruskal–Wallis rank sum test to investigate the significance of the
difference among rock classes. Furthermore, the derived features together with elevation
data were used as input data in different discrimination models for classifying lithology.
The important findings are discussed below.

Backscatter coefficients have been widely used in agriculture, environment, and
geology, due to the sensitivity to ground surface physical properties such as surface
roughness, dielectric constant, soil moisture, and grain size [56,57]. However, publication
investigating specific rock class instead of rock assemblage (lithology unit) classification
based on SAR data is scant, and the lithology unit classification usually refers to special
stratigraphic relations. While the main landcover in our study area is vegetation and city,
it is hard to find large continuous outcrops. Only uniform outcrops with relatively large
areas are considered here and the collected samples were assigned to the dominant specific
rock class. Thus, it is difficult to establish a discussion with our results. According to the
field observations, one possible reason for the low accuracy may be the various grain sizes
which can directly lead to different surface roughness [58] and texture. After checking
the physical properties of the rock samples, it can be found that the grain size of granite
varies from medium fine-grained to coarse-grained and the grain size of sandstone varies
from silt to medium-grained. Various grain sizes then lead to diverse backscatter behaviors
and the given C-band Sentinel-1 data may show different sensitivities to different particle
sizes [59]. Different grain sizes also contribute to different surface textures and further
affect the dielectric constant [60], which may explain why the GLCM components show
great importance in lithology discrimination (Figure 4).

Apart from the grain size, other physical properties (Figure 7) like dielectric constant
and magnetic susceptibility were also measured in the lab to help interpret the results. In
general, the dielectric constant deviations of all rock classes are at a similar level (Figure 7a),
while the deviation of magnetic susceptibility among different rock classes varies a lot.
As can be seen from Figure 7b, compared to dolomite, limestone, and sandstone, the
magnetic susceptibility of andesite and granite have bigger standard deviations, which
may be caused by the various concentration of ferro-oxides. This might be another reason
for the low discrimination accuracy for andesite and granite. According to [61], radar
signal is strongly dependent on the dielectric constant and magnetic susceptibility, and
significant scattering attenuation can be caused by higher dielectric constant and magnetic
susceptibility. Our results show that the granite and andesite samples with slightly higher
dielectric constant and magnetic susceptibility have smaller backscatter values compared
to limestone with lower dielectric constant and magnetic susceptibility (Figure 3a).
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From our results (Figure 4), backscatter coefficients and decomposition parameters
(variables 1–6) can actually provide useful information for lithology discrimination. How-
ever, compared to this information, elevation and texture information shows more im-
portance in lithology discrimination. Contrary to the first three components often used
in classification, the other bands obtained from PCA offer much more help. The result
from [62] also indicates that the higher-order PCA components contain subtle information
about the occurrence of minerals and rocks and enable to enhance lithological unit infor-
mation. Further, Jakob et al. [25], Amin Beiranvnd Pour, and Hashim [63] also found that
lower-level PCA components derived from spectral data can help extract different minerals
and rocks. Thus, it is recommended to consider more the components derived from PCA
when classifying lithology. The close relationship between lithology and topography is
reflected in the fact that on the one hand rock types can influence both ecosystems and
erosion rates, and on the other hand ecosystem and erosion rates can also influence how
the rock is expressed in the topography. Moreover, the bedding, jointing, and tectonic
deformation in the crust varies with different lithologies [64,65]. Hence, elevation data also
play an important role in lithology discrimination [21].

The overall accuracy listed in Figure 5 indicates that PLSDA had the best performance
when discriminating lithology, followed by SVM. Several previous studies already explored
the performance of SVM in lithology mapping [21,22,25,66,67]. The requirement for input
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data of SVM is lower in data distribution and data size than that for other methods like
maximum likelihood and artificial neural network. In contrast, the investigation of PLSDA
in lithology discrimination is scant. After considering the limited and skewed rock samples
with different physical or chemical properties (grain size, age, and concentration of metal,
etc.), we thought the result from PLSDA is very promising. Our results (Figure 5) indicate
that PLSDA has a better performance than other classifiers. Though the overall accuracy
from the confusion matrix (Table 3) is not high, AUC-ROC values in Figure 6 show the
discriminability between different rock types of the model, especially the limestone and
dolomite types.

Variable selection was carried out to reduce the data redundancy in this study. The
comparison between the overall accuracies of models using all variables and selected
variables (Figure 5) indicates that the variable selection does not work for all classifiers.
One reason is that the methods used for selection are embedded-type selection and may
only work well with a particular learning process. Another reason is the difference among
the mechanisms of different classifiers. However, variable selection is still recommended
to serve as a baseline for choosing the final input variables when the sample size is limited.

More efforts are needed to put into improving the discrimination accuracy in the
future. The balance between spatial resolution and outcrop area needs to be considered
carefully. Though we already chose the samples with an outcrop area as big as possible,
the backscatter signals can still be affected by the border effects from the surrounding
environments. Further studies can be conducted in arid or semi-arid places with plenty of
outcrops to exclude the surrounding influence. Also, more samples with various properties
should be included to ensure adequate variation and explore the SAR scattering mechanism.
The multi-sensor approach can also improve the model accuracy. Thurmond et al. [68]
mentioned that merging optical and radar data is an effective way of identifying different
lithologies on the basis of their spectral features and surface roughness.

Overall, this study proves that dual-pol Sentinel-1 SAR data actually have poten-
tial for lithology discrimination, which is useful in geological investigation and mineral
resource exploration.

6. Conclusions

Remote sensing data have made lithology mapping cost-effective. The use of optical
satellite data in lithology mapping has been well explored, while studies investigating SAR
data, especially the dual-pol SAR data, on lithology mapping is few. Microwave data can
provide structural, surface roughness, and dielectric information particularly. In this study,
we attempted to use only dual-pol Sentinel-1 data together with SRTM data to discriminate
different rock types.

We combined the backscatter coefficients, decomposition parameters, and texture
features derived from Sentinel-1 products with cross-validation discrimination models to
distinguish different rock types. The performance of models was then evaluated using
confusion matrices and AUC-ROC. We found that PLSDA yields the best performance with
an overall accuracy of 0.44. Meanwhile, the results show that the model works well for
limestone with the highest F1 score and AUC value (0.629 and 0.80, respectively), followed
by dolomite with a F1 score of 0.571 and an AUC of 0.720. Sandstone, andesite, and
granite cannot be well classified due to the complex physical and chemical properties. The
variable selection can somehow improve the overall accuracy of this study. These results
are meaningful for proving the great potential of Sentinel-1 in lithology discrimination and
to open up a new way for lithology mapping using remote sensing data.
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