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Abstract: Vibration monitoring is a frequent task within the general topic of Structural Health
Monitoring. For this monitoring, usually accelerometers, strain gauges, fibre optic sensors or Global
Navigation Satellite System (GNSS) receivers are placed on pre-selected positions on the structure and
the point-wise measurements are individually processed to estimate the relevant modal parameters,
for example, oscillating amplitudes and natural frequencies. If laser scanners were used for vibration
monitoring, the analyses could be performed with a significantly higher spatial resolution that
would be beneficial especially for locating structural weaknesses. However, to apply laser scanners
rigorously to vibration monitoring, spatio-temporal models need to be set up. With this study, we
develop and discuss four spatio-temporal models applied to the simulated vibration monitoring of
a bridge deck. Therefore, we formulate either functional as well as stochastic connections between
neighbored measurement positions within the estimation of the parameters of a harmonic oscillation.
We reveal that those models allow an improved parameter estimation compared to the usually used
strategies—even at lower measurement frequencies and shorter observation lengths.

Keywords: harmonic oscillation; frequency; amplitude; Nyquist frequency; leakage effect; correlation

1. Introduction

In the context of Structural Health Monitoring (SHM), the vibration monitoring of civil
infrastructure plays an important role [1]. Especially the vibration analysis of bridges using
accelerometers [2–5], strain gauges [6], fibre optic sensors [7] or Global Navigation Satellite
System (GNSS) receivers [8,9] is widespread in the field of SHM. Herein, several of these
sensors are positioned on the structure to monitor its vibration. Within the operational
modal analysis, usually natural frequencies, damping ratios and mode shapes are to be
identified [10]. While these analyses, in the first place, are only performed individually for
each measurement position, they are spatially interpolated in several applications in sense
of a spatially continuous (operational) modal analysis of the complete construction [11].
This procedure only works out properly, if

• the observation length is long enough,
• the sampling rate of the sensors is high enough,
• the positions of the sensors are chosen properly.

Sampling rates that are too small would otherwise hinder the detection of high-
frequency oscillations due to aliasing effects. The minimal sampling rate is determined
by the Nyquist frequency [12]. Observation lengths that are too short would lead to a
pronounced leakage effect hindering the sharp detection of relevant frequencies [12,13].
This latter effect is only relevant for short term (modal) analyses. Using only few sensors—
leading to large distances between the sensor positions—would hide local abnormalities in
the oscillation behavior of the structure. With this study, we highlight that these prerequi-
sites can be softened in case that the measurements are analyzed not individually for each
measurement position but combined in a spatio-temporal model.
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In the field of geodesy, using a profile laser scanner for monitoring dynamic defor-
mations of elongated structures as, for example, bridges, has become famous within the
last years [14,15]. Profile laser scanners rapidly measure the surface of a structure with
thousands of points having a point spacing of down to millimeters with a repetition rate of
up to 200 Hz. While these are positive characteristics regarding the ability of using laser
scanners for vibration analysis or SHM in general, their drawback is that the individual
point positions on the structure cannot be determined a priori, that this point position
is only limitedly stable between subsequent repetitions and that the object is measured
point-after-point at each position.

These disadvantages have been met by the development of procedures transitioning
from measured points to virtual reproducible points, for example, by means of spatially
constant segments. However, since these procedures aggregate points of different positions
to a single virtual point, both amplitude and phase get blurred. Consequently, other
strategies for data mining within the measured times series are needed.

In this sense, we, in this study, derive spatio-temporal models in four steps beginning
from the benchmark method of analyzing the vibration for each measurement position
individually. Step by step we introduce further spatial connections between neighbored
measurement positions to gain in the end a fully continuous spatio-temporal model for
analyzing all measurements at different positions in combination. Doing so, the parameter
identification process is improved due to a larger redundancy in the estimation process
leading to smaller parameter uncertainties and higher reliability. Herein, we specifically aim
at evaluating the benefit of each new spatial connection onto the parameter identification.

By this procedure, we focus on four main questions that are raised:

1. How can spatio-temporal models be formulated?
2. Can we reduce the observation length using these models maintaining the parame-

ters’ uncertainty?
3. Can we reduce the sampling rate using these models maintaining the parameters’ un-

certainty?
4. Do these models require a small spatial distance between the measured positions?

We relate the answers to the benchmark method that does not introduce any spatial
connections between measurement positions at all during the parameter identification process.

These questions will be answered related to profile laser scanners due to the afore-
mentioned properties. We additionally focus on elongated structures as bridges. Anyway,
a transfer to other sensors and also other structures, even considering structures expanded
in two dimensions, is also valid. In this first study, we only focus on an analysis in the time
domain not considering transformations in the frequency domain, for example, based on a
Fourier transformation [12] or wavelets [13].

Our analysis rests upon the simulation of a line oscillating with one single natural
frequency being considered as a very simplistic realization of a bridge deck. The corre-
sponding measurements of the laser scanner are simulated as well. We use simulations to
clearly extract the benefit of the shown spatio-temporal models independent from other
effects that would occur in empirical measurements. Although the simulation of a vibrating
line might appear to be too simplistic, it clearly can serve as a first time analysis of the
benefit when using spatio-temporal models for vibration analysis. The main conclusions of
the results will be transferable to more complex scenarios that we will examine in future
studies along with real world examples.

Section 2 briefly introduces the related basics of vibration monitoring while Section 3
explains the simulation environment. Section 4 develops the spatio-temporal models that
are evaluated in Section 5. The discussion (Section 6) and conclusion (Section 7) complete
this paper.

2. Relation to Vibration Monitoring

SHM can loosely be defined as the observation and interpretation of the performance
of civil infrastructure as bridges, dams, towers, buildings, tunnels, docks and so forth.
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The aim is to assure the fitness of those structures, that is, a safe and economical operation.
Therefore, a physical or parametric model of the structure is continuously identified using
time-dependent data [1].

As one subdomain within SHM, vibration monitoring measures the vibration response
of a structure—that is due to forced or ambient excitation—to identify modal characteristics,
for example, natural frequencies, damping ratios and mode shapes, and their temporal
changes. Temporal changes or local abnormalities in these modal characteristics—that
is, changes of the natural frequencies, mode shape changes, mode shape curvature, flexi-
bility and others [10,16]—indicate damages of the structures [17]. Those damages might
be located and quantified by vibration monitoring. Thus, this modal analysis can re-
veal structural weaknesses, fatigue or deficiencies amplified or induced by unforeseen
events [18].

The strategies of vibration monitoring can be separated into long term monitoring
and short term monitoring. Short term vibration measurements are specially used to
check key modal parameters used at the design stage and to verify the design. Short
term measurements with high sensor density sometimes also provide a starting point for
long term monitoring with a small set of instrumentation [19]. Since those short term
measurement campaigns are not continuously ongoing, they only seek to identify the state
of the structure at a specific time. They are sometimes only referred to as load tests or
modal tests—distinguished from a (continuous) SHM [1].

The realization of a vibration monitoring bases upon the selection of an appropri-
ate instrumentation or choice of sensors, respectively. Herein, accelerometers are quite
famous [2–5] since they measure with a high sampling rate up to several kHz the second
derivative of the displacement. Also frequently used for vibration monitoring are GNSS
antennas and receivers (only for bridges) [8,9,20–22] or inclinometers [23–25]. With GNSS,
the displacement is measured with a sampling rate up to about 10 Hz and with inclinome-
ters, the derivative of the displacement with the position with up to kHz—depending on
their measuring principle. In pilot tests, also robotic total stations or image-assisted total
stations have been used [26,27]. These instruments measure—electro-optically or with an
integrated camera via photogrammetry—the three dimensional position of a signalized
target on a structure with sampling rates up to 10 Hz or higher.

All these sensors—or corresponding adapters—are fixed to the vibrating structure
at certain positions that are pre-selected by the executing experts. The number of used
sensors or adapters, respectively, depends on the size of the vibrating structure keeping
economic aspects in mind. Choosing the number and position of sensors is of high relevance
especially if the task of the vibration monitoring is not only (a) to determine that damage is
present in the structure but also (b) to determine the geometric location of the damage, what
is a frequent task [28]. The high relevance is governed by the fact that the measurements
are processed individually for each measurement position. The estimated parameters of
each position, for example, natural frequencies and damping ratios, are only afterwards
spatially combined to gain the modal shapes.

Consequently, an inappropriate pre-selection of measurement positions hinders the
SHM. In the worst case, potential damage might not be locatable or even detectable due
to too low signal-to-noise ratios at the chosen positions. To compensate this situation,
methods are needed to filter out environmental and noise effects [29,30] and also to deal
with effects of measurement and modelling uncertainties [1]. Alternatively, spatio-temporal
models could be developed connecting neighbored sensor measurements as is focused
within this study.

Another group of sensors is able to measure vibrations without the need for pre-
vious installation on the structure, that is, they enable contact-less measurements: ter-
restrial laser scanners and vibrometers. Terrestrial laser scanners measure the environ-
ment in three dimensions by a rotating mirror that deflects a laser beam whose time-
of-flight is measured to the structure [31]. In general, terrestrial laser scanners have
shown their great potential for monitoring the displacement or deformation, respectively,
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of structures based on a variety of corresponding publications: damage detection of
bridges [32–34], metal beams [35] water dams [36], radio telescopes [37] and historic or
other buildings [38–40]. Neuner et al. (2016) [41] give a further overview. In all these
studies, the structure is assumed to remain static during the data acquisition that usually
takes from some seconds to several hours. Thus, laser scanners are rather used to monitor
geometric long-term changes via surface movement over time [42,43].

For measuring the geometry of elongated structures, scanning a two-dimensional
profile along the structure’s main extent might be sufficient. For this task, profile laser
scanners might be used—they measure the surrounding only in two dimensions with a
sampling rate of up to 200 Hz at a point spacing on the structure up to some millimeters
in 10 m distance. Thus, they could also be used for monitoring short-term changes as
vibrations [15,44].

Vibrometers measure distance changes to the structure in the line-of-sight of the optical
sensor axis using interferometry with a sampling rate up to several MHz [45]. Vibrometers
can also be enhanced with a comparable scanning mode leading to a continuous laser
scanner doppler vibrometer measuring distance changes in rotating line-of-sights [45,46].
Instead of laser scanners, vibrometers are explicitly designed for monitoring dynamic
displacements as shown, for example, in [47–49].

In all cases, utilizing the aforementioned contact-less sensors, one measures both
spatial and temporal information about the structure, greatly reducing the testing time
required for modal analysis. However, two aspects have to be noticed: Firstly, the mea-
surement position on the structure cannot be pre-selected, it is a consequence of the chosen
angular grid of measurements instead. Secondly, the structure is measured along its extent
point-after-point, not simultaneously. Thus, the time needed for capturing the structure at
all positions only once equals the measurement time for each measurement point multi-
plied with the number of points on the structure. This one-time capturing of the complete
structure is named herewith one measurement epoch.

This non-simultaneous measurement of the structure at not selectable positions further
strengthens the need of including spatio-temporal models into the data processing to
connect the measurements with each other. Otherwise, spatial variations of the structure
are not separable from temporal vibrations. This especially holds if the sampling rate
is rather low compared to the oscillation frequency. Strategies to deal with these facts
exist for vibrometers, for example, the demodulation method, where the velocity response
of the interferometer is multiplied by sinusoidal signals at the excitation frequency and
a low-pass filter is applied to obtain the deflection shape of the structure [46,50]. Thus,
for this strategy, the excitation frequency needs to be known so that this method is rather
applicable at forced excitation, for example, within fatigue checks.

For profile laser scanners, ref. [44] developed and [15] adapted a method to divide
the measured structure into several segments in which all measurements are averaged.
This strategy minimizes the noise in the measurements and it introduces a regular, equally-
spaced grid. Within this grid, each measurement position is again processed individually
and only afterwards combined in a spatial waterfall diagram. Thus, since no intra-epochal
relations between measurement positions are formulated within this strategy, it only works
for high sampling rates of the laser scanner related to the oscillation frequency of the struc-
ture: Only then, the structure might be considered as static within one measurement epoch.

Consequently, the latter sensors that densely measure spatial and temporal informa-
tion, that is, vibrometers or laser scanners, require a spatio-temporal modelling for vibration
monitoring. These models can be seen in the context of data mining of time series that is a
relatively new aspect in vibration monitoring. Herein, the data is rather studied to reveal
patterns, trends, relationships and anomalies [1]. For instance, [51] propose an automated
modal identification procedure based on stochastic subspace identification and [52] identify
natural frequencies of a bridge using Bayesian estimates and a reliability-based method.

Examples of these spatio-temporal models will be developed in the following sec-
tion. Based on simulations, we will imply that these models further increase the usability
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of terrestrial laser scanners for vibration monitoring. This holds since the dense infor-
mation in space and time improves the ability to determine the geometric location of a
structure’s potential damage in sense of Level 2 within the system of classification for
damage-identification methods [28].

3. Implementing a Simulation Environment

The implemented simulation environment rests upon an oscillating elongated struc-
ture, that is, a bridge deck, and a profile laser scanner digitizing this structure. The basics of
profile laser scanners, the simulation, its parameters and the corresponding final measure-
ments that are used as input for the spatio-temporal models are explained in the following.

3.1. Profile Laser Scanners

Profile laser scanners sample the environment within a two-dimensional profile lead-
ing to i = 1, . . . n measured points with coordinates (y, z)i. They consist of a rotating mirror
that deflects a laser beam where the rotation axis is orthogonal to the two-dimensional
profile. The original observations of a profile laser scanner are the zenith angle, that is, the
direction in which the mirror deflects the laser beam, as well as the distance between the
scanner’s reference point and the structure that reflects the laser beam. The latter one is
gained electro-optically via time-of-flight principle or amplitude-modulated-continuous-
wave principle [31]. The structure itself does not need to be signalized or entered in any
way for these measurements.

With the high-end laser scanner Profiler 9012 by Zoller+Fröhlich, a maximal rotation
frequency of 200 Hz can be selected leading to 5120 points per 360 deg [53] or a point spacing
of about 12 mm in 10 m distance, respectively. With lower rotation frequencies, smaller
point spacings can be achieved. At distances of 10 m, the measured points’ accuracy is in
the range of about 1 mm or better [54] if systematic errors are handled properly. Anyway,
for the subsequent simulation, these characteristics are downgraded to show the potential
of spatio-temporal models even for weaker laser scanner performances.

3.2. Basic Set-Up

The simulation’s basic set-up is shown in Figure 1. It consists of a profile laser scanner
whose distance measurement’s origin is positioned z = −16 m centered under a structure
that is extended in direction of the y-axis. This structure has a length of 10 m, its static state
equals a simple horizontal line with z(y) = 0. The structure is harmonically oscillating
with a frequency of f = 0.71 Hz, a maximal amplitude of z0,s = 50 mm and a phase
of ϕ = π/3 rad. The maximal amplitude itself is overlayed with a spatial oscillation to
simulate that the structure deforms spatially. The frequency of this spatial oscillation equals
fs = 0.2 m−1 leading to two complete wave cycles along the structure’s length of 10 m as
shown in Figure 1.

Thus, we assume that the structure is supported by four plain bearings as the end-
points are not fixed, but allowed to move also. Furthermore, we only model one single
natural frequency leading to only one mode shape. These assumption are rather simplistic
but they are a starting point to evaluate the spatio-temporal models. In the future, we will
also introduce further natural frequencies to also simulate and analyze the ability to identify
the parameters of more complex systems and their impact on resulting mode shapes.
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Figure 1. Basic simulation with laser scanner (red triangle), direction of laser beam (solid red line),
scan point on structure (red dot), static mean value of observed structure (dashed blue line) and
oscillating structure (solid blue line, 20-times oversubscribed for better visibility).

The profile laser scanner digitizes the oscillation of the structure with a frequency
of 4 Hz for a duration of 3 s leading to 11 measured profiles or 11 epochs, respectively.
The angular step-width equals 0.1 deg leading to 347 points on the structure with an
approximate point spacing of 29 mm. For simplification, each point is noised in z-direction
with σz = 10 mm while the y-direction is considered as error-free.

It has to be emphasized that the position of each point on the structure, that is, its
y-coordinate, varies for each profile. This is due to (a) angular measurement noise of
the profile laser scanner and (b) the fact that the point of intersection between oscillating
structure and the direction of the laser beam depends on the current state of the structure,
that is, the current extent of the oscillation at this position. This fact can only be considered
rigorously by a spatio-temporal modelling as we intend to develop in this study.

The rather low frequency, the short observation length and the high noise are chosen
in this basic set-up on purpose to highlight the benefit of the spatio-temporal models in
Section 5 especially at challenging set-ups. By also introducing further set-ups (longer
observation time, higher measurement frequency, smaller point spacing), we will evaluate
the performance of spatio-temporal models with other foci, too.

Especially the needed observation length is of relevance here: It indicates how long
the here presented data mining strategy needs to identify the current modal parameters.
In sense of temporal changes in the modal parameters, eventually occurring within an
ambient vibration monitoring, a reducible observation length increases the ability to detect
temporal changes in these parameters due to changing excitations.

3.3. Resulting Measurements

Based on the basic set-up introduced in the previous subsection, a times series con-
taining 11 profiles with m = 347 points each evolves. The total number of measurements
equals, thus, n = 347 × 11 = 3817. The true measurements are noised with the standard
deviation of σz = 10 mm. This times series is depicted in Figure 2 left along the number of
all measured points and Figure 2 right along the length of the measured beam. Figure 2
also shows the true oscillation differing from the observations due to the discrete sampling
frequency of 4 Hz and the noise of 10 mm.
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Figure 2 implies two things: First, the laser scanner measures the oscillating structures
in different states (see Figure 2 left). During some profiles (e.g., 3rd, 6th, 9th), the oscillation
magnitude is nearly maximal and during other profiles (e.g., 2nd, 10th), it is minimal.
If only looking at the noised measurements, an oscillation is hardly noticeable in the
latter case.

Second, at some positions on the structure (i.e., y ≈ 1.9 m, y ≈ 4.4 m, y ≈ 6.9 m,
y ≈ 9.4 m), the structure hardly oscillates at all (see Figure 2 right). This is due to the
modelled spatial harmonic oscillation. As will be shown in the next section, the vibra-
tion analysis is challenging especially at these positions without proper spatio-temporal
models. This holds for using profile laser scanners as well as for using accelerometers or
GNSS receivers.
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Figure 2. Measured points (red dots), simulated oscillation (blue lines) in basic set-up along the
number of measurements (left, vertical black dashed lines indicate new profile) and along the position
on the beam (right).

3.4. Vibration Analysis

We perform the vibration analysis by estimating the parameters of a temporal har-
monic oscillation (mean value, amplitude, frequency, phase) based on the given mea-
surements. The fact that the oscillation parameters might vary with the position on the
structure is dealt with differently in the four steps of spatio-temporal modelling. In usual
applications, this fact would just not be considered since the temporal harmonic oscillation
is analyzed for each point individually as stated in Section 2.

The estimation is realized in a least-squares adjustment of parameters minimizing the
square root or errors between measurements and estimated parameters [55,56]. The param-
eters that are to be estimated are formulated by the corresponding spatio-temporal model
of each step that will be introduced in Equations (1)–(7). Herein, the parameters and the
number of parameters differ between the steps leading to different results.

Since the adjustment will be non-linear in each case, approximate values are needed.
These are gained by noising the true parameters defined in the simulation environment
using the standard deviations of 0.10 m for the mean value and the amplitude, 0.05 Hz
for the frequency and 0.10 rad for the phase. Investigations towards the sensitivity of
the analysis regarding the approximate values will follow. As stochastic model, the true
standard deviation of the measurements is included: σz = 10 mm.

4. Developing Spatio-Temporal Models

We develop the concept of a spatio-temporal vibration analysis based on four steps.
In Step 1, we use the classical model of analyzing each measured position independent
from the spatially neighbored points. Each further step introduces a connection between
neighbored points to gain a fully continuous spatio-temporal model in the end.
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4.1. Step 1

The first step equals the classical approach of parameterizing the temporal measure-
ments z dependent on the time t at each position yi independent from the neighborhood:

zyi (t) = zyi + z0,yi · sin
(
2π fyi t + ϕyi

)
. (1)

Herein, the vibration zyi (t) is parameterized based on a harmonic oscillation using a mean
value zyi , an amplitude z0,yi , a frequency fyi and a phase ϕyi . By the index i, we denote
that the corresponding parameters are discrete in space. Hence, it is not a continuous
consideration as will be introduced in step 4. For each of the 347 points on the structure,
one set of oscillation parameters (zyi , z0,yi , fyi , ϕyi ) is estimated according to Section 3.4
based on 11 measurements each, 3817 measurements in total.

An alternative formulation of this usual processing of step 1 is given by [15]. They av-
erage the points measured by a profile laser scanner in certain segments to cope with the
fact that the individual point positions may change between different profiles and to reduce
the noise in the measurements. Afterwards, they process the averaged points analogous to
step 1 independent from the neighbored points without any spatio-temporal model. Thus,
regarding the functional formulation, this procedure is similar to step 1 and Equation (1).
We will discuss this strategy also briefly as step 1b in the following using a segment length
of 0.25 m.

4.2. Step 2

Step 2 assumes that the oscillation frequency and the phase do not vary on the
whole structure:

fy1 = fy2 = . . . = fym = f , (2)

ϕy1 = ϕy2 = . . . = ϕym = ϕ. (3)

These assumptions are fulfilled within the current simulation; they are also meaningful for
a real vibration monitoring: The oscillation frequency, that is, natural frequency, will most
probably not change along the object, at least not between each measurement position.
The phase describes the rest-part of the period that is identical for all points of the bridge
deck, provided that the scanner rotates with a constant speed.

With these assumptions, the spatio-temporal model of step 1, Equation (1), simplifies to

zyi (t) = zyi + z0,yi · sin(2π f t + ϕ), (4)

meaning that only one single frequency f and phase ϕ are estimated according to Section 3.4
for the complete data set. Thus, the number of estimated parameters is reduced compared
to step 1.

4.3. Step 3

Step 3 is a further advancement of step 2 that firstly considers all parameters
(zyi , z0,yi , f , ϕ) to be spatially connected. For the amplitude and the mean value, soft
local constraints are integrated:

zyi ≈ zyi+1 , (5)

z0,yi ≈ z0,yi+1 . (6)

Hence, we allow the mean value and the amplitude to change only smoothly along the
structure. This assumption is valid considering the fact that we deal with a continuous line
in the simulation. The translation into real world examples is also feasible as bridges—at
least partially—consist of continuous beams. At discontinuous positions, that is, at the
transition of individual construction elements, especially the soft constraint concerning
the smooth mean value would need to be softened more. However, the basic idea of a soft
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constraint is transferable in any case to real world examples as we generally monitor rather
solid structures within a vibration analysis.

These soft constraints are realized by integrating stochastic pseudo-observations into
the parameter identification according to Section 3.4. By this, we formulate constraints
in the parameter estimation that should not be fulfilled strictly but with a rigorousness
applied to the corresponding standard deviation [55,56]. This approach of modelling
spatial connections between neighbored points equals, thus, a Markov process. Since two
pseudo-observations can be introduced for each couple of neighbored points, the amount
of observations increases compared to step 2.

The corresponding standard deviation of the pseudo-observations regulates the strict-
ness of these soft conditions. We here assume the equality of neighbored mean values
to be rather high leading to σz = 0.1 mm. Since the amplitudes indeed change over the
length of the structure (see Figure 2 right), we set this standard deviation larger leading to
σz0 = 1.0 mm.

This approach using pseudo-observations in step 3 stochastically introduces spatio-
temporal connections between the measured points and their oscillations. The resulting
spatial connection between the measured points and the parameters can be highlighted
by depicting the spatial correlation between the estimated mean values zyi as well as
between the estimated amplitudes z0,yi , both along the distance between points on the
beam (Figure 3): The estimated mean values mutually support each other (minimal cor-
relation of 0.2) up to a point distance of about 1.8 m, the estimated amplitudes mutually
support each other up to a point distance of about 0.3 m. Hence, each estimated mean
value incorporates the information of about 60 neighbored points and each estimated
amplitude the information of about 10 neighbored points, both considering point spacings
of about 29 mm.
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Figure 3. Correlation between estimated mean values and between estimated amplitudes at step 3.

4.4. Step 4

In step 4, we finally introduce a continuous spatio-temporal model for the vibration
analysis that does not anymore consider the observations and parameters at discrete
positions yi but continuously in space y(·). Therefore, we parameterize the measurements
temporally and also spatially with the functional model of a harmonic oscillation:

z(y, t) = dsy + bs︸ ︷︷ ︸
z(y)

+ z0,s · sin(2π fsy + ϕs)︸ ︷︷ ︸
z0(y)

· sin(2π f t + ϕ). (7)

Herein, we substitute the mean value z(y) continuously by the two parameters ds and
bs of a linear trend. The amplitude z0(y) is substituted by a spatial harmonic oscillation
defined by the parameters z0,s, fs, ϕs. At all previous steps, the mean values and amplitude
were estimated individually for each position. Thus, in step 4, the number of estimated
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parameters is reduced to seven: ds, bs, z0,s, fs, ϕs, f , ϕ. Again, the parameter identification
process is based on a least-squares estimation according to Section 3.4.

4.5. Impact of Spatio-Temporal Models on Reliability of Vibration Analysis

To further distinguish the different steps, we compare several quality measures:
The redundancy, the relative redundancy and the partial redundancies. These values are
measures to describe the reliability of an adjustment, that is, its ability to estimate unbiased
parameters [56]. Herein, the focus can be lead on the contribution of all measurements,
or individual ones, on the estimated parameters. In the field of geodesy, reliability measures
are used quite frequently to extend the significance of the quality assessment of a parameter
estimation that is otherwise only focused on accuracy and not on controllability as well [57].

Firstly, redundancies describe the absolute degrees of freedom of a complete adjust-
ment. Secondly, relative redundancies quantify the relation between the redundancy and
the number of measurements. Thirdly, partial redundancies split the complete redundancy
down to each individual measurement. They explain for each measurement how much it is
controlled by the others. If this control is high (high partial redundancies) and similar for
all measurements, all measurements mutually support each other so that the parameters of
the adjustment can be expected to be estimated unbiasedly with high precision. Relative
redundancies and partial redundancies reach values between 0 and 1 for uncorrelated
measurements as is the case in the present study [56].

Table 1 and Figure 4 show the results for all steps. Table 1 implies that the redundancy
becomes higher from step 1 to step 3—for step 4 it is slightly smaller than for step 3 due
to the large number of pseudo-observations in step 3. Anyway, the relative redundancy
reaches its maximum at step 4, while it is smaller at the other steps. Clearly, each step
improves the situation compared to the usual step 1.

Analyzing the partial redundancies in Figure 4, several effects are visible:

• With each new step, the variation in partial redundancies becomes smaller.
• With each new step, the partial redundancies increase.
• Assuming that the frequency and the phase of the oscillation are equal for all measured

points (as we assume in steps 2, 3, 4), forces the partial redundancies of individual
profiles to become more similar. This can be seen by the fact that in step 2 and 3, we
can clearly distinguish the 11 profile measurements from each other.

• At step 2, it is visible that measurements of profiles with a nearly maximal oscillation
magnitude (e.g., 3rd, 6th, 9th, see Figure 2 left), are not that controlled by the others,
that is, the corresponding observations have rather low partial redundancies. Hence,
these measurements are important to estimate the parameters with a high quality.
On the contrary, profiles with a small oscillation magnitude (e.g., 2nd, 10th) have
high partial redundancies meaning that they are not that important for the vibration
analysis. This makes sense as, in that latter case, all observations describe a quite
similar behavior regardless the position on the bridge.

• This effect also exists for step 3, but less pronounced.
• For the stochastic modelling in step 3, measurements at the begin and end of each

profile are less controlled since the number of neighboring points is less towards
the border.

• At step 4, there are barely any differences in the partial redundancies. This means that
the continuous spatio-temporal modelling of this step indeed successfully incorporates
all measurements quite similarly into the adjustment. Thus, profile measurements are
important for this adjustment even if the oscillation magnitude is not high during the
time of measurement (e.g., 2nd, 10th profile). At the same time, it is rarely important
anymore at which position on the structure the measurement is performed—as was
the case for step 2 and also with less emphasis for step 3. Thus, step 4 establishes an
equilibrium of all measurements.

This analysis of the partial redundancies implies: When incorporating spatio-temporal
models into the vibration analysis, the results are less sensitive to the individual measure-
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ment positions. The additional information in the analysis—included by functional or
stochastic relations, improves the reliability and also the accuracy of the vibration analysis.
Thus, to be more general—Strategies for data mining improve the vibration analysis.

Table 1. Number of measurements, number of parameters to be estimated, redundancy and relative
redundancy for each step.

Step Measurem. Param. Redundancy Rel. Red.

1 3817 1388 2429 0.64
2 3817 696 3121 0.82
3 4509 696 3813 0.85
4 3817 7 3810 1.00
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Figure 4. Results of basic set-up: Partial redundancies.

5. Evaluating Spatio-Temporal Models

The evaluation complies with the questions asked in Section 1. Hence, we firstly
analyze the basic set-up introduced in Section 3, afterwards we introduce further set-ups
evaluating the spatio-temporal models regarding the observation length (set-up “length”),
sampling rate (set-up “sampling rate”) and the spatial distance between measured points
(set-up “point distance”). The corresponding changes compared to the basic set-up are
given in Table 2. In all cases, we will evaluate and later on discuss the differences in the
general behavior of each modelling step in the various set-ups. We will not evaluate the
estimated quantities explicitly in detail since these are due to the specific conditions of the
present simulation and not transferable.

In the analyses, we focus on the estimated amplitudes and frequencies since these are
the most relevant values for a vibration analysis. The statements regarding the amplitudes
are quite similar for the estimated mean values, the statements regarding the frequencies
are quite similar for the estimated phases. Thus, they do not need to be explicitly shown
and discussed.

Table 2. Parameters of simulated set-ups.

Set-Up Length Sampling Rate Points per Profile Number of Profiles Point Distance

basic 3.0 s 4.0 Hz 347 11 29 mm
length 0.5; . . . 20.0 s 4.0 Hz 347 1; 2; 3; . . . 50 29 mm

sampling rate 3.0 s 1.0; 1.5; 2.0; . . . 20 Hz 347 3; . . . 59 29 mm
point distance 3.0 s 4.0 Hz 43; 87; 173; . . . 2771 11 227; . . . 4 mm

5.1. Basic Set-Up

The estimated amplitudes and the errors in amplitudes, that is, the deviations from
the true value, are depicted for the basic set-up in Figure 5. Figure 5 left shows that the
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general trend of the amplitudes can be estimated in all steps. The largest deviations from
this trend (true amplitude of 50 mm) are archived for steps 1 and 2.

More details can be seen in Figure 5 right. The errors in steps 1b, 3 and 4 are remarkably
smaller than for steps 1 and 2. For reasons of clarity, we also depicted in Figure 5 right
the true scaled amplitude of the oscillation along the beam. Hence, for step 1, it is directly
visible that the highest errors occur at the positions on the beam that oscillate the least
(amplitude approximately zero). This can be expected: The amplitude is not predictable
well if its value is low, that is, the signal-to-noise ratio is low. Contrary, the magnitude
of the amplitude seems not to have an impact on the error for steps 2, 3 and 4 due to the
modelled spatial connections.

For step 1b, the amplitude seem not to have an impact on the error, too. This is due to
the fact that the segment length for averaging is chosen as 0.25 m leading to 8 or 9 points
per segment (29 mm point distance). With a shorter segment length, the errors in amplitude
would be higher (similar to steps 1 and 2). With a longer segment length, the errors would
be smaller but with a larger systematic part due to the fact that the amplitude is assumed
to be equal within this segment length.

The errors in amplitude are generally the smallest with step 4. Compared to step 4,
step 3 and step 1b have larger errors with approximately equal magnitudes and simi-
lar trends.
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Figure 5. Results of basic set-up: estimated amplitudes (left), errors in amplitude (right).

Figure 6 depicts the errors in frequency where the true value of f = 0.71 Hz has
already been subtracted Clearly, step 1 leads to large errors in the estimated frequency.
At positions on the beam with a small oscillation amplitude, the errors are up to an absolute
value of many Hz or even kHz—again due to a low signal-to-noise ratio. Step 1b in fact
decreases these errors, but it is still affected significantly by the signal-to-noise ratio of the
oscillations since no spatial connection between all measurement positions is included.
In this case, simply averaging neighboring measurements has only a limited effect on the
accuracy of the frequency estimation. Consequently, we do not consider step 1b in the
following evaluations any more.

For steps 2, 3 and 4, only one single frequency is estimated, see Equations (4) and (7).
In Figure 6, this single value is anyway depicted along the structure’s beam for better
comparison with steps 1 and 1b. Herein, the estimated frequencies between steps 2, 3 and
4 are visually not distinguishable. Their differences are in the range of some mHz. Thus,
all these steps remarkably improve the estimation of the frequency. The similarity in the
results is due to the fact that all these steps model the frequency identically, that is, with
one value not varying along the structure.
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Figure 6. Results of basic set-up: errors in frequency. For reasons of clarity, the vertical axis is limited
to errors with an absolute magnitude of 0.1 Hz although values increase up to several kHz.

These previous numerical results are all based on one single simulation run whose
observations are shown in Figure 2. However, we analyzed several simulation runs
and attested the present one to be representative for the underlying stochastic process.
We did not perform a Monte Carlo simulation for this basic set-up or the subsequent ones
since our aim is not to provide generally valid numerical values for each spatio-temporal
model. Rather, we want to point out structural benefits if using spatio-temporal models for
vibration analysis of elongated structures.

5.2. Variation of Observation Length

Within this subsection, we analyze the effect of varying observation lengths on the
estimated parameters. Therefore, we start with an observation length of 0.5 s and increase
the length up to 20 s leading to a number of measured profiles (repetitions of measured
points, that is, measurement epochs) ranging between 1 and 50 (Table 2). The sampling
rate and the point spacing on the beam do not change here. We compare the results of
the different set-ups along the variation of the observation length based on the standard
deviations of the amplitudes and the frequencies:

Amplitude

• In the steps 1, 2 and 3, we estimate one single amplitude for each repeatedly measured
position on the structure. In step 4, we instead formulate a functional relation between
all these amplitudes along the position of the structure (Equation (7)). Based on this
functional relation, one single amplitude for each repeatedly measured position can
be calculated again, analogous to steps 1, 2 and 3.

• Finally, we estimate the standard deviation of the errors of these amplitudes
(Figure 7 left) to give only one single comparable number for the quality of the esti-
mated amplitude for each observation length. Herein, we empirically build the standard
deviation without accounting for possible correlations between the amplitudes.

• Thus, the values at a number of 11 measured profiles resemble the standard deviations
of the errors in amplitude of the basic set-up shown in Figure 5 right.

Frequency

• In step 1, we estimate one individual frequency for each repeatedly measured position
on the beam yi (Equation (1)) and we also estimate the corresponding standard
deviations. To get one single value for the complete simulation run, we build the
median of these estimates (robust average of all values). Figure 7 right depicts the
median of the estimated standard deviations of the frequencies for step 1.

• Additionally, we plot the estimated standard deviation for the position of y = 2.92 m
on the beam. At this position, the estimation is the best for step 1.
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• For steps 2, 3 and 4, only one single frequency and corresponding standard deviation
is estimated for the complete measurement run (Equations (4) and (7)). Thus, we
directly depict this value in Figure 7 without an additional averaging.

In general, Figure 7 left implies that increasing the observation length decreases the
standard deviation of the estimated amplitudes and frequencies for all steps. However,
significant differences are visible:

• Each step reduces the uncertainty compared to the previous ones.
• For steps 1 and 2, the uncertainty decreases with each additionally measured profile.
• For steps 3 and 4, the decrease is faster: About 20 or about 10 profiles, respectively,

are already enough to get the smallest uncertainty. Afterwards, it does not decrease
noticeably anymore with more profiles.

• The standard deviation of steps 1 and 2 is similar when measuring 50 profiles (or 20 s),
the one of step 3 is about 50% smaller, the one of step 4 is about 85% smaller.

• Due to the fast decrease in uncertainty for steps 3 and 4, the benefit of those two steps
compared to steps 1 and 2 further increases for shorter observation lengths.

Considering the results of the estimated frequencies (Figure 7 right), it is visible that
all three steps that include spatial connections between the oscillations measured at the
individual points improve the estimation noticeably. Starting from seven profiles, no
differences are visible any more. This fits to Figure 6 (basic set-up with 11 measured
profiles) where also no difference was visible. Compared to the best estimation of step 1 at
the position yi = 2.92 m, the standard deviations of steps 2, 3 and 4 are about 95% smaller
when measuring 20 s or 50 profiles, respectively.
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Figure 7. Results of set-up “length”: standard deviation of amplitude (left) and frequency (right).
For reasons of clarity, the vertical axes are limited to 10 mm or 30 mHz, respectively, although larger
values exist.

5.3. Variation of Sampling Rate of Measurements

We compare the results of the different set-ups along the variation of the sampling
rate of the measurements from 1 Hz to 20 Hz leading to 3 to 59 measured profiles with
a fixed observation length of 3 s (Table 2). In all previous simulations, the sampling rate
equaled 4 Hz. For the analysis, we use the same quantities as in the previous subsection.

Figure 8 depicts the results. In general, high agreements with the results for varying
observations lengths are visible. On the one hand, this is not surprising, as in this case,
the number of observations is increased again, but by higher sampling rates. On the other
hand, differences occur to the previous subsection as the higher sampling rates increase the
number of measurements per oscillation period. Apart from the already made statements,
the following results can be observed:

• In step 4, a sampling rate of about 3 Hz is already sufficient for estimating a precise
amplitude. Higher frequencies do not improve the estimation significantly. For step 3,
this is the case at about 6 Hz. For steps 1 and 2, the uncertainty decreases up to 20 Hz.
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• The amplitudes’ standard deviations of steps 1 and 2 are similar for all frequencies.
The one of step 3 is about 60% smaller, the one of step 4 is about 85% smaller at a
sampling rate of 20 Hz.

• The uncertainty in the estimated frequency decreases for all steps with the increase
of the sampling rate of the laser scanner, but the benefit is small for steps 2, 3 and 4
starting from about 10 Hz.

• The improvements of using the spatio-temporal models with steps 2, 3 and 4 compared
to the standard procedure with step 1 are minimally 90% for the frequency.

The first statement can also be related numerically to the previous subsection and
the variation of the observation length—for step 3, an equilibrium state for the standard
deviation of the estimated amplitude is reached with a minimal number of about 20 profiles;
for step 4, this is the case for about 10 profiles. Regarding the variation of the sampling rate,
those equilibrium states are reached for minimal sampling rates of 6 Hz (step 3) or 3 Hz
(step 4), respectively. These conclusions resemble each other in the fact that equilibrium
states are reached at a minimal number of about 6400 . . . 7000 measurements for step 3 or a
minimal number of about 3200 . . . 3500 measurements for step 4.

Disregarding these general trends, small oscillations in the standard deviations are
also visible in Figure 8. These are due to the simulation environment and the inevitable
interference of sampling frequency, oscillation frequency and the pseudo-random process
of the generated measurement noise.
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Figure 8. Results of set-up “sampling rate”: standard deviation of amplitude (left) and fre-
quency (right). For reasons of clarity, the vertical axes are limited to 10 mm or 30 mHz, respectively,
although larger values exist.

5.4. Variation of Spatial Point Distance

As last set-up, the spatial point distance is varied within the simulation starting
from 43 points per profile—leading to a spatial point distance of 227 mm—and ending at
2771 points per profile—leading to a spatial point distance of 4 mm. The observation length
remains at 3 s, the sampling rate at 4 Hz (Table 2). In general, we can state the following
based on Figure 9 left:

• The uncertainty of the estimated amplitude does rarely depend on the number of
points on the profile.

• For step 1, this is straightforward since each measured position is processed individu-
ally and independent from the neighbored points. The fact that the shown standard
deviations are not identical for step 1 is explainable by the fact that we deal with
stochastic processes here. The fluctuation are not significant.

• For step 2, the variation is also insignificant since the spatial connection in this step is
only related to the frequency, not the amplitude (Equation (4)).
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• For steps 3 and 4, the uncertainty only slightly decreases with a larger amount of points
on the profile. This decrease is—starting from about 4000 points on the profile—rather
small compared to the effect of the observation length and the sampling rate.

The effect on the estimated frequency is shown in Figure 9 right: Again, the variation
for step 1 can be assigned to the stochasticity of the underlying process. The variation is
larger for the single position at yi = 2.92 m since only one single measurement position is
used for its estimation. The standard deviations for the frequencies at steps 2, 3 and 4 are
again—similarly to Figures 7 right and 8 right—identical and by many factors smaller than
the one of step 1.
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Figure 9. Results of set-up “point distance”: standard deviation of amplitude (left) and frequency
(right). For reasons of clarity, the vertical axes are limited to 10 mm or 30 mHz, respectively.

6. Discussion of the Results

The results imply that a spatio-temporal modelling has a large impact on the results
of the vibration monitoring. Before discussing the results, we evaluate the significance of
the previous results:

• While the results have been analyzed here only for the estimated amplitude and the
estimated frequency, the results can be transferred to the other estimated parameters:
the mean value and the phase.

• The analysis is also limited here to one oscillation scenario with fixed geometry and
only slightly varying conditions realized by different set-ups. Thus, the concrete
numeric values shown in the figures before are not of highest relevance; but the
conclusion drawn can also be transferred to different scenarios.

• Finally, the performed analysis is bounded by the four steps of spatio-temporal models
that are developed. Other models could have been also realized, for example, using
B-splines or other curves for modelling the spatial trend [15,56]. However, the pur-
pose of this study is to introduce new strategies for connecting spatially distributed
measurements in vibration monitoring. The general benefit—as shown here—is inde-
pendent from the detailed realization of individual functional and stochastic models.
In reality, these have to be applied to the specific structure, anyway.

Based on the results of Sections 4 and 5, we highlight several aspects concerning the
general applicability of spatio-temporal models:

• By including spatial connections between the oscillations measured at different posi-
tions on a structure, the redundancy and the reliability, that is, the ability to estimate
unbiased parameters, increases.

• The errors of the estimated parameters (i.e., mean value, amplitude, frequency, phase)
generally decrease when using spatial connections compared to the standard proce-
dure of analyzing each position individually (Figures 5–9).
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• Spatial connections can be introduced in the modelling using solely the functional
model—as has been done in steps 2 and 4 with different complexity—or also the
stochastic model—as has been done in step 3—by using, for example, pseudo obser-
vations.

• Spatial connections for individual parameters decrease mostly only the uncertainty
of these individual parameters in the parameter estimation. Thus, firstly, step 2
(spatial connection for frequency and phase) does not overall improve the estima-
tion of the amplitude on the complete beam of the structure, just at some parts
(Figure 5). Secondly, the results for the estimated frequency are similar for steps 2,
3 and 4 after a certain convergence since all steps model the frequency identically
(Figures 6, 7 right, 8 right and 9 right). Regarding the amplitude, larger differences
are visible (Figures 5, 7 left, 8 left and 9 left).

The general conclusion that a higher redundancy improves a least-squares estimate
might be apparent. Anyway, the relevance of this study rests upon the fact that we
reveal the individual benefit of different strategies for obtaining higher redundancy in the
parameter identification process.

Concerning the four main questions of this present study (see Section 1), we provide
the following answers:

1. Spatio-temporal models can be formulated using functional or stochastic connections
between the dynamic behavior of spatially neighbored parts of the oscillating structure.

2. The observation length can be reduced noticeably if using spatio-temporal models,
still maintaining an uncertainty that is by many factors lower compared to not connect-
ing neighbored measurement positions. Thus, changes in the vibration parameters,
for example, due to changing ambient influences, are faster visible in the results if
using spatio-temporal models.

3. The sampling rate can be reduced noticeably if using spatio-temporal models where
the level of uncertainty is generally by many factors lower for these spatio-temporal
models, independent from the sampling rate within a certain range.

4. The effect of a high spatial point density is rather small compared to the one of
the sampling rate and the observation length. Thus, the spatial distance between
the measured positions on the structure does not need to be small to achieve re-
sults that are improved compared to using no spatio-temporal models. This holds,
of course, under the assumption of homogeneous material and mechanical properties
of the structure.

These results have an impact on the rules of vibration monitoring or time series
analysis in general. Firstly, the Nyquist frequency

fN =
1

2 · ∆t m
=

1
2
· fm (8)

determines the maximal frequency that can be reconstructed based upon a given mea-
surement frequency fm or sampling rate ∆tm, respectively [12]. Consequently, since the
true oscillation frequency equals f = 0.71 Hz here, the measurement frequency—at each
individual measurement position—has to be at least fm ≥ 1.42 Hz. Figure 8 indeed implies
that, for the estimated frequencies, sampling rates of minimally 2 Hz should be used for all
steps of the spatio-temporal models. However, for the estimated amplitudes, step 4 would
also work properly with the minimal frequency of 1 Hz that was implemented.

Apparently, the spatio-temporal connection of the measurements reduces the demand
for a high sampling rate at each individual measurement position. Instead, thee need for a
high temporal sampling rate fulfilling the requirement of the Nyquist frequency can be
substituted by a high spatial sampling rate. Consequently, the Nyquist frequency condition
cannot be automatically linked only with the sampling frequency of one sensor but also
needs to account for the spatial sampling rate as well if using spatio-temporal models.
Already [57] interpreted the Nyquist frequency spatially.
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Secondly, the observation length should usually be minimally about five times longer
than the period of the oscillation is for sharply estimating the included frequencies fol-
lowing the leakage effect [12,13]. In vibration monitoring, this is always fulfilled since
the vibrations are high-frequent oscillations so that observation lengths do not need to
be longer than several seconds. However, from methodological site and also regarding
the oscillation of slowly deforming structures due to sun exposure, for instance, this is
highly relevant.

Considering an oscillation frequency of f = 0.71 Hz, the period of one oscillation
equals 1.4 s so that 5 periods have a length of 7 s equaling a number of about 25 measured
profiles in this simulation. Figure 7 implies that the spatio-temporal model of step 4
is already able to estimate precise parameters with about 10 profiles (amplitude and
frequency). Thus, analogous to the Nyquist frequency, the minimal number of five observed
oscillation periods is also not only linked to the observation length but also to the spatial
sampling rate if using spatio-temporal models.

7. Conclusions and Outlook

Vibration monitoring is a frequent task within the general topic of Structural Health
Monitoring. For this monitoring, usually accelerometers, strain gauges, fibre optic sensors
or GNSS receivers are placed on pre-selected positions on the structure and the point-wise
measurements are individually processed to estimate the relevant modal parameters, for
example, oscillating amplitudes and natural frequencies. In this study, we present a concept
to model the vibrations spatio-temporally using different steps of complexity. While
those models are indispensable if using profile laser scanners for vibration monitoring
considering their measurement properties (temporally varying measurement positions,
no pre-selection of measurement positions, no simultaneous measurements at different
measurement positions), they can also be used for vibration monitoring based on the other
mentioned sensors.

The evaluation of the introduced spatio-temporal models reveals that they allow an
improved parameter estimation compared to the usually used strategies—even at lower
measurement frequencies and shorter observation lengths. This is because the spatial
sampling of the structures includes further information into the parameter estimation.
To consider the Nyquist frequency and potential leakage effects at vibration monitoring,
the spatial sampling has, thus, also to be involved additionally to the temporal sampling.

Up to now, this study rests upon simulations and the vibration monitoring of elongated
structures along one single extent. We will apply these methods to real world examples and
also expand it to the vibration monitoring of structures with an extent in two dimensions
using 3D laser scanning.
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