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Abstract: Multimodal images fusion has the potential to enrich the information gathered by multi-
sensor plant phenotyping platforms. Fusion of images from multiple sources is, however, hampered
by the technical lock of image registration. The aim of this paper is to provide a solution to the
registration and fusion of multimodal wheat images in field conditions and at close range. Eight reg-
istration methods were tested on nadir wheat images acquired by a pair of red, green and blue (RGB)
cameras, a thermal camera and a multispectral camera array. The most accurate method, relying on
a local transformation, aligned the images with an average error of 2 mm but was not reliable for
thermal images. More generally, the suggested registration method and the preprocesses necessary
before fusion (plant mask erosion, pixel intensity averaging) would depend on the application. As a
consequence, the main output of this study was to identify four registration-fusion strategies: (i) the
REAL-TIME strategy solely based on the cameras’ positions, (ii) the FAST strategy suitable for all
types of images tested, (iii) and (iv) the ACCURATE and HIGHLY ACCURATE strategies handling
local distortion but unable to deal with images of very different natures. These suggestions are,
however, limited to the methods compared in this study. Further research should investigate how
recent cutting-edge registration methods would perform on the specific case of wheat canopy.

Keywords: image registration; proxy-sensing; high-throughput phenotyping; winter wheat; ther-
mography; multispectral

1. Introduction

In recent years, close-range multi-sensor platforms and vehicles have been devel-
oped for crop phenotyping in natural conditions. The obvious interest of multi-sensor
approaches lies in the ability to measure an increased number of pertinent traits. This is
especially crucial when studying plant stresses whose symptoms are often complex and
not determined by a single physiological or morphological component. For this reason, the
philosophy for most modern field phenotyping platforms is to measure both physiological
and morphological traits. This requires several types of sensor. On the one hand, spec-
trometers and 2D imagers provide plant reflectance (visible, near infrared (NIR), thermal
IR, etc.) relative to physiological information. On the other hand, 3D cameras and light
detection and ranging (LiDAR) devices provide morphological information. Platforms
combining such sensors are described in [1–7]. Each sensor of the platform provides a
number of plant traits related to the observed scene. Then, it analyses exploit traits from
the different sensors to generate agronomic knowledge. This is what is habitually called
“data fusion”. In this generic pipeline, the fusion of information from the different sensors
takes place after the extraction of plant traits. However, the complementary nature of
the information from the different sensors may also be exploited before that step of traits
extraction. This is where the process of images fusion comes into play, as illustrated in
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Figure 1. Instead of considering separately the images of different cameras (red, green and
blue (RGB), monochrome, thermal, depth, . . . ), those images could be fused at the pixel
level to enrich the available information [4]. Such a fusion would allow us to segment more
finely the images and extract plant traits at a finer spatial scale. Instead of separating only
leaves and background, the fusion of data for each pixel may allow us to identify upper
leaves, lower leaves, sick tissues, wheat ears, etc. Then, each trait could be computed for
those different organs instead of for the whole canopy. This would, for example, solve a
well-known issue of close-range thermal imaging: isolating leaves of interest for water
status assessment [8]. Image fusion would also allow us to disentangle the effects of leaf
morphology and physiology on light reflection. This could be obtained by fusing leaf
angles (for example from depth map from stereo camera) and reflectance maps. Such
orientation-based reflectance has been suggested to improve thermal imaging by [9]. It is
to notice that this paper only envisions the fusion of images, implying that 3D information
is provided as a depth map (an image whose pixel values represent distances). The fusion
of images and 3D points clouds from LiDAR devices is another hot research topic [10–12]
but falls outside the scope of this study.
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Figure 1. Difference between conventional data fusion and image fusion.

In the context of phenotyping platforms already equipped with different types of
camera, multimodal images fusion may be an asset that does not demand supplementary
material investment. It offers the possibility to fully benefit from the spatial information
brought by imagers, in comparison to non-imaging devices such as thermometers or
spectrometers. It also overcomes the disadvantages of mono-sensor multispectral and
hyperspectral imagers.

Those mono-sensor spectral devices can be classified into three categories: spatial-
scanning, spectral-scanning and filters-matrix snapshot. The spatial-scanning cameras
necessitate a relative movement between the scene and the sensor. They are costly [13] and
best adapted for indoor applications. Images may be impacted by wind and illumination
changes. They have been implemented in the field by, among others, [14–17]. The spectral-
scanning cameras rely on filter wheels [18,19] or tunable filters, i.e., filters whose properties
change to allow different spectral bands to pass [20]. Both methods suffer from the same
inconvenient as spatial-scanning: the acquisition takes time and is impacted by natural
conditions. The filters-matrix snapshot cameras [11] allow simultaneous acquisition of
spatial and spectral information, but this comes at the expense of spatial resolution [20].
Unlike these devices, a cameras-array is able to instantly acquire all the spatial and spectral
information, that can then be gathered by image fusion.

Despite those many benefits, multimodal image fusion is rarely implemented in close-
range systems, due to the difficulty of overlaying the images from the different sensors.
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This alignment step is called image registration. Considering two images of a same scene
acquired by two cameras, the registration consists in geometrically transforming one
image (the slave) so that the objects of the scene overlay the same objects in the other
image (the master). The registration can be divided into two main steps: the matching
between the slave and the master images and the transformation of the slave image. In
general, multimodal images registration is a complex problem because the cameras present
different spatial positions, different fields of view and different image sizes. Additionally,
the multimodal nature of the images implies that they present different intensity patterns,
which complicates the matching. In the domain of in-field plant phenotyping, registration
is even more challenging due to (i) the nature of the crops (wheat leaves are complex
overlapping objects arranged in several floors) and (ii) the natural conditions (sunlight
generates shadows and wind induces leaf movement).

Most of the studies that included close-range plants registration concerned thermal
and RGB images. It is worth noting that some commercial cameras are able to acquire
both RGB and thermal images that are roughly aligned using undocumented registration
methods [21]. However, plant researchers relied most of the time on separated cameras
and had to deal themselves with the registration step. The most basic approaches were the
manual selection of matching points in the slave and master images [8,22] or directly the
empirical choice of an unique transformation for all the images [5]. An automatic method
was developed by [23] to align thermal and RGB images of side-viewed grapevines. In
another study, [9] solved the problem of RGB-thermal registration for maize images. They
validated the method using a heated chessboard. The error measured on a simple pattern
such as a chessboard may, however, not be representative of the error occurring in a
complex crop canopy image. That claim is supported by the fact that the matching is far
more complex on plant structures. Even assuming an optimal matching, the different
points of view of the cameras may lead to additional errors caused by parallax and visual
occlusions. This implies that measuring the registration errors is a difficult task and that the
distortion between the images is often complex. None of the plant registration approaches
presented above succeeded in taking into account local distortion in the images. Indeed,
those approaches relied on global transformations, i.e., functions for which the mapping
parameters are the same for the entire image [24]. Nonetheless, the parallax effect alone
makes the distortion dependent on the distances of the objects. When acquiring multimodal
images from aerial vehicles, this effect is negligible because of the huge distance between the
cameras and the scene compared to the displacement of the optical centers and the distance
between the objects themselves [25]. At close range, local distortion between the images,
and especially parallax effect, may have a significant impact on registration quality. A
possible track to solve the issue would be to use a local transformation, i.e., a transformation
that is able to locally warp the slave image. The use of such transformations is very scarce
in the field of plant sciences but common in other fields such as multimodal medical
imaging [26,27]. Local transformations on images of potted-plants were used by [28,29].
To the best knowledge of the authors and at the time of writing, no study has provided
a solution for the registration of close-range wheat canopy images. Nevertheless, [30,31]
studied wheat images registration under controlled conditions and on isolated potted-
plants. They tested three matching methods on side-viewed wheat to align fluorescence
and RGB images. The study stuck to a global transformation.

The main objective of this paper is to solve the challenge of automatic registration
of close-range multimodal wheat canopy images in field conditions (assuming no targets
or markers on the plants). Overcoming this issue is the key to allowing image fusion
and open new doors to the processing of multimodal images acquired by modern field
phenotyping platforms. In the paper, eight approaches will be studied to relate the slave
and master images: one based on a calibration accounting for the cameras system geometry
and seven based on the content of the images. Both global and local transformations will
be investigated. A rigorous validation of the methods will be performed. Best methods will
be highlighted regarding several scenarios and some solutions will be advanced to deal
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with the remaining alignment errors. The discussion will comment on the performances
of matching algorithms and the choice of the transformation model. It will also provide a
deeper look at the different natures of distortion between images of a same scene. Finally,
it will expand on the challenges of registration quality evaluation.

2. Materials and Methods
2.1. Cameras Set-Up

The multimodal cameras system consisted of a Micro-MCA multispectral cameras
array (Tetracam Inc., Gainesville, FL, USA), two GO-5000C-USB RGB cameras (JAI A/S,
Copenhagen, Denmark) and a PI640 thermal camera (Optris GmbH, Berlin, Germany). The
multispectral array consisted of six monochrome cameras equipped with 1280 × 1024 pixels
CMOS sensors. The optical filters were narrow bands centered at 490, 550, 680, 720, 800
and 900 nm. The width of each band-pass filter was 10 nm except for the 900 nm filter
that had a width of 20 nm. The lenses had a focal length of 9.6 mm and an aperture of
f/3.2. The horizontal field of view (HFOV) was 38.26◦ and the vertical field of view (VFOV)
was 30.97◦. The two RGB cameras aimed at forming a stereoscopic camera pair. The
baseline (distance between the centers of the two sensors) was 50 mm. Each camera was
equipped with a 2560 × 2048 pixels CMOS sensor and a LM16HC objective (Kowa GmbH,
Düsseldorf, Germany). Their focal length was 16 mm. The HFOV and VFOV were 44.3◦

and 33.6◦, respectively. The aperture was set to f/4.0. The thermal camera was equipped
with a 640 × 480 pixels sensor. It covered a spectral range from 7.5 to 13 µm. The focal
length was 18.7 mm. The HFOV and VFOV were 33◦ and 25◦, respectively. The spatial
disposition of the cameras is detailed in Figure 2. Their optical axes were theoretically
parallel but small deviations were possible due to mechanical imperfections. Each of those
vision systems was individually calibrated to remove the geometrical distortions induced
by the lenses. The multispectral array was geometrically calibrated using 30 images of a
10 × 7 chessboard (24 mm squares) for each camera. That calibration provided intrinsic
camera parameters and coefficients to correct image distortion. The average reprojection
error varied between 0.11 and 0.12 pixels depending on the camera. The RGB stereo pair
was calibrated using 28 images of the same chessboard. That calibration provided not
only intrinsic camera parameters and distortion coefficients but also extrinsic parameters
allowing rectification of the images in a context of stereovision. The average error for
the camera pair was 0.4 pixels. For the thermal camera, it was not possible to use the
chessboard for calibration. A dedicated thermal target was built. That target consisted
of a 36 × 28 mm white Forex® plate including 12 removable black-painted disks of 4 cm
diameter. The disks were disposed on three rows at regular intervals. The distances be-
tween the disks themselves and between the disks and the borders of the plate were 4 cm.
Before calibration the plate was stored for 15 min in a freezer at −18 ◦C and the disks
were placed on a radiator. Twenty-three images were acquired during the 10 min after
reassembling the target. The algorithm segmented the disks thanks to the temperatures
differences. The key points used for calibration (equivalent to the corners of the chessboard
in the conventional method) were the centroids of the disk objects. This method was robust
to heat diffusion because, regardless of the diameter of the detected hot disks, the centroids
were always at the same positions. As for the multispectral cameras array, the calibration
provided intrinsic parameters of the camera, including distortion coefficients. The average
reprojection error was 0.24 pixels.

Prior to any registration attempt, it was necessary to determine which camera was the
master, i.e., the camera providing reference images. The other cameras were considered as
slaves. The goal of registration is to find the transformations to apply to slave images so
that they are aligned with the master image. The 800 nm camera was chosen as the master.
This choice was made because (i) the camera occupied a central position on the sensors pod,
(ii) the filter allowed us to segment the images (plant vs. background) and provide plant
masks, which are crucial to extract plant traits and (iii) the 800 nm filter clearly highlighted
leaves, which could have been important to favor matching. Concerning the two RGB



Remote Sens. 2021, 13, 1380 5 of 24

cameras, only one of the two cameras was considered as a slave of the 800 nm master
camera: the one that was the closest to it. The images of this RGB camera were cropped to
remove the zone not seen by the second RGB camera.
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2.2. In-Field Image Acquisition

Images were acquired during the 2020 season in two trial fields located in Lonzée,
Belgium (50◦ 32′ 40′ ′ N and 4◦ 44′ 56′ ′ E). The first trial (trial 1) was planted with winter
wheat (Triticum aestivum L. ‘Mentor’) on November 7 2019. The second trial (trial 2) was
planted with winter wheat (‘LG Vertikal’) on November 5 2019. Both trials were sowed
with a density of 250 grains/m2. The experimental micro-plots measured 1.8 × 6 m2 and
the row spacing was 0.15 m. The micro-plots were fertilized three times at BBCH [32] stages
28, 30 and 39 with 27% ammonium nitrate. Trial 1 consisted of eight objects combining
contrasted nitrogen inputs. Eight replicates of each object were imaged. Trial 2 consisted
of 16 objects combining contrasted nitrogen inputs and fungicide applications (0, 1, 2 or
3 treatments of Adexar® 1.5 l/ha). Four replicates of the objects were imaged. Images of
trial 1 were acquired on May 7, May 14, May 20, May 27, June 2, June 11, June 23, July
7 and July 29. Images of trial 2 were acquired on May 12, May 18, June 2, June 9, June
16, June 26, July 13, July 22. At each date and for each camera, four images were taken
by micro-plot except for half of the trial 1 replicates (dedicated to punctual destructive
measurements) for which only two images were taken. The phenotyping-platform was
designed to capture nadir frames of wheat micro-plots. The sensors pod was installed
on a cantilever beam to avoid shadows from the rest of the platform in the images. The
height of that pod was adjusted at each acquisition date to keep a distance around 1.6 m
between the cameras and the top of the canopy. The choice of this distance was a trade-off.
On the one hand, the height of the cameras had to be limited so that it was suitable for a
proxy-sensing platform and yielded images with a high spatial resolution. On the other
hand, the height had to be sufficient to diminish the impact of the difference of point of
view on images registration and to screen wide areas that account for plot heterogeneities.
At 1.6 m, the footprint of the frames was 0.98 m2 for the cameras of the multispectral
array, 1.26 m2 for the RGB cameras and 0.67 m2 for the thermal camera. Images were
recorded using a color depth of 10 or 12 bits per pixel but reduced to 8 bits per pixel for this
study (because many stereovision and registration open-source libraries need 8-bit inputs).
The auto-exposure algorithms of RGB and multispectral devices were adapted to prevent
image saturation. The cameras were asked to capture images at the same time but only
the two RGB cameras were triggered perfectly together thanks to an external trigger from
an Arduino Uno micro-controller. Considering all the cameras, the absence of common
external trigger and the different needs in terms of integration time resulted in images
acquired with a slight temporal shift. The maximum shift was less than a second.



Remote Sens. 2021, 13, 1380 6 of 24

2.3. Calibration-Based Registration Method

That first image registration method is based on the hypothesis that, for a given
configuration of cameras, the best global transformation to register images only depends
on the distance between the objects of interest in the scene and the cameras. It relies on a
calibration step to establish the distance dependent transformation matrix (DDTM) between
the images. This DDTM allows us to express the coefficients of a global transformation as
distance-dependent functions [33]. To be as general as possible, the considered approach
was the global transformation with the most degrees of freedom, i.e., a homography. This
transformation takes into account rotation, translation, shear and scale. Moreover, the scale
factors depend on the pixel position in the image which allows us to deal with perspective
differences [25]. It gives: x2

y2
1

 = DDTM(d)×

 x
y
1

 ; DDTM =

 h00(d) h01(d) h02(d)
h10(d) h11(d) h12(d)
h20(d) h21(d) 1

 (1)

where x2 and y2 are the registered coordinates of a pixel of coordinates x and y in a slave
image, d is the distance of the object of interest and hij are the eight independent coefficients
of the transformation matrix.

The calibration step was performed in laboratory by capturing the thermal calibration
target (described in Section 2.1) at distances ranging from 1 m to 2.2 m by steps of 0.05 m.
As the removable disks were of different temperature and of different color that the main
body of the target, it was possible to detect the centroids of the disks in images from all the
cameras. Those centroids served as key points to determine the best transformation at each
distance (Figure 3).
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Figure 3. Registration of near infrared (NIR, 800 nm), red, green and blue (RGB) and thermal images of the calibration
target. The 800 nm image is the master that is used as a reference to align the other images.

For each camera, the values of the eight coefficients providing the best transformations
were related to the distance of the target using linear regressions. An example of such
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relation is given in Figure 4 for the DDTM that linked the thermal images to the master
images. The same trend was observed for all the cameras. Only h02 and h12 significantly
varied with distance. For the h02 regressions corresponding to the 490, 550, 680, 720, 900,
RGB and thermal cameras, the determination coefficients (R2) were respectively 0.00 (no
change with distance), 0.85, 0.65, 0.86, 0.79, 0.01 and. 0.94. The root mean squared errors
(RMSE) were, respectively, 5.2, 8.4, 7.1, 7.7, 4.8, 8.6 and 4.2 pixels. For the h12 regressions, R2

were respectively 0.75, 0.03, 0.0, 0.84, 0.86, 0.81 and 0.90. The RMSE were respectively 5.9,
8.0, 8.1, 5.1, 4.5, 7.4 and 2.7 pixels. The other coefficients were approximated to constants
by considering the median of the measured values. h20 and h21 of all the matrices were
close to 0, which is the case in an affine transformation matrix. This implies that the affine
transformation model could have been used.
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2.4. Image-Based Registration Methods 

Figure 4. Relations between the distance of the target and the coefficients of the distance-dependent transformation matrix
(DDTM) of the homography between the thermal slave image and the 800-nm master image: (a) distance-dependent
coefficients; (b) distance-independent coefficients.

Applying the DDTM method to field images required measurements of median dis-
tances of wheat elements. For the images acquired before heading stage (BBCH50), that
distance was measured by stereovision. For the images acquired after heading stage, that
distance was approximated based on manual measurements using a stick meter. In that
scenario, instead of computing the median distance of wheat for each micro-plot, the ap-
proximation was used for all the plots. This choice was made because of the uncertainty on
stereovision performances on the various images containing ears (green ears, yellow ears,
tilted ears, . . . ). Concerning stereovision applied to wheat canopy, detailed explanations
can be found in [34]. For this study, rectification of left and right images was performed by
Bouguet’s algorithm thanks to the calibration values extracted using the chessboard [35].
Rectified images were converted to grayscale and reduced to 1280 × 1024 pixels by averag-
ing the pixel intensities on 2 × 2 squares. Matching was performed using the semi-global
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block matching algorithm [36]. For this algorithm, matching window size was 5 and
uniqueness ratio was 10. The median height was computed on segmented plant objects.
Segmentation of wheat and background was performed by a threshold of 0.05 on the Excess
Red index (ExR). The index was built as follows:

R′ =
R

R + G + B
; G′ =

G
R + G + B

; ExR =
(
1.4 ∗ R′

)
− G′ (2)

where R, G and B are the intensity values of red, green and blue channels for each pixel.

2.4. Image-Based Registration Methods

Instead of deducing the transformation from the relative positions of the cameras,
those methods exploit similarities between the contents of the slaves and the master images
to find the best transformation. They do not need a calibration although some of them
need prior information on the transformation or initial alignment. They allow us to take
into account the nature of the scene. The diversity of images-based registration methods
are described in existing reviews [24,37]. An overview of the registration pipeline and of
the different methods is presented in Figure 5. The first step of registration is called the
matching (Figure 5. Step I). The aim is to detect corresponding zones in the master and the
slave images. That correspondence may be feature-based or area-based. In feature-based
methods, the goal is to identify a set of features (points, lines or patterns). The sets of
features of the slave and the master images are compared to find matches. Popular methods
exploit point features that are robust to scale and rotation changes. In the area-based
methods, no features are detected. The matching between the images (or two windows
from those images) is performed through the maximization of a similarity metric such as
cross-correlation coefficient or mutual information. After establishing a correspondence,
the second step of registration is to determine the geometric transformation to apply to
the slave image (Figure 5. Step II). Transformations are divided into global and local
methods. Global methods use the same mapping parameters for the entire image while
the local methods are various techniques designed to locally warp the image. If there is
no distortion between the images, rotation and translation are sufficient to align them.
Otherwise, hypotheses on the distortion should be established to select either another
global transformation (similarity, affine, homography) or a local transformation. For
complex distortion, a possible approach is to begin with a global transformation and
then to refine the registration using one or several local methods. Once coordinates in
the slave image have been remapped, the last step consists in resampling the image to
compute the new intensities (Figure 5. Step III). It involves convolutional interpolation
algorithms such as nearest neighbors, bilinear (based on four neighbors) or cubic (based
on 16 neighbors) [37]. Despite the development of more complex resampling approaches
slightly outperforming the traditional ones, it is often sufficient to stick to the simple
bilinear or cubic algorithm [24]. Registration approaches are mainly differentiated by the
choice of the matching method and of the transformation model.

The registration methods tested in the frame of this study are summarized in Table 1
(also including the DDTM calibration-based method). The idea was to test methods that rely
on open-source algorithms and libraries so that they can be easily implemented by all plant
sciences stakeholders. The programming language was Python 3.7. Four popular methods
relying on features-based matching and global transformations were tested from the famous
OpenCV library [35] (version 4.1.0.25). Those methods were SIFT [38], SURF [39], ORB [40]
and A-KAZE [41]. Default parameters were used for features detection. Then, the matches
were sorted by score and only the best matches were kept to compute the transformation.
That proportion of valid matches was considered as a sensitive parameter and a sensitivity
study was led to identify the best value for each method and each camera. In addition
of those features-based methods, three area-based methods were also tested. The first
method, referred to as DFT, exploited a discrete Fourier transform to compute a correlation
metric in the frequency domain [42]. It was implemented using the imreg_dft Python
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library (version 2.0.0). The second method, named ECC, relied on a similarity metric
built using an enhanced correlation coefficient [43]. It was implemented using Python
OpenCV library (version 4.1.0.25). The third area-based method, called B-SPLINE, used a
normalized mutual information (NMI) metric and differentiated itself from all the others
by performing a local transformation of the slave image. That method was implemented
using the Elastix library, initially developed for medical applications [26]. For Python, the
library wrapper was pyelastix (version 1.2). This allowed a local transformation based on
a 3rd-order (cubic) B-SPLINE model [44]. In addition, the NMI metric is recognized to
be particularly suitable for multimodal images registration [24,26,27,45,46]. However, the
main drawback of area-based methods is that they may necessitate an initial alignment
if the slave images underwent transformations such as huge rotation or scaling. For this
reason, the calibration-based DDTM method was exploited to provide roughly registered
images before applying the DFT, ECC and B-SPLINE methods. In the end, aligned slave
images were cropped to save 855 × 594 pixels images that were limited to the commonly
aligned zone. Considering the cameras at 1.6 m height, that zone represented an area of
0.38 m2.
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Table 1. Summary of registration methods tested in this study.

Method Matching Transformation Resampling Library Origin

SIFT Features-based Homography Bilinear OpenCV [35] [38]
SURF Features-based Homography Bilinear OpenCV [39]
ORB Features-based Homography Bilinear OpenCV [40]

A-KAZE Features-based Homography Bilinear OpenCV [41]
DDTM / Homography Bilinear / [33]

DFT Area-based Similarity Bilinear imreg_dft [42]
ECC Area-based Homography Bilinear OpenCV [43]

B-SPLINE Area-based B-spline Bilinear Elastix [26] [44]

2.5. Validation of the Registration Methods

The evaluation of registration performances is a difficult task and each method has its
drawbacks. For this reason, three different indicators were employed:

• The percentage of plausible alignments. This indicator assessed the number of images
that seemed visually aligned. It was computed by a human operator examining the
registered images in a viewer, beside their master image, one by one. Bad automatic
registrations were characterized by aberrant global transformations that were easy to
identify (Figure 6). For the local transformation, alignments were considered aberrant
in case of the apparition of deformed black borders in the frame or illogical warping
of objects such as leaves curving in complete spirals. That indicator was computed for
all the acquired images, i.e., a total of 3968 images for each camera.

• The average distance between control points in aligned slave and master images
(control points error) [23]. The control points were visually selected on the leaves
and ears by a human operator. The points had to be selected on recognizable pixels.
Attention was paid to select them in all images regions, at all canopy floors and
at different positions on the leaves (edges, center, tip, etc.). It was supposed that
registration performances may differ depending on the scene content (only leaves
or leaves + ears). Thus, two validation images sets were created. The vegetative
set consisted of twelve images from both trials acquired at the six dates before ear
emergence. The ears set consisted of 12 images from both trials acquired at the 12
dates after ear emergence. Ten control points were selected for each image. Firstly,
this indicator was only computed for the 900 nm images as their intensity content was
close enough to the 800 nm master image to allow human selection of control points.
Additionally, the other types of images would not have allowed to quantify errors
for all the registration methods because some of those methods generated aberrant
alignments. Secondly, the control point error indicator was also computed for the RGB
images, but only for the ECC and B-SPLINE methods. Those methods were chosen
because they were the two best methods for the 900 nm images and because they
provided plausible alignments for all of the RGB images of the two validation sets.

• The overlaps between the plant masks in registered slaves and master images. Con-
trary to the two other indicators, this indicator could be automatically computed.
However, it necessitated to isolate plants from background in the slaves and master
image. A comparable segmentation could only be obtained for the 900 nm slave and
the 800 nm master. The segmentation algorithm relied on a threshold at the first local
minimum in the intensity range 20–60 of the image histogram. Then, plants masks
were compared to compute the percentage of plant pixels in the aligned slave image
that were not plant pixels in the master image (plant mask error). That plant mask
error indicator was computed for all acquired images. For the presentation of the
results, averaged scores are presented for the two sets of images acquired before and
after ears emergence.
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3. Results
3.1. Plausible Alignements

The results of plausible alignments percentages for all slave cameras are presented
in Figure 7. The DDTM method is also included although by its nature this method
always yields a plausible alignment. For the other methods, the score depended on the
camera type. The 900 nm images, whose intensity content was close to the master images,
were well aligned by all methods. At the opposite, the thermal images were difficult
to align and most image-based methods yielded aberrant alignments. Concerning the
comparison of registration methods, the four features-based approaches (SIFT, SURF, ORB
and AKAZE) failed to align all the images. The DFT method reached higher scores but
similarly appeared as non-reliable to align 100% of the images. Only the ECC and B-
SPLINE methods succeeded in aligning almost all the images for all the cameras (except
for the thermal camera). The few failures of the B-SPLINE were less problematic than the
failures of other methods. In those cases, the images were still properly aligned and only
some elements underwent local aberrant warps. For the thermal cameras, the ECC method
reached 100% of aligned images at most of the dates. By contrast, the B-SPLINE was not
reliable for thermal images.
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Beside this general comparison of the methods, it is also interesting to study the details
of the evolution of the plausible alignments percentage by examining the values at different
dates and for the two trials (different wheat varieties). An example of such evolution is
presented in Figure 8 for the 490 nm images.
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3.2. Registration Accuracy and Computation Time

Table 2 presents average computation time, control points error and plant mask errors
for the different registration methods. The computation time was the average time to regis-
ter one image of all the cameras using a 3.2 GHz Intel I7-8700 processor. The average was
computed for the six dates before ears emergence when the distance for the DDTM method
was computed by stereovision (included in the computation time). The computation times
for the DFT, ECC and B-SPLINE methods included the pre-registration performed by the
DDTM. As justified in Section 2.5, control points error and plant mask error were only
computed for 900 nm and RGB images. Errors were computed independently for the dates
before and after ears emergence. For both indicators, the smallest errors were obtained for
the B-SPLINE method. However, the computation time was much higher than the other
methods and would make it more difficult to use for real-time applications.

In order to visually illustrate the quality of the most accurate registration solution,
regions of registered images are shown in Figure 9. For each type of image, the registration
method was the most accurate method able to register all the images of the full dataset:
the ECC method for the thermal images and the B-SPLINE method for the others. The
results show clearly that a same image region represent the same zone of the scene in all
the registered image types.
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Table 2. Comparison of the registration methods based on three criteria: the average computation time to register one
image of all cameras, the control points error and the plant mask error. Errors are averaged for dates before and after
ears emergence. For the RGB images, some methods were discarded (NA values) because they did not yield a plausible
alignment for all the test images.

Method Average
Time (s) Control Points Error (mm) Plant Mask Error (%)
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have been randomly selected to avoid an operator selecting only pretty regions.

3.3. Parametrization of the B-SPLINE Method

The B-SPLINE method had proven to be the most accurate method. That test was
performed using the default parameters. At the light of those first results, a particular
attention was paid to tune the parameters of the method in order to further increase its
performance. An important parameter is the final grid spacing, which defines the spacing
between the grid points. The term final is used because the registration starts with a coarse
points grid to warp large structures and then refine it in several steps until reaching the final
grid spacing [26]. A fine grid offers the possibility to account for fine-scale deformations
but may also cause more aberrant warps. Figure 10 illustrates the difference of deformation
fields for final grid spaces of 16 and 2 pixels.
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(b) 2 pixels. The deformation fields were extracted for a 36 × 36 pixels image region. The lengths of the arrows are
proportional to the pixel displacement.

Default parameters used for this study implied an initial grid of 128 pixels refined to
64 and 32 pixels to reach a final grid spacing of 16 pixels. Additional trials were carried out
for the vegetative validation images set by reducing the final grid spacing to 8, 4, 2 and
1 pixels. Trials on the 900 nm images showed that it was important to gradually warp the
images. To reach a final grid spacing of 1 pixel, the steps were grids of 128, 64, 32, 16, 8,
4 and 2 pixels. Burning steps by directly reducing the grid from 32 pixels to 1 pixel, for
example, caused aberrant deformations. Concerning the other image types (RGB, thermal,
490, 550, 680 and 720 nm), all grid refining levels led to aberrant deformations. Grid
refining only worked on the 900 nm images thanks to their intensity content close to the
800 nm master images. Figure 11 details the effect of grid refining (for the 900 nm images)
on control points error and computation time. The smallest average error was obtained
for a final grid spacing of 2 pixels. However, the computation time was eight times higher
than for a grid spacing of 16 pixels. Results also demonstrated that refining the final grid
spaces to 1 pixel had no interest. Not only the error was higher than for a 2-pixel spacing
but also the computation was extremely slow. It is also to note that for the 1-pixel spacing,
some aberrant deformations were visually noticed.
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3.4. Plant Mask Erosion

Image fusion consists in exploiting a plant mask to extract and combine information
from the wheat organs in the different images. However, even with the best registration
method, close-range images registration inevitably leads to errors that are an issue for
image fusion. This is especially problematic at leaf edges. A slight shift of a leaf edge
between one of the aligned images and the common plant mask may lead to background
being considered as leaf. To overcome that issue, a solution is to erode the common plant
mask so that the remaining plant mask pixels comprise scene plant zones in all the aligned
images. An example is provided in Figure 12 where plant mask of the 900 nm slave image
is considered as reference for fusion. By eroding this mask, it is possible to reduce it to
pixels that represent plants in both master and aligned slave images. In other words, this
had the effect of removing pixels of the slave plant mask that do not represent plant in the
master image.
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Figure 12. Example of plant mask erosion. Plant mask of the aligned slave image is considered as the reference for image
fusion. In that case, eroding the mask avoid selecting pixels from the master image that do not represent plants (the red
pixels on this example).

Erosion of 900 nm slave plant mask was tested for erosion values of 0 to 12 pixels. The
impact on the remaining plant area and the plant mask error is presented in Figure 13 for
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four registration methods of interest. It shows that the error tended to reach an asymptote
while the exploitable plant area continued to decrease. The asymptote of plant mask error
was close to zero. For an erosion of 12 pixels, error values were 1.2%, 0.8%, 0.7% and 0.5%,
respectively for the DDTM, ECC, B-SPLINE coarse final grid (16 pixels) and B-SPLINE fine
final grid (2 pixels) methods. The remaining errors may have been artificial errors due to a
difference of plant segmentation between the 800 and 900 nm images. Those curves imply
that erosion of the common plant mask should be adapted to the quality of the registration
method. Theoretically, for a perfect registration, no erosion would be necessary. By contrast,
for huge erosion values, the quality of the registration would have less importance. This is
well illustrated in Figure 13. As the erosion value increased, the difference between the
registration methods decreased. For each method, it is possible to assess the added value
of a greater erosion by looking at the slope of the error curve (red curve) in Figure 13. For
DDTM, an erosion of more than 8 pixels would be advised. For ECC, an erosion between 6
and 8 pixels would be a good compromise. For B-SPLINE, erosion could be limited to 6 for
a coarse final grid or to 3 pixels for a fine final grid.
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3.5. Suggested Registration—Fusion Strategies

The results of this experiment have shown that the same registration method could
not be used for all cameras and in all circumstances. At first glance, the B-SPLINE method
seemed an obvious choice because of its accuracy. Even if the local transformation failed
in some image zones for alignments judged as aberrant, the rest of the regions of those
images were still properly registered. However, the choice of this method no longer held
for thermal images or if the computation time was crucial. For real-time applications, only
the DDTM method could satisfy the need for almost instantaneous registration. Indeed, the
only time-consuming steps of DDTM are related to stereovision to automatically obtain the
distance of the objects of interest. If this distance is provided, as for the image acquired after
ears emergence, the registration is performed nearly instantaneously. For a compromise
between an acceptable computation time and a small error, the ECC method would be
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the best choice. This method would also be recommended for the thermal images as a
substitute of B-SPLINE. In addition, the results of plant mask erosion have shown that
registration and fusion should not be considered as independent steps. The quality of the
registration conditioned the processes necessary before fusion (plant mask erosion, pixel
intensities averaging). A rougher registration such as the DDTM method necessitated more
corrections before images fusion.

As the main output of this study, four registration–fusion strategies are proposed
in Table 3. In addition to registration and plant mask erosion, it is suggested that plant
pixel intensities should be averaged after registration to counter balance the possible local
intensity shifts. It is also suggested that plant traits extracted from fused images should
preferably rely on median intensity values (rather than average values) to prevent the
scenario in which a few background values would still have slipped into the plant mask.

Table 3. Proposed registration–fusion strategies. Each row presents a strategy.

Strategy Name Registration Plant Mask
Erosion

Intensity
Averaging

Computation
Time Scope

REAL-TIME DDTM Wide Wide window Instantaneous
Suitable for
multimodal

images

FAST DDTM + ECC Medium Medium window Moderated
Suitable for
multimodal

images

ACCURATE
DDTM +

B-SPLINE
(coarse grid)

Medium Small window Slow

Not suitable for
thermal

images (if the
master is NIR)

HIGHLY
ACCURATE

DDTM +
B-SPLINE
(fine grid)

Tiny or none None Extremely slow
Limited to

mono-modal
images

The choice of the strategy should be considered in relation to the final application
and the nature of the available cameras. If all plant organs need to be measured, the
ACCURATE method or the HIGHLY ACCURATE method should be employed to get rid
of the need of plant mask erosion. Likewise, if the application implies the measurement of
tiny details such as fungal spores on leaves, those methods should be preferred to limit
small local shifts of particular intensities representing those details. The choice of the
strategy should also be considered taking into account the whole set of cameras. It may not
be a good idea to fuse a thermal image registered with DDTM and a NIR image registered
with a B-SPLINE fine grid, especially if a common plant mask is used to extract plant
features. Finally, it is necessary to clarify now that those strategies are results based on the
data from this study. They are suggestions that should be validated in future works and do
not to claim to cover all the diversity of registration and fusion approaches that could be
applied to close-range wheat images.

4. Discussion
4.1. Considerations on the Matching Step

The main issue of features-based matching algorithms in a multimodal framework
was their incapacity to yield plausible alignments for all the images. However, when
they worked, they were able to provide images as well registered as those registered
by global area-based methods. Observations realized in this study suggested that the
reliability of feature-based method could be impacted by environmental factors such as
wind (the acquisitions were not perfectly synchronous) and cloudiness. The clearest trend
was however the impact of the nature of the observed scene. As for the 490 nm images
of Figure 8, all the image modalities showed increased matching performances when
the scene contained wheat ears. The hypothesis is that the structure of wheat ears was
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more suitable than that of leaves for point features detection. Another element to explain
bad features detection performances is the phenomenon of gradient inversion observed
by [25] for visible and NIR images. An avenue for improving features-based methods
would be to perform features detection after some background removal pre-processing [31].
Another hint related to features would be to filter images using an edge detector prior to
registration [47,48]. This approach would combine the use of robust features (leaf edges)
and area-based matching. The detection of similar wheat leaves boundaries in all images
seems however a challenging task. Considering the area-based matching metrics such as
NMI or ECC, they showed robust performances for multimodal plant image registration as
already highlighted in the literature [24,27,43,45,46].

4.2. Nature of Distortion and Choice of the Transformation Model

The choice of the transformation model depends on the type of distortion between
the two images. It is important to note that the notion of distortion between images differs
from the commonly used “image distortion” term that usually refers to optical distortion
of images from a single camera. The possible distortions between images are:

• Differences of optical distortion between the images. The two types of optical dis-
tortion are radial and tangential distortions. Radial distortion is due to the spherical
shape of the lenses. Tangential distortion is due to misalignment between lens and
image plane. If the images are acquired by two different cameras with different optical
distortions, it caused a distortion between the images.

• Differences of perspective. Those differences appear if the cameras that acquired the
two images are at different distances. For the same distance of the cameras, images
present the same perspective, whatever the lens. However, two cameras with different
fields of view (determined by focal length and sensor size) necessitate being at different
distances to capture the same scene. For this reason, differences of fields of view are
intuitively perceived as responsible for differences in perspective distortion.

• Differences of point of view. The cameras that acquire the slave and the master image
are not at the same position. This results in two different effects. Firstly, due to the
relief of the scene, some elements may be observed in an image and not in the other
one. This is called the occlusion effect. Secondly, the relative position of the objects
becomes distance-dependent (that property is especially exploited for stereovision).
This is referred as to the parallax effect. It is greater when the distance between the
cameras increases compared to the distance between the cameras and the objects
of interest.

• Scene motion. If the acquisition of the images is not perfectly synchronous, a relative
displacement of scene objects with respect to the sensors causes distortion between
the images. Objects such as wheat leaves are liable to be moved by the wind.

• Differences of scene illumination.
• Differential impact of heat waves (some images may be blurry).

For the close-range wheat images acquired in this study, differences of optical distor-
tion were very limited thanks to the calibration of all the cameras to remove those optical
distortions. As the cameras were located almost at the same distance of the scene, the
perspective effect was also negligible. The main source of distortion between the images
was attributed to the difference of point of view. Additionally, the acquisitions were not
perfectly synchronous and some wind-induced movement may have impacted a few leaves.
Theoretically, only a local transformation could handle such multiple and complex distor-
tions. Even considering the difference of point of view as the only source of distortion, the
parallax effect implied that a global transformation could only register without errors the
objects lying on a same plane (perpendicular to the cameras optical axes). Nevertheless,
investigating global methods was compulsory because: (i) those methods are the simplest
and the most common, (ii) a global transformation is a preliminary step before any local
refinement and (iii) it was chimerical to imagine a close-range registration without any error
on a scene as challenging as a wheat canopy. The complexity of local methods could have
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been a disadvantage, leading to higher errors than those obtained with simpler approaches.
Concerning the choice of the global transformation, the homography was preferred to be
as general as possible. In this study, they were no significant perspective differences and it
is stated that affine transformation models could have been employed. The proof is that
the elements h20 and h21 (Equation (1)) of all the homographic transformations matrices
obtained after calibration were close to 0 (Figure 4b). This simplification of the homography
was also observed by [33].

4.3. Critical Look on the Validation Methods

Validation and error quantification of registration methods are always a difficult topic
because ground truth maps of pixels are not available. This is especially challenging in case
of multimodal images because pixel intensities cannot be compared. Different approaches
encountered in the literature are:

• To visually assess the success of registration (aligned slave and master images look
similar) [23].

• To verify that the values of the transformation parameters fall in the range of plausible
values [31]. This method can be assimilated to the previous one but presents the
advantage to be automatic.

• To test the algorithm on a target of known pattern [9].
• To manually select control points and assess the distances between their positions in

aligned slave and master images [23].
• To segment objects in the scene and study the overlaps between those objects in

aligned slave and master images [28,29].
• To use a similarity metric as a proxy of registration quality [25,29].

Among those methods, the ground truth target was discarded because it does not
help to estimate real errors occurring on plant canopy images registration. In a certain
way, this evaluation was, however, performed during the calibration of the DDTM method.
The similarity metric was also discarded for the reasons detailed by [49]. They stated in
particular that the validation should be as independent as possible from the registration
itself. The other methods listed above were used for our study. The choice to rely on three
very different methods (including two human validations) was judged as a strength of this
study compared to existing researches in the plant domain for which only one approach
was usually chosen. This is especially true because each approach has advantages and
weaknesses. The number of visually plausible alignments (number of successes) is a first
way to reject unreliable methods and it can be applied to all types of image. In this study,
however, it was a laborious task because it was performed on a huge number of images.
Moreover, it does not help to quantify the errors. This method should be used as a first test
but followed by quantitative methods. The control points error (manually selected control
points) presents the advantage of being totally independent of the registration process.
It provides an error in pixel or physical distance units. However, the method is very
time-consuming. It is limited to slave images types where it is possible to visually, precisely
and without any doubts select the same control points than in the master images. It is also
subject to human bias. Operators could select non-representative control point sets. They
are also imprecise in the selection of control points. The imprecision (fact that the operator
does not always select the same pixel for a same scene element) was quantified in this study
by repeating three times the marking of the same control points for three different master
images (10 points per images). The average error between two repetitions was 0.6 pixels
(0.5 mm). Additionally, it was sometimes difficult to identify to the pixel level the same
scene elements in slave and master images because of the intensity resampling effect. The
third indicator, the plant mask error, presents the advantage to be fully automated. At
the opposite of the control points error, it accounts for most of the image pixels. It is also
goal-oriented, in the sense that a common plant mask is the key element to extract plant
traits by image fusion. This overlap-based validation is criticized by [49] in the frame of
medical tissues imaging. In the plant canopy context, the situation may be different. In
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this study, the plant mask indicator was relatively coherent with the other indicators. It
was especially useful to study the impact of plant mask erosion to mitigate registration
errors before image fusion. A concern is raised about the quality of the plant segmentation
based on histograms thresholds. That simplistic segmentation approach may have led
some barely visible leaves to be included in the aligned slave mask and not in the master
mask (for example). To build our plant mask error, it was arbitrarily decided that the error
would be the percentage of pixels considered as plants in the aligned slave image and not
in the master image. Those pixels would be problematic for image fusion in case the plant
mask is provided by the slave image. Another option would have been to focus on plant
pixels in the master images that were not plants in the slave image. Those pixels would be
problematic for image fusion in case the plant mask is provided by the master image. In
practice, a perfect plant mask for fusion would need to combine information from both
slave and master images. Thus, no approach makes more sense than the other. Neither
of the two could perfectly estimate the error that would occur in the final fusion pipeline
where the plant mask would be built by a combination of already aligned images.

4.4. Visualization of Successful Image Registrations

Visually demonstrating the good quality of a registration method is a non-trivial
task. In the plant literature, some papers present the aligned images side by side [22,25],
as used in Figure 9. Those figures show the success of the registration but do not easily
allow the small misalignments of the plant organs to be realized. A possible way to
solve this issue is to add to the figure magnified zones of the images demonstrating the
alignment of small elements [50]. Such magnification is only possible for a limited number
of image regions, at the risk of making the figure too bulky. Others methods rely on the
superposition of aligned images at a certain level of transparency [23,30,48], which can
yield quite readable figures or confuse representations depending on the imaged scene and
the figure realisation. Another option is to exploit a color code to show the plant masks
overlaps [29]. Ref. [9] exploited a chess-like mosaic made of squares from both aligned
slave and master images. In Figure 14, we propose an alternative visualization method
that allow us to clearly compare the alignments of plant organs. To take the best from that
cross method, the size of the observed image regions should be chosen so that the scene
details are big enough on the figure.

4.5. Extending the Tests to Other Registration Methods

One of the limitations of this study is that it stuck to only eight registration approaches.
Those approaches were chosen for their various features (calibration-based vs. image-based,
features-based matching vs. area-based matching and global transformation vs. local trans-
formation) and because they were easy to implement for plant sciences stakeholders thanks
to open source programming packages. They do not constitute an exhaustive list of the
possible registration methods. Moreover, registration techniques continue to evolve and
cutting-edge methods offer new possibilities. Further studies about close-range wheat
images registration should be included to investigate those new techniques, as they could
improve the performance. This is especially true for methods allowing local transforma-
tions of the images, of which only one has been tested in this study. Those methods have
been widely developed in other fields such as medical imaging [27,46]. In addition to the
B-SPLINE free-form deformation presented here, it exists numerous other transformations:
piece-wise affine, radial basis functions, elastic body, diffusion-based, optical flow, etc. [27].
However, it is worth noting that all methods would be adapted for a multi-modal frame-
work. For example, we investigated the TV-L1 optical flow algorithm [51,52] from the
Python scikit-image library (version 0.17.2). This method is not adapted to a multimodal
framework because it relies on the hypothesis of brightness constancy. Among the recent
developments, reference [50] proposed a registration approach combining feature-based
and area-based matching to generate a robust local transformation model. This illustrates
that registration methods can be combined in cascade to improve the result. The area-based
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methods must in particular be preceded by calibration-based or features-based approaches,
as they are not able to directly deal with wide deformations. Finally, the recent devel-
opment of deep learning offers new perspectives, as exploited by [53] to estimate global
transformations or by [54] to estimate local deformations.
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5. Conclusions

This study aimed at solving the issue of image registration and fusion in the specific
context of close-range wheat images acquired by thermal, multispectral and RGB cameras
from field phenotyping platforms. The performances of eight registration methods were
quantified using three indicators: the percentage of images for which a plausible alignment
was found, the position error on control points and the error related to the non-overlap of
plant masks. Among those eight methods, four methods based on feature points matching
(SIFT, SURB, ORB and A-KAZE) were unable to register all the test images and were
discarded. The DDTM calibration-based method, exploiting the relative position of the



Remote Sens. 2021, 13, 1380 22 of 24

cameras and the distance of the objects, was able to register all the images approximately.
The error on control points was 4.7 mm. As it did not necessitate computations on the
images content, the registration was instantaneous. This method was also used as a first step
before the last three methods, investigating matching by similarity metrics. Among them,
the B-SPLINE method, exploiting a mutual information metric and a local transformation,
presented the lowest average control points error: 2 mm. However, it was not reliable for
thermal images. By contrast, the ECC method, exploiting a mutual information metric
and a global transformation, succeeded in registering all types of image, but the control
points error increased to 3.1 mm. The DDTM, ECC and BSPLINE methods were identified
as three useful registration approaches. Each of them has advantages and drawbacks that
should be taken into account when considering image fusion.

Based on these results, the main achievement of this study was to propose four
registration-fusion strategies adapted to different applications. The REAL-TIME strategy
relied on DDTM registration and wide erosion of the fusion plant mask. The FAST strategy
relied on ECC registration and medium erosion of the fusion mask. Both strategies could
be applied to all tested image types. They are also suggested for applications where
processing time is crucial and that can afford to lose data at plant edges. The ACCURATE
and the HIGHLY-ACCURATE strategies took advantage of the local transformation of the
B-SPLINE registration to handle complex distortion, that could be combined with limited
erosion of the fusion plant mask. However, they were slow and not suitable for all images
types. They are suggested for applications where it is necessary to extract all the plant
surface or small details on the organs.

The study filled a gap in the literature by bringing solutions to the specific issue of
multi-modal wheat canopy image registration. Nevertheless, registration methods are
numerous and constantly evolving. Many registration methods not explored in this paper
are avenues for improvement on this issue and could be investigated, especially among the
wide diversity of local transformation methods.

Author Contributions: Conceptualization, S.D., B.D. and B.M.; methodology, S.D., B.D. and B.M.;
software, S.D.; validation, S.D.; formal analysis, S.D.; investigation, S.D. and A.C.; resources, A.C.
and B.D.; data curation, S.D.; writing—original draft preparation, S.D.; writing—review and editing,
S.D., A.C., B.D. and B.M.; visualization, S.D.; supervision, B.D. and B.M.; project administration, B.D.
and B.M.; funding acquisition, S.D., B.D. and B.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Fund of Belgium FNRS-F.R.S (FRIA grant), and
the Agriculture, Natural Resources and Environment Research Direction of the Public Service of
Wallonia (Belgium), project D31-1385 PHENWHEAT.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors thank the research and teaching support units Agriculture Is
Life and Environment Is Life of TERRA Teaching and Research Centre, University of Liège for
giving access to the trial fields and supplying meteorological data from the Lonzée Terrestrial
Observatory. The authors are grateful to Jesse Jap, Rudy Schartz, Julien Kirstein, Romain Bebronne,
Rémy Blanchard and Ariane Faures for their help. The authors also thank Peter Lootens and Vincent
Leemans for their advice.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Remote Sens. 2021, 13, 1380 23 of 24

References
1. Kirchgessner, N.; Liebisch, F.; Yu, K.; Pfeifer, J.; Friedli, M.; Hund, A.; Walter, A. The ETH field phenotyping platform FIP: A

cable-suspended multi-sensor system. Funct. Plant Biol. 2017, 44, 154–168. [CrossRef]
2. Shafiekhani, A.; Kadam, S.; Fritschi, F.; DeSouza, G. Vinobot and Vinoculer: Two Robotic Platforms for High-Throughput Field

Phenotyping. Sensors 2017, 17, 214. [CrossRef] [PubMed]
3. Virlet, N.; Sabermanesh, K.; Sadeghi-Tehran, P.; Hawkesford, M.J. Field Scanalyzer: An automated robotic field phenotyping

platform for detailed crop monitoring. Funct. Plant Biol. 2017, 44, 143–153. [CrossRef] [PubMed]
4. Jiang, Y.; Li, C.; Robertson, J.S.; Sun, S.; Xu, R.; Paterson, A.H. GPhenoVision: A ground mobile system with multi-modal imaging

for field-based high throughput phenotyping of cotton. Sci. Rep. 2018, 8, 1–15. [CrossRef] [PubMed]
5. Bai, G.; Ge, Y.; Scoby, D.; Leavitt, B.; Stoerger, V.; Kirchgessner, N.; Irmak, S.; Graef, G.; Schnable, J.; Awada, T. NU-Spidercam:

A large-scale, cable-driven, integrated sensing and robotic system for advanced phenotyping, remote sensing, and agronomic
research. Comput. Electron. Agric. 2019, 160, 71–81. [CrossRef]

6. Beauchêne, K.; Leroy, F.; Fournier, A.; Huet, C.; Bonnefoy, M.; Lorgeou, J.; de Solan, B.; Piquemal, B.; Thomas, S.; Cohan, J.-P.
Management and Characterization of Abiotic Stress via PhénoField®, a High-Throughput Field Phenotyping Platform. Front.
Plant Sci. 2019, 10, 1–17. [CrossRef]

7. Pérez-Ruiz, M.; Prior, A.; Martinez-Guanter, J.; Apolo-Apolo, O.E.; Andrade-Sanchez, P.; Egea, G. Development and evaluation of
a self-propelled electric platform for high-throughput field phenotyping in wheat breeding trials. Comput. Electron. Agric. 2020,
169, 105237. [CrossRef]

8. Leinonen, I.; Jones, H.G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress.
J. Exp. Bot. 2004, 55, 1423–1431. [CrossRef]

9. Jerbi, T.; Wuyts, N.; Cane, M.A.; Faux, P.-F.; Draye, X. High resolution imaging of maize (Zea maize) leaf temperature in the field:
The key role of the regions of interest. Funct. Plant Biol. 2015, 42, 858. [CrossRef]

10. Huang, P.; Luo, X.; Jin, J.; Wang, L.; Zhang, L.; Liu, J.; Zhang, Z. Improving high-throughput phenotyping using fusion of
close-range hyperspectral camera and low-cost depth sensor. Sensors 2018, 18, 2711. [CrossRef]

11. Khanna, R.; Schmid, L.; Walter, A.; Nieto, J.; Siegwart, R.; Liebisch, F. A spatio temporal spectral framework for plant stress
phenotyping. Plant Methods 2019, 15, 1–18. [CrossRef]

12. Roitsch, T.; Cabrera-Bosquet, L.; Fournier, A.; Ghamkhar, K.; Jiménez-Berni, J.; Pinto, F.; Ober, E.S. Review: New sensors and
data-driven approaches—A path to next generation phenomics. Plant Sci. 2019, 282, 2–10. [CrossRef] [PubMed]

13. Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range hyperspectral imaging of
plants: A review. Biosyst. Eng. 2017, 164, 49–67. [CrossRef]

14. Busemeyer, L.; Mentrup, D.; Möller, K.; Wunder, E.; Alheit, K.; Hahn, V.; Maurer, H.P.; Reif, J.C.; Würschum, T.; Müller, J.; et al.
Breedvision—A multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 2013, 13, 2830–2847.
[CrossRef] [PubMed]

15. Deery, D.; Jimenez-Berni, J.; Jones, H.; Sirault, X.; Furbank, R. Proximal Remote Sensing Buggies and Potential Applications for
Field-Based Phenotyping. Agronomy 2014, 5, 349–379. [CrossRef]

16. Behmann, J.; Acebron, K.; Emin, D.; Bennertz, S.; Matsubara, S.; Thomas, S.; Bohnenkamp, D.; Kuska, M.T.; Jussila, J.; Salo, H.;
et al. Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and
disease detection. Sensors 2018, 18, 441. [CrossRef]

17. Whetton, R.L.; Waine, T.W.; Mouazen, A.M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops:
Part 2: On-line field measurement. Biosyst. Eng. 2018, 167, 144–158. [CrossRef]

18. Leemans, V.; Marlier, G.; Destain, M.-F.; Dumont, B.; Mercatoris, B. Estimation of leaf nitrogen concentration on winter wheat by
multispectral imaging. In Proceedings of the Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards
2017, Anaheim, CA, USA, 12 April 2017; SPIE—International Society for Optics and Photonics: Bellingham, WA, USA, 2017.

19. Bebronne, R.; Carlier, A.; Meurs, R.; Leemans, V.; Vermeulen, P.; Dumont, B.; Mercatoris, B. In-field proximal sensing of septoria
tritici blotch, stripe rust and brown rust in winter wheat by means of reflectance and textural features from multispectral imagery.
Biosyst. Eng. 2020, 197, 257–269. [CrossRef]

20. Genser, N.; Seiler, J.; Kaup, A. Camera Array for Multi-Spectral Imaging. IEEE Trans. Image Process. 2020, 29, 9234–9249. [CrossRef]
21. Jiménez-Bello, M.A.; Ballester, C.; Castel, J.R.; Intrigliolo, D.S. Development and validation of an automatic thermal imaging

process for assessing plant water status. Agric. Water Manag. 2011, 98, 1497–1504. [CrossRef]
22. Möller, M.; Alchanatis, V.; Cohen, Y.; Meron, M.; Tsipris, J.; Naor, A.; Ostrovsky, V.; Sprintsin, M.; Cohen, S. Use of thermal and

visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot. 2007, 58, 827–838. [CrossRef]
23. Wang, X.; Yang, W.; Wheaton, A.; Cooley, N.; Moran, B. Efficient registration of optical and IR images for automatic plant water

stress assessment. Comput. Electron. Agric. 2010, 74, 230–237. [CrossRef]
24. Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [CrossRef]
25. Rabatel, G.; Labbé, S. Registration of visible and near infrared unmanned aerial vehicle images based on Fourier-Mellin transform.

Precis. Agric. 2016, 17, 564–587. [CrossRef]
26. Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J. Elastix: A Toolbox for Intensity-Based Medical Image Registration.

IEEE Trans. Med. Imaging 2010, 29, 196–205. [CrossRef] [PubMed]

http://doi.org/10.1071/FP16165
http://doi.org/10.3390/s17010214
http://www.ncbi.nlm.nih.gov/pubmed/28124976
http://doi.org/10.1071/FP16163
http://www.ncbi.nlm.nih.gov/pubmed/32480553
http://doi.org/10.1038/s41598-018-19142-2
http://www.ncbi.nlm.nih.gov/pubmed/29352136
http://doi.org/10.1016/j.compag.2019.03.009
http://doi.org/10.3389/fpls.2019.00904
http://doi.org/10.1016/j.compag.2020.105237
http://doi.org/10.1093/jxb/erh146
http://doi.org/10.1071/FP15024
http://doi.org/10.3390/s18082711
http://doi.org/10.1186/s13007-019-0398-8
http://doi.org/10.1016/j.plantsci.2019.01.011
http://www.ncbi.nlm.nih.gov/pubmed/31003608
http://doi.org/10.1016/j.biosystemseng.2017.09.009
http://doi.org/10.3390/s130302830
http://www.ncbi.nlm.nih.gov/pubmed/23447014
http://doi.org/10.3390/agronomy4030349
http://doi.org/10.3390/s18020441
http://doi.org/10.1016/j.biosystemseng.2018.01.004
http://doi.org/10.1016/j.biosystemseng.2020.06.011
http://doi.org/10.1109/TIP.2020.3024738
http://doi.org/10.1016/j.agwat.2011.05.002
http://doi.org/10.1093/jxb/erl115
http://doi.org/10.1016/j.compag.2010.08.004
http://doi.org/10.1016/S0262-8856(03)00137-9
http://doi.org/10.1007/s11119-016-9437-x
http://doi.org/10.1109/TMI.2009.2035616
http://www.ncbi.nlm.nih.gov/pubmed/19923044


Remote Sens. 2021, 13, 1380 24 of 24

27. Sotiras, A.; Davatzikos, C.; Paragios, N. Deformable medical image registration: A survey. IEEE Trans. Med. Imaging 2013, 32,
1153–1190. [CrossRef]

28. De Vylder, J.; Douterloigne, K.; Vandenbussche, F.; Van Der Straeten, D.; Philips, W. A non-rigid registration method for
multispectral imaging of plants. Sens. Agric. Food Qual. Saf. IV 2012, 8369, 836907. [CrossRef]

29. Raza, S.E.A.; Sanchez, V.; Prince, G.; Clarkson, J.P.; Rajpoot, N.M. Registration of thermal and visible light images of diseased
plants using silhouette extraction in the wavelet domain. Pattern Recognit. 2015, 48, 2119–2128. [CrossRef]

30. Henke, M.; Junker, A.; Neumann, K.; Altmann, T.; Gladilin, E. Comparison of feature point detectors for multimodal image
registration in plant phenotyping. PLoS ONE 2019, 14, 1–16. [CrossRef]

31. Henke, M.; Junker, A.; Neumann, K.; Altmann, T.; Gladilin, E. Comparison and extension of three methods for automated
registration of multimodal plant images. Plant Methods 2019, 15, 1–15. [CrossRef]

32. Meier, U. Growth Stages of Mono and Dicotyledonous Plants. BBCH Monograph 2nd Edition; Federal Biological Research Centre for
Agriculture and Forestry: Quedlinburg, Germany, 2001; ISBN 9783955470715.
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