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Abstract: Nowadays, precipitable water vapor (PWV) retrieved from ground-based Global Navi-
gation Satellite Systems (GNSS) tracking stations has heralded a new era of GNSS meteorological
applications, especially for severe weather prediction. Among the existing models that use PWV
timeseries to predict heavy precipitation, the “threshold-based” models, which are based on a set
of predefined thresholds for the predictors used in the model for predictions, are effective in heavy
precipitation nowcasting. In previous studies, monthly thresholds have been widely accepted due to
the monthly patterns of different predictors being fully considered. However, the primary weakness
of this type of thresholds lies in their poor prediction results in the transitional periods between two
consecutive months. Therefore, in this study, a new method for the determination of an optimal set of
diurnal thresholds by adopting a 31-day sliding window was first proposed. Both the monthly and
diurnal variation characteristics of the predictors were taken into consideration in the new method.
Then, on the strength of the new method, an improved PWV-based model for heavy precipitation
prediction was developed using the optimal set of diurnal thresholds determined based on the hourly
PWV and precipitation records for the summer over the period 2010–2017 at the co-located HKSC–KP
(King’s Park) stations in Hong Kong. The new model was evaluated by comparing its prediction
results against the hourly precipitation records for the summer in 2018 and 2019. It is shown that
96.9% of heavy precipitation events were correctly predicted with a lead time of 4.86 h, and the false
alarms resulting from the new model were reduced to 25.3%. These results suggest that the inclusion
of the diurnal thresholds can significantly improve the prediction performance of the model.

Keywords: Global Navigation Satellite System (GNSS); precipitable water vapor (PWV); heavy
precipitation prediction; precipitation threshold

1. Introduction

Atmospheric water vapor, as one of the main greenhouse gases, plays an important
role in meteorological applications and is often expressed in the form of precipitable water
vapor (PWV), which has been estimated using the Global Navigation Satellite Systems
(GNSS) technique since the early 1990s [1]. Generally, observations using the GNSS radio
signals, i.e., ground- and space-based GNSS observations, are regarded as complements
to those in-situ and remotely sensed observations for the understanding and prediction
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of extreme weather events [2–4]. Nowadays, with the rapid development of the GNSS
and the widespread establishment of various scale ground-based tracking networks, the
application of the GNSS-derived PWV (named GNSS-PWV hereinafter) to climate research
and weather predictions has been well advanced [5–8], especially for severe weather
events [9,10]. This is due to the high accuracy, high spatiotemporal resolution, and all-
weather availability of the GNSS-PWV [11–14]. Several methods using GNSS-PWV for
precipitation prediction have been proposed in recent years. Yao et al. [15] proposed a
new model containing the three predictors of PWV value, PWV variation, and rate of
PWV variation. Based on data collected at GNSS tracking stations in Zhejiang Province,
the model led to an 82% correct detection rate but high false alarm rates (FAR): 60–70%.
Zhao et al. [16] developed an improved model based on GNSS-PWV timeseries with a
5-minute resolution, and the model resulted in a better than 90% correct detection rate. In
our previous study [17], a new model including five predictors derived from GNSS-PWV
timeseries was developed, and the model’s probability of detection (POD) and FAR were
95.5% and 28.9%, respectively. Apart from these threshold-based models, for which a
set of predefined thresholds for the predictors adopted in the model were used to make
predictions, the neural network (NN) technique has also been applied to precipitation
prediction by incorporating PWV with other atmospheric parameters as input variables of
the model [18,19]. Benevides et al. [20] presented a nonlinear autoregressive exogenous
neural network model developed based on the integration of GNSS and meteorological data
for the short-term prediction of intense precipitation events. Although the model resulted
in a reduced FAR, from 36% to 21%, its 72% POD score was undesirable. Manandhar
et al. [21] proposed a data-driven method using seven variables including GNSS-PWV to
predict precipitation events, which showed an 80.4% POD and a 20.3% FAR. Furthermore,
based on the maturing data assimilation technique, GNSS-PWV was also assimilated into
the operational numerical weather prediction (NWP) models, which could effectively
improve the monitoring and prediction of precipitation events [22–25].

All the aforementioned types of models using PWV timeseries for precipitation pre-
diction, albeit the NWP models have a solid theoretical basis, are still difficult to be applied
to the nowcasting of heavy precipitation events, while those NN-based models cannot
provide insight into their interior structures and physical processes of the modelling, due
to their “black box” feature. Therefore, this study is mainly focused on the threshold-based
models, which are easy to operate and can be used as effective complements to operational
models. Generally speaking, the selection of appropriate predictors and the determina-
tion of an optimal set of thresholds for these predictors are the keys for the development
of a threshold-based model. The selection of predictors can be different depending on
various factors, such as the type of target events, availability of sample data, and climate
patterns. Hence, it is difficult to establish a common standard. However, the thresholds for
those predefined predictors can be determined based on some certain rules, and several
methods have been proposed recently [26–28]. Zhao et al. [29] used the percentile method,
which shows the location and distribution of the sample data through the median and
quartile [30], to determine an optimal set of thresholds. In the studies [15,31], empirical
thresholds for predictors were simply selected from values given within a certain range
without justification. In contrast, in our recent study [17], an optimal set of thresholds
were determined according to the critical success index (CSI), and each predictor in each
summer month had a unique threshold value (rather than a threshold range).

Although the methods for determining the thresholds were different, their common
ground is that the thresholds were generally selected on a monthly scale [15,16]. Thus,
the seasonal variation patterns of the predictors were fully considered [27,32,33]. The
main disadvantage of these monthly thresholds is that they are likely to result in poor
prediction results in the transitional periods between two consecutive months, i.e., the
beginning/end of a month [34]. This may be caused by the neglect of the diurnal variation
in the predictors, especially in the case that part or all the predictors vary rapidly, e.g.,
PWV and their derivatives. Hence, in this study, after the rationality of replacing monthly
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thresholds with diurnal thresholds was proved, a new method using a 31-day sliding
window (and based on the CSI) to determine an optimal set of diurnal thresholds for
PWV was proposed. The use of the 31-day sliding windows in the new method was, in
fact, for the consideration of the monthly scale variation features of the predictors. Then,
the determined optimal diurnal thresholds were applied to develop a new model for the
prediction of heavy precipitation.

The rest of this paper is organized as follows. Section 2 presents a brief overview
of the data and methodologies used in this study. Section 3 analyzes the feasibility of
replacing monthly thresholds with diurnal thresholds and then introduces a new method
for determining optimal diurnal thresholds. Section 4 evaluates the predictions from
diurnal and monthly thresholds using the PWV predictor and then describes the procedure
for applying the determined optimal diurnal thresholds to the development and validation
of a new model for heavy precipitation prediction. The discussion and conclusion are given
in Sections 5 and 6, respectively.

2. Data and Methodologies
2.1. GNSS-PWV

In this study, GNSS observations over the 10-year period 2010−2019 at the HKSC sta-
tion from the Hong Kong Continuously Operating Reference Stations (CORS) network were
selected for testing. The 10-year zenith total delay (ZTD) timeseries were estimated using
the Bernese GNSS software, and the following strategies were adopted: Double-difference
observation equations, elevation cut-off angle of 3◦, and the Vienna Mapping Function 1
(VMF1) for the projection of the slant tropospheric delays to the zenith direction [35]. As
the ZTD can be divided into zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD),
the ZWD were obtained by subtracting the ZHD obtained from the common Saastamoinen
model, which is a function of the surface pressure over the GNSS observing site [36], from
the ZTD. The corresponding mathematical formulas can be expressed as:

ZHD = (2.2779 ± 0.0024)
P0

1 − 0.00266 × cos(2ϕ)− 0.00028H
(1)

ZWD = ZTD − ZHD (2)

where P0 is the pressure (hPa) at the height of the selected station, ϕ and H are the latitude
(◦) and height (km) of the site, respectively. Then, the ZWD was converted to PWV [1,37]
using the formula below:

PWV =
106

ρwaterRw

[
k3
Tm

+ k2 − k1

(
Rd
Rw

)] × ZWD (3)

where Rw and Rd are the specific gas constants for water vapor and dry air, respectively;
ρwater is the density of liquid water; k1, k2, and k3 are physical constants, whose values were
used as suggested by the authors of [37]; and Tm represents the weighted mean temperature
over the site. Equation (4) was developed by Chen. [38] for obtaining Tm in the Hong Kong
region. Thus, it was adopted in this study.

Tm = 106.7 + 0.605(Ts + 273.15) (4)

where Ts is the surface temperature (◦C) of the site. More information regarding the
retrieval of GNSS-PWV can be found in our previous study [17], in which the accuracy of
the retrieved GNSS-PWV at the HKSC station was also evaluated, with a root mean square
error of 2.2 mm, and proved to be acceptable for meteorological research.
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2.2. Hourly Precipitation

The determination of an optimal set of precipitation thresholds for a GNSS station
is based on precipitation records collected at a nearby weather station, i.e., the so-called
co-located station. The temporal resolution of the precipitation records needs to adapt
to that of the predictors adopted in the prediction model to be developed. In this study,
GNSS-PWV timeseries at the HKSC station was on an hourly basis as previously stated.
Thus, hourly precipitation records from its co-located weather station—the King’s Park (KP)
station—over the 10-year period studied were used. It is noted that the horizontal distance
between HKSC station (22.32◦N, 114.14◦E) and KP station (22.31◦N, 114.17◦E) is 3.29 km.
Thus, the two stations can be regarded as a pair of co-located GNSS/weather stations.

2.3. Criteria for Evaluation of Precipitation Predictions

To evaluate the performance of precipitation prediction, the three criteria—the critical
success index (CSI), probability of detection (POD), and false alarm rate (FAR)—were used
in this study, and their formulas are [39]:

CSI = n11/(n11 + n12 + n21) (5)

POD = n11/(n11 + n21) (6)

FAR = n12/(n11 + n12) (7)

where n11 is the number of correctly predicted precipitation events, and n12 and n21 are
the numbers of misdiagnosis and omissive predictions, respectively. The denominators
of Equations (6) and (7) are the numbers of observed and predicted precipitation events,
respectively. Of the three indices, the POD indicates the accuracy of precipitation prediction,
the FAR measures the fraction of predictions for which precipitation did not occur, and
the CSI is the only criterion calculated with the participation of all of the three notations.
Thus, this index could better reflect the onset of a weather event, which also clarifies a
possible reason for previous studies to use this index to determine a set of precipitation
thresholds [34,40,41]. In this study, the new method for determining an optimal set of
diurnal precipitation thresholds was based on the criterion of CSI, which is elaborated
in the following section. However, all the three criteria were used in the performance
assessment of the predictions made by the new model.

3. New Method for Determining Diurnal Precipitation Thresholds

For any threshold-based precipitation prediction model which uses a set of predefined
thresholds for the predictors contained in the model to indicate a rainy condition, its
prediction result is largely affected by the selected thresholds. Generally, the larger the
threshold value of a predictor, the larger the number of omissive predictions, while the
smaller the threshold value of a predictor, the larger the number of misdiagnosis predictions.
Therefore, the determination of a reasonable set of thresholds is key to ensure a good
performance resulting from a threshold-based model. In this section, based on the CSI, the
procedure for determining a set of monthly thresholds, as previously used, is presented.
Then, the feasibility of replacing monthly thresholds with diurnal thresholds is analyzed,
and a new method for determining an optimal set of diurnal precipitation thresholds
is introduced.

3.1. Determining Monthly Precipitation Thresholds Based on CSI

In previous studies, monthly precipitation thresholds for time series of PWV-derived
predictors were commonly used, which was effective since the seasonal characteristics and
climatic conditions were taken into account. However, these monthly thresholds were often
given empirically or selected from a certain value range [15,27]. In our recent study [17], an
optimal set of monthly precipitation thresholds were determined based on the CSI, and the
threshold for each predictor was unique for each of the three summer months. Generally,
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the method for the determination of monthly precipitation thresholds for a predictor based
on the CSI mainly contained the following steps: (1) A set of candidate threshold values
are selected, and the principles for the selection is elaborated in Section 3.3.1; (2) the above
candidate threshold values, together with the GNSS-PWV sample data and precipitation
records, were used to calculate n11, n12, and n21 in Equation (5) during the period for
thresholds determination, e.g., the 8 years from 2010 to 2017 our previous study [17]; (3) the
CSI score resulting from each of the candidate thresholds was calculated using Equation (5),
and the candidate threshold value that leads to the highest CSI score was determined as the
optimal threshold. The flowchart for the procedure of determining threshold value based
on CSI is shown in Figure 1, and more information on this can be found in our previous
study [17].

Figure 1. Flowchart for the procedure of determining threshold value based on the critical success
index (CSI).

3.2. Rationality of Replacing Monthly Thresholds with Diurnal Thresholds

Although monthly thresholds for threshold-based models have been commonly used
in recent studies [15,29,31], due to the monthly thresholds being obtained based on the
sample data of the month, the thresholds of a predictor for 2 consecutive months may
be significantly different. As stated in Section 3.1, large changes in the threshold values
are most likely to be at the beginning of the latter month. Hence, the disadvantage of
using monthly thresholds mainly lies in their poor prediction results in the transitional
period between two months, i.e., the beginning and the end of a month. This issue may be
solved using diurnal thresholds, which means the temporal resolution of the thresholds is
improved by about 30 times. From another perspective, the seasonal and diurnal variables
of day-of-year (DOY) and hour-of-day (HOD) are also two major parameters, since they
reflect the monthly and diurnal variation features of the rapidly changing predictors
such as GNSS-PWV [19]. For example, by conducting the principal component analysis,
Manandhar et al. [42] found that GNSS-PWV and the variable of DOY are positively
correlated, this conclusion was further corroborated in our recent study using a 2-year
GNSS-PWV timeseries (see Figure 2 in [17]). In addition, as suggested by Tomassini
et al. [43], GNSS observations exhibit an obvious diurnal cycle, meaning these observations
are dependent on the variable of HOD. Therefore, these conclusions confirm the rationality
of replacing monthly thresholds with diurnal thresholds in a threshold-based model in
this study.



Remote Sens. 2021, 13, 1390 6 of 15

3.3. Determination of Optimal Diurnal Precipitation Thresholds
3.3.1. Determining Candidate Data Range

As stated in Section 3.1, prior to the determination of the precipitation threshold for
each of the predictors contained in a prediction model, a set of candidate values are selected
based on both the samples of the predictor and their corresponding precipitation records
over a certain period. The general principles for determining the minimum and maximum
of the candidate data range are: (1) To ensure a low FAR score, the minimum is set to the
mean of the samples from all non-rainy days in the period; (2) to ensure a high detection
rate, i.e., less omissive predictions, the 25th percentile of the samples from all rainy days in
the period is set to the maximum [42]. The schematic diagram for determining candidate
data range is depicted in Figure 2.

Figure 2. Schematic diagram for determining candidate data range.

3.3.2. Determining Diurnal Threshold Based on CSI

According to the procedure for determining a precipitation threshold based on the
CSI introduced in Section 3.1, the monthly threshold is determined using the sample data
of the month studied from a long period, e.g., from several consecutive years. However,
for diurnal threshold determination, the size of the samples for a date is too small (only 24
hourly samples from a year). Thus, it cannot reflect any variation trend longer than a day,
nor the seasonal/monthly patterns of the predictor. In this study, a new method that uses a
31-day sliding window containing the target date, together with the 15 days before and
after the date to determine the diurnal threshold of the date, was proposed. The monthly
scale variation of the predictor is also taken into account from the use of the 31-day sliding
window, which is mainly based on the finding that a precipitation threshold determined
from monthly samples is effective from previous studies [12,29,31]. Figure 3 shows the
schematic diagram for the use of the new method to determine the diurnal threshold of a
predictor for each of the days during the summer season (from June 1 to August 31, total
92 days), for example.

It can be seen from the left part of the figure that the diurnal threshold for June 1 can
be determined based on the principles and procedure stated in Section 3.1 using hourly
samples and precipitation records of the 31 days from May 17 to June 16. Then the 31-day
sliding window moves 1 day forward, i.e., centered on June 2, and the same procedure
was used to determine the diurnal threshold for this date. Finally, the same process was
performed continuously in the whole summer season to obtain the diurnal thresholds for
all the 92 days.
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Figure 3. Schematic diagram of using the new method to determine the diurnal threshold for each of
the days during the summer season.

4. Evaluation of Using New Diurnal Thresholds for Heavy Precipitation Prediction
4.1. Evaluating Predictions from Diurnal and Monthly Thresholds
4.1.1. Comparison of Predictions Resulting from PWV Predictor

In our previous study [17], the performance of applying an optimal set of monthly
thresholds determined for the predictor of PWV in each summer months was evaluated.
To investigate the improvement of the new diurnal thresholds proposed in this study over
the above monthly model, the predictions resulting from the two sets of thresholds are
compared in this section. The optimal set of the diurnal thresholds for each day in summer
were obtained using the procedure introduced in Section 3.3 and the sample data over the
8-year period 2010–2017 at the HKSC-KP station, which are the same as that used in the
monthly model. Figure 4 shows the optimal sets of diurnal (in red) and monthly (in blue)
thresholds determined for the prediction of heavy precipitation in the summer season of
2018 and 2019. This is also the reason for the figure also showing the hourly GNSS-PWV
(in black) of the 2 years, which were used as the predictor of the models to be compared.

Figure 4. Timeseries of hourly Global Navigation Satellite System-precipitable water vapor (GNSS-
PWV) (black), and diurnal (red) and monthly (blue) precipitation thresholds determined for the
prediction for the summer season in 2018 and 2019.

For a quantitative analysis, Table 1 shows the comparison of the fitting and prediction
results for the summer months over the periods 2010–2017 and 2018–2019, respectively,
by applying the corresponding diurnal and monthly thresholds for the PWV predictor.
The diurnal thresholds resulted in a 91.8% seasonal POD score and a 27.4% seasonal FAR
score, in comparison with the 87.1% and 43.9% of the monthly thresholds, respectively,
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meaning a 4.7% improvement in the POD and a 16.5% improvement in the FAR made by
replacing the monthly thresholds with the diurnal thresholds. In addition, the predictions
in the summer season of 2018 and 2019 together, resulting from the predictor of PWV value
using the new diurnal thresholds, indicated an 87.4% seasonal correct detection rate and a
59.5% FAR score compared with the seasonal POD and FAR of 82% and 70.4%, respectively,
resulting from monthly thresholds. Thus, a 5.4% improvement in the POD and a 10.9%
reduction in the FAR resulted from the use of diurnal thresholds.

Table 1. Comparison of the fitting (2010–2017) and prediction (2018–2019) results for the summer season applying the
diurnal and monthly thresholds for the PWV predictor.

Result
Type Threshold Type Month

No. of Correct
Predictions

(n11)

No. of
Misdiagnosis

Predictions (n12)

No. of Omissive
Predictions (n21)

POD
(%)

FAR
(%)

Fitting
Results

Monthly
threshold

Jun 40 14 9 81.6 25.9

Jul 56 48 7 88.9 46.2

Aug 73 70 9 89.0 49.0

Summer 169 132 25 87.1 43.9

Diurnal
threshold

Jun 47 12 6 88.7 20.3

Jul 41 19 2 95.3 31.7

Aug 58 24 5 92.1 29.3

Summer 146 55 13 91.8 27.4

Prediction
Results

Monthly
threshold

Jun 23 53 6 79.3 69.7

Jul 27 46 5 84.4 63.0

Aug 32 76 7 82.1 70.4

Summer 82 175 18 82 68.1

Diurnal
threshold

Jun 26 47 5 83.9 64.4

Jul 23 33 3 88.5 58.9

Aug 34 42 4 89.5 55.3

Summer 83 122 12 87.4 59.5

4.1.2. Further Analysis

In this section, the improvements by applying the optimal set of diurnal thresholds
for the PWV predictor are further analyzed using the two cases highlighted by the purple
circles shown in Figure 4 as examples. It is also worth mentioning that, based on the
mechanism of using a 31-day sliding window to determine the diurnal threshold for the
mid-date of the month with 31 days, i.e., the 16th of the month, the monthly threshold
determined in our previous study [17] is exactly the same as the diurnal threshold of the
date. For example, the monthly threshold for August is the same as the diurnal threshold
for the 16th of the month because both thresholds were determined based on the same
31-day samples in August over the 8-year period studied, which can also be found in
Figure 4, as shown by the intersection of the red line (diurnal threshold) and blue line
(monthly threshold) on the 16th of August.

4.2. Developing a New Model Using Diurnal Thresholds for Heavy Precipitation Prediction

In this section, a new GNSS-PWV-based model for heavy precipitation prediction was
developed by simply replacing the monthly thresholds used in the five-predictor model
proposed in our recent study [17] with an optimal set of diurnal thresholds. Then, the
prediction performance resulting from the new model was evaluated by comparison with
the results from the existing models.
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4.2.1. Determining Optimal Diurnal Thresholds

The new model proposed in this study contains the same five predictors (i.e., variables)
as the ones used in the monthly model proposed in our previous study [17]. The main
difference between the two models is that the former uses diurnal thresholds, while the
latter uses monthly thresholds. The definitions of the predictors are shown in Figure 5, as
defined in our previous study [17].

Figure 5. Definitions of the five predictors used in this study.

The five predictors were all derived from GNSS-PWV timeseries and include the
maximum PWV, PWV increment, rate of PWV increment, maximum PWV decrement, and
rate of the maximum PWV decrement, which have been proven to be effective in predicting
heavy precipitation events. To avoid the non-uniqueness of the values of the three hourly
predictors, i.e., PWV, PWV decrement, and rate of PWV decrement, their maximum values
in the predefined 12 h sliding prediction window were adopted. As the time period for
very short-range forecasting (VSRF) of weather events is in the range of 0–12 h [44], a 12 h
sliding prediction window was used in this study. More information about the definitions
of the five predictors and the procedure for making a prediction using these predictors can
be referred to in our previous study [17].

In Section 3.3, the procedure for determining the optimal diurnal thresholds for the
predictor of PWV value in the summer season is presented as an example. The procedure is
also applicable to the other four predictors. Therefore, the optimal set of diurnal thresholds
for the five predictors for each day in the summer season were determined using the same
procedure based on the sample data of PWV timeseries and its corresponding precipitation
records at the co-located HKSC-KP stations over the 8-year period of 2010–2017. The opti-
mal set of diurnal thresholds for each day in the summer and the monthly thresholds from
our previous study [17] for each summer month are shown in Figure 6 for a comparison.
The diurnal thresholds (left) show more fluctuations due to their high temporal resolution
and are thus more sensitive to short-term variations of the predictors. The two sets of
thresholds were applied to heavy precipitation prediction to test the performance of the
new model in comparison with the monthly model in the next section.
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Figure 6. Optimal set of diurnal (a) and monthly (b) thresholds of five predictors determined for
the summer season using sample data in the month over the period 2010–2017 from the co-located
HKSC-KP stations.

4.2.2. Test Results

As stated in Section 4.2.1, the criteria determined for a prediction based on the five
predictors are the same as the ones used in our previous study [17], in which the combina-
tion of the rate of PWV increment and rate of the maximum PWV decrement was defined
as the major criterion, and the other three predictors were defined as the group of auxiliary
criterion. Then, based on the above criteria, the prediction results were validated using the
precipitation records in the predefined prediction window of the next 12 h as the reference.
The flowchart for model testing is shown in Figure 7.

Figure 7. Flowchart for model testing.

To make a more general comparison, based on the same test data in the 2-year period
of 2018−2019, the performances of the new model for each summer month and the summer
season were compared with that resulting from the existing five-factor model [17] and
three-factor model [15] using the monthly thresholds. Table 2 lists the predictions resulting
from the three models, and the CSI, POD, and FAR scores (the last three columns in Table 2)
are shown in Figure 8 merely for a clear comparison.
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Table 2. Comparison of predictions resulting from the new model and the monthly models (five-factor model and three-
factor model) for each summer month and summer season in the 2-year period of 2018–2019.

Model Type Month No. of Correct
Predictions (n11)

No. of
Misdiagnosis

Predictions (n12)

No. of Omissive
Predictions (n21) CSI (%) POD (%) FAR (%)

Monthly
model

(3-factor)

Jun 20 34 2 35.7 90.9 63.0

Jul 21 54 0 28.0 100 72.0

Aug 35 58 1 37.2 97.2 62.4

Summer 76 146 3 33.8 96.2 65.8

Monthly
model

(5-factor)

Jun 20 6 2 71.4 90.9 23.1

Jul 18 10 0 64.3 100 35.7

Aug 32 16 1 65.3 97.0 33.3

Summer 70 32 3 66.7 95.9 31.4

New model

Jun 18 4 1 78.3 94.7 18.2

Jul 16 6 0 72.7 100 27.3

Aug 28 11 1 70.0 96.6 28.2

Summer 62 21 2 72.9 96.9 25.3

Figure 8. Comparison of the probability of detection (POD) and high false alarm rates (FAR) scores of
predictions from the new model and the monthly models (five-factor model and three-factor model).

It is evident from Figure 8 and the bold figures (the “Summer” rows) in Table 2 that
the new model reduced the seasonal FAR score by 6.1% and 40.5% compared with the
five-factor model and the three-factor model, respectively. Although the seasonal POD
scores resulting from these models were at a comparable level (from 95.9% to 96.9%),
the improvements of 1.0% and 0.7% in the POD were also made by the new model in
comparison to the five-factor model and three-factor model. respectively. Furthermore,
it can be seen from the statistics of CSI scores resulting from these models that the new
model clearly outperformed the other models in each summer month and the whole
summer season. More specifically, comparing with the five-factor model, the use of diurnal
thresholds in the new model effectively reduced not only the number of misdiagnosis
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predictions (21 vs. 32) but also the number of omissive predictions (2 vs. 3). From the
perspective of the results of the mean lead times, which are the mean values of the lead
times for all those correctly predicted events made by these models, the statistics of 4.86
h from the new model and 5.15 h from the five-factor model suggest that both were at
a comparable level. Overall, the considerable improvements in prediction results made
by diurnal thresholds, instead of monthly thresholds, for the predictors derived from
GNSS-PWV timeseries suggest, again, that it is more rational to apply diurnal thresholds
for better prediction results.

5. Discussion

The potential of using GNSS-PWV for forecasting and nowcasting severe weather
events like heavy precipitation has been actively researched in many regions in recent
years. A practical approach is to provide a threshold value that can trigger an extreme
weather event, i.e., the threshold-based model adopted in this study. Comparing with the
operational NWP model, which has a solid physical basis and incorporates a lot of mete-
orological variables, the threshold-based model is more likely to result in more unstable
prediction performances (more misdiagnosis and omissive predictions), since the condi-
tions of dynamic (wind, convergence) are often overlooked by the model based on limited
number of variables/predictors (e.g., GNSS-PWV in this study). However, the potential of
using the threshold-based model has clearly been demonstrated in recent studies due to its
high spatiotemporal resolutions which can be regarded as a complementary method to the
operational models, especially for the nowcasting of severe weather events.

For a threshold-based model used to predict heavy precipitation, the determination
of a set of appropriate thresholds is important for good prediction results. Generally, an
overlarge threshold is likely to result in more omissive predictions, while a rather small
threshold often leads to more misdiagnosis predictions. In previous studies, empirical
thresholds, which were often given within a certain data range, were simply used without
justification. In this study, the widely accepted criterion of the CSI, which was obtained
from sufficient amount of sample data, was used to determine an optimal set of thresholds,
and each predictor has a unique threshold value for a certain time-length, e.g., monthly
or diurnal threshold. Although monthly thresholds have been widely used in recent
studies, the main disadvantage lies in their poor prediction results in the transitional
period between two consecutive months. Hence, this study validated the rationality of
replacing monthly thresholds with diurnal thresholds and proposed to use the sample data
within a 31-day sliding window to determine an optimal set of diurnal thresholds for a
threshold-based model. Both the monthly and diurnal variations of the predictors were
taken into account in the newly proposed diurnal thresholds.

Furthermore, it is noted from Table 2 that the POD scores resulting from the monthly
models, i.e., the five-factor model and the three-factor model, were higher than that
of the new model in the month of August. This phenomenon is mainly attributed to
the computing mechanism of the POD using Equation (6), i.e., with the same number
of omissive predictions, greater number of correct predictions, and higher POD score.
In August, only one heavy precipitation event failed to be detected by the three models.
However, before those correctly predicted events, predictions of “heavy precipitation” were
made by more epochs in the 12 h prediction window from the monthly models. Hence,
the POD scores resulting from the monthly models were higher. From the perspective of
the CSI score, which is a function of both POD and FAR according to Equations (5)–(7), it
is obvious that the CSI scores resulting from the new model were higher than that of the
monthly models in each summer month, meaning the new model outperformed the other
models. This conclusion further corroborates the effectiveness of CSI, which is taken as the
major criterion to determine precipitation threshold.
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6. Conclusions

In this study, for heavy precipitation prediction, a new method using GNSS-PWV
sample data within a 31-day sliding window to determine an optimal set of diurnal
thresholds for predictors derived from GNSS-PWV timeseries was proposed for the first
time. Based on an existing five-predictor PWV-based model that was based on monthly
thresholds to make predictions for heavy precipitation events, a new model based on
diurnal thresholds was developed. The optimal set of diurnal thresholds for the five
predictors were determined using the hourly GNSS-PWV and precipitation records for the
summer over the 8-year period from 2010 to 2017 at the co-located HKSC-KP stations in
Hong Kong. The new model was evaluated by comparing its prediction results for the
summer in 2018 and 2019 against the hourly precipitation records in the same duration.
Results showed that the seasonal FAR score resulting from the new model was reduced
from 31.4% to 25.3%, and 96.9% of heavy precipitation events were correctly predicted
with a lead time of 4.86 h. These results suggest that the inclusion of diurnal thresholds
can significantly improve the prediction performance.

To further improve the performance of heavy precipitation prediction, our future work
will focus on applying diurnal thresholds to other predictors that are potentially contained
in a new model and that are derived from various types of atmospheric data such as ZTD.
In addition, the incorporation of other useful meteorological variables using the machine
learning and data assimilation techniques will also be investigated.
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