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Abstract: Hyperspectral imaging spectrometers mounted on unmanned aerial vehicle (UAV) can
capture high spatial and spectral resolution to provide cotton crop nitrogen status for precision
agriculture. The aim of this research was to explore machine learning use with hyperspectral
datacubes over agricultural fields. Hyperspectral imagery was collected over a mature cotton crop,
which had high spatial (~5.2 cm) and spectral (5 nm) resolution over the spectral range 475–925 nm
that allowed discrimination of individual crop rows and field features as well as a continuous
spectral range for calculating derivative spectra. The nominal reflectance and its derivatives clearly
highlighted the different treatment blocks and were strongly related to N concentration in leaf
and petiole samples, both in traditional vegetation indices (e.g., Vogelman 1, R2 = 0.8) and novel
combinations of spectra (R2 = 0.85). The key hyperspectral bands identified were at the red-edge
inflection point (695–715 nm). Satellite multispectral was compared against the UAV hyperspectral
remote sensing’s performance by testing the ability of Sentinel MSI to predict N concentration using
the bands in VIS-NIR spectral region. The Sentinel 2A Green band (B3; mid-point 559.8 nm) explained
the same amount of variation in N as the hyperspectral data and more than the Sentinel Red Edge
Point 1 (B5; mid-point 704.9 nm) with the lower 10 m resolution Green band reporting an R2 = 0.85,
compared with the R2 = 0.78 of downscaled Sentinel Red Edge Point 1 at 5 m. The remaining Sentinel
bands explained much lower variation (maximum was NIR at R2 = 0.48). Investigation of the red
edge peak region in the first derivative showed strong promise with RIDAmid (R2 = 0.81) being the
best index. The machine learning approach narrowed the range of bands required to investigate plant
condition over this trial site, greatly improved processing time and reduced processing complexity.
While Sentinel performed well in this comparison and would be useful in a broadacre crop production
context, the impact of pixel boundaries relative to a region of interest and coarse spatial and temporal
resolution impacts its utility in a research capacity.

Keywords: remote sensing; hyperspectral; multispectral; machine learning; nitrogen; cotton

1. Introduction

Being able to remotely and rapidly identify the nitrogen level in plants and tailor
farm management to either boost higher yield potential zones or reduce inputs to lower
potential areas promises a way to reduce environmental impact while increasing profits.
Nitrogen is a key nutrient in cotton (Gossypium hirsutum L.), essential for photosynthe-
sis and thus undersupply will hamper lint and seed production, while oversupply can
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damage local ecosystems and adversely affect yield [1–4]. It’s been widely reported for
decades that nitrate leaching into the groundwater [5] and emission as oxides into the
atmosphere [6] cause extensive local and global environmental damage, with, for example,
intensive agriculture in the USA contributing to ~400 hypoxic zones in coastal marine
ecosystems from farms upstream [7]. Within the cotton industry, lint yields have increased
through improved plant genetics and management, however, there is a need to investigate
ways to improve nitrogen use efficiency as yield quantities are not uniformly responsive to
the high levels of N applied [8]. By identifying N concentration spatially across a cotton
crop the factors influencing N use efficiency can be studied, leading to more tailored N
management strategies.

Radiation reflected from crop canopies is controlled by leaf biochemical composition
and physical structure, canopy density, soil and environmental background, and can give
important insights into plant condition [9–11]. The spectral feature in the region between
the chlorophyll absorption well of the red band (670 nm) and thermal reflection peak of the
Near Infra-Red band (NIR; 800 nm) is commonly referred to as the red edge and is of great
interest for N detection due to leaf status influencing where and what shape this transition
takes [12–14]. The curve of vegetation reflectance in the red edge region exhibits shifts to
either shorter or longer wavelengths depending on plant condition [1]. Shifts of the curve in
the spectral region around 720 nm to shorter wavelengths, or ‘blue shifts’, have been found
to be associated with reduced plant vigour, while ‘red shifts’ to longer wavelengths can be
related with strong growth [15,16]. One theory for this change in position is that stronger
vigour is related to higher chlorophyll content, which increases absorption around the red
region, thus widening the absorption well and shifting the curve to absorb more energy
in longer wavelengths [17]. This is an area of substantial long-term research, however,
there are a number of studies showing that the red edge position is impacted by multiple
sources, such as water content, salinity and leaf solar geometry, with some divergent
results encountered across different studies [14,17–19]. The geometry of the crop surface in
the region of interest in relation to both the sun and viewing sensor zenith (vertical) and
azimuth (horizontal) angles also has nonlinear impacts on the reflectance received at the
sensor, referred to as the bi-directional reflectance distribution function (BRDF) [20].

Remote sensing detection of canopy condition in the visible to near infrared spec-
tral region uses two broad categories of instruments: multispectral and hyperspectral.
Multispectral sensors capture discrete spectral regions centred on specific wavelengths,
principally in the blue (centred at 475 nm), green (560 nm), red, red edge (715 nm), and NIR,
though the central wavelength, field of view and the width of the spectral region captured
at each band varies across instruments [21,22]. Hyperspectral sensors record continuous
spectra over the visible to thermal domain, with the spectral resolution, field of view,
range and whether they capture point spectrometry or imagery depending on the instru-
ment [23]. Remote sensing investigation of nitrogen with hyperspectral instruments in cot-
ton has focused mostly on ground-based point sampling, essentially spectroscopy [24–28].
There have also been studies using multispectral instruments on airborne (unmanned and
manned aircraft) and satellite platforms for phenology [29,30], yield variability [31,32] and
pest detection [33]. In other crops, such as wheat, there is significant research in using
hyperspectral imager sensors rather than point-based sampling to detect canopy reflectance
variation across a continuous spectral range and large areas rapidly [34]. The higher spatial
and spectral resolution can characterise individual plant features useful for implement-
ing precision agriculture, as well as reducing the mixed pixel effects that impacts coarse
resolution sensors mounted on satellites [35].

The majority of agricultural remote sensing users apply vegetation indices (VIs)
of nominal reflectance values to infer plant status, including the normalised difference
vegetation index (NDVI) [36], normalised difference red edge (NDRE) [37], Vogelman 1
(VOG1) [38], canopy chlorophyll content index (CCCI) [39], the ratio of transformed
chlorophyll absorption in reflectance index to the optimised soil adjusted vegetation in-
dex (TCARI/OSAVI) [40], and the modified normalised difference in red edge index
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(mND705) [19]. These incorporate different band combinations to highlight different plant
conditions or minimise the impact of background sources of reflectance. For example,
normalised difference red edge was developed to use the red edge region rather than red
to minimise the impact of canopy density and improve characterisation of chlorophyll con-
tent [10,37]. There is a high correlation between chlorophyll content and N concentration
in cotton canopy leaves, most likely because the main pigments used in photosynthesis in
the chloroplasts, chlorophyll a and b, contain N [4,28,41].

The reflectance curve, defined by the proportion of received radiance that is reflected
back to the sensor at each wavelength, describes one component (along with transmission
and absorption) of the response of a plant canopy to incoming solar radiation, with higher
or lower reflectance in different spectral regions controlled by plant and sensing conditions.
There has been a large body of research using handheld spectroradiometers to maximise
information about the rate of change and intensity of spectral features to identify N levels
through first derivative spectra and areal measures [9,12,13]. These characterise the slope of
the reflectance curve at each wavelength and the sum of reflectance over particular regions,
respectively [13,42]. Early interest in derivative spectra was mainly focused on identifying
the red edge inflection point for multispectral satellite data [43,44], though more recent
research suggests there is potential for derivatives to improve characterisation of photo-
synthetic processes that may be resistant to species and soil background variability [45].
Comparing derivative spectra and leaf N content in wheat, Feng et al. (2014) found the
derivative indices which incorporated information on the double peak evident in some
species’ derivative curves were more stable and had lower error in N prediction than either
the commonly used red edge or other derivative VIs. The key derivative VIs were found to
be the left side double-peak area of the red edge region (LSDR), measuring the sum of the
derivative spectra on the ascending side of the peak; the right side double-peak area of the
red edge region (RSDR), using the sum of the descending side; ratio index double-peak
area (RIDA), taking the ratio of RSDR and LSDR; the difference index of double-peak areas
(DIDA), difference between LSDR and RSDR; and the normalised difference double-peak
Area (NDDA), the DIDA normalised by the sum of the full peak [13].

Satellites offer a way for production-scale agriculture to leverage the ability of remote
sensing to characterise N variability across a crop canopy. Sentinel 2 was launched in
2015 and 2017 and consists of 2 satellites operating in a sun-synchronous orbit allowing
revisit times of 5 days, each carrying a single multi-spectral instrument (MSI) with a swath
width of 60 km and spatial resolution of 10–20 m for the VIS, red-edge (RE), and NIR
bands [46]. Sentinel data has been extensively used over crops to assess vegetation health
and biochemical constituents [47–52]. The coarse spatial resolution of many satellite sensors
has been a limiting factor for their use in some agricultural applications, with the inclusion
of features with differing spectral characteristics within a single pixel, or mixed-pixels,
impacting reported reflectance [53].

With the rise in computer processor speed and capacity as well as available observa-
tion data streams, supervised and unsupervised learning methods, collectively referred
to as machine learning, have seen increasing use in agricultural remote sensing applica-
tions since 2010 [18]. There are a large number of techniques in use, with many of these
reviewed by Verrelst et al. (2015). Clustering is a classification approach that groups
similar samples together and can be used to identify reflectance bands that covary, espe-
cially after dimension reduction using principal component analysis (PCA). PCA can be
defined as the orthogonal projection of data onto a lower dimensional space to maximise
the variance of the projected dataset and is one of the more commonly used techniques
in remote sensing and machine learning [54]. Random forest regression is a form of non-
linear non-parametric regression that uses a series of decision trees to assess relationship
within the dataset; each tree consists of a series of binary decision nodes that minimise
a sum of squares cost function to find the subsection of the dataset most related to the
target variable [49]. Research combining remote sensing with various supervised and
unsupervised feature detection, classification and prediction methods has been successfully
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used in varied agricultural contexts, such as leaf area index (LAI) detection in rice [55],
regional baled fodder classification [56] and yield prediction [57]. Conversely, Féret et al.
(2019) trained a support vector machine (SVM) to predict leaf mass area and equivalent
water thickness and tested it against field data and a leaf optical model and found that
the SVM lacked generality [58]. The contrast in reported performance suggests the need
for large sample sizes to train machine learning models to predict target features from
unseen data.

Therefore, this study investigates using machine learning to identify novel combi-
nations of hyperspectral spectral features on a cotton canopy to detect N concentration.
There were three main objectives: (i) to explore supervised and unsupervised learning meth-
ods for identifying hyperspectral regions responsive to variables of interest; (ii) to leverage
these highlighted spectral regions in novel configurations of hyperspectral bands and test
their ability to predict N concentration; and (iii), to compare a UAV-based hyperspectral
against a satellite-based multispectral instrument for detecting cotton N concentration.

2. Materials and Methods
2.1. Study Site

The experimental site was in the north west of New South Wales (NSW), at the
Australian Cotton Research Institute near Narrabri (see Figure 1). The main crops grown
in the region are cotton and wheat. The predominant soil type in the region is a Vertosol
and receives a mean annual rainfall of 592 mm with a mean maximum temperature during
summer of 35 ◦C and a mean minimum during winter of 3 ◦C [59]. There were 10 plots of
30 m by 32 m with 3 replicates each of N treatments of 0, 200, and 400 kg ha−1 applied at
sowing. The site was irrigated so water was non-limiting.
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2.2. Field Sampling

The field observations were each an average of 40 leaf and petiole samples from
randomly selected plants around georeferenced points (~5 m accuracy), with 20 taken
from plants around two pegs at each georeferenced point. There were three georeferenced
points (A, B, and C) for each plot, giving 30 averaged samples from 1200 total field samples
chemically analysed. The N concentration was tested in a commercial laboratory and
confirmed in a LECO gas analyzer (CN928) onsite at ACRI with a R2 of 0.90.

2.3. Hyperspectral Data Collection

Hyperspectral imagery was collected over a mature cotton stand on the 19 February
2019, under cloudless conditions with moderate winds (20–24 km/h), 36 C ambient tem-
perature within 2 h of solar noon. Panels with known reflectance properties were laid out
and ground control points were arranged around the edges of the region of interest with
their locations measured with a Trimble R2 Integrated Global Navigation Satellite System
(GNSS) Differential Global Positioning System (DGPS) unit (~2 cm accuracy). The hyper-
spectral instrument was a Cubert ButterflEYE LS S199 imaging sensor utilising a linear filter
on chip design providing 2-megapixel sensor resolution using a Si CMOS detector with
5–10 nm spectral resolution (interpolated down to 5 nm) over the VIS to NIR region (475 to
925 nm). The sensor was mounted on a DJI Matrice M600 UAV with RTK link provided
by DJI DataLink Pro 900-G. The flight was conducted at 50 m altitude, with 1.6 m s−1

speed with a fixed roughly sunward orientation along the flight path. Camera settings
were 20 Hz frame rate and 2 ms integration. Due to the prevailing heat and slow speed,
there were battery changes during the flight that resulted in two flight missions being
separately orthomosaicked and radiometrically corrected by an external provider (Vito,
Belgium) using panels with known reflectance positioned within the imagery. The imagery
of the two missions were stitched, reprojected and scaled radiometrically, then single pixel
and 20 cm areal average reflectance vectors were taken at 30 sample points matching the
field data.

2.4. Hyperspectral Derivatives Extraction

First derivatives were calculated using first order difference as per:

dR
dλ

=

(
Rλ(j+1) − Rλ(j)

)
δλ

(1)

where R is the reflectance at λ wavelength, ordered by j = 1 . . . n and δλ is the bandwidth
between wavelengths (5 nm in this dataset). The first derivative was smoothed with a filter
using a 2nd order polynomial and 5 band fitting window [60].

2.5. Machine Learning Classification on the Hyperspectral Datacube

Nominal and derivative reflectance values were investigated using density-based
and hierarchical clustering, and Random Forest regression to identify the most important
bands for discriminating N content. Density Based spatial clustering of applications with
noise (DBSCAN) method was employed after decomposing the average areal reflectance
into 4 principal components using principal component analysis (PCA) and plotted using
the 2 that explained the most variance. DBSCAN groups samples of unlabelled data
into clusters of high density (those with many neighbours), and noise (those samples
with few or no neighbours) [61]. The hierarchical clustering was processed using an
agglomerative complete linkage approach, which starts with all samples in individual
clusters and then groups them based on minimising a Euclidean distance metric [62].
Sets of spectral bands covering the full range (91), the top 15 and the top 10 in Random
Forest returned feature importance were trained against the labelled N concentration to
find those which had the lowest residual sum of squares. The random forest regressor
had a maximum depth of 3 levels and used a random 30% of the dataset (rounded down)
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at each split. The most important bands identified in the unsupervised and supervised
learning were then iteratively combined and assessed against the N samples using ordinary
least squares with leave one out cross validation as with the hyperspectral dataset. Using a
sum, product and difference ratio configuration, there were 3000 possible combinations
of the 10 bands, however, 300 were dropped to avoid repeating the same band in the
numerator. Combinations with R2 > 0.40 were retained for review. This was done for both
the nominal and derivative reflectance. Due to the small sample size and non-repeated
measures, machine learning was used only to identify the optimal reflectance region rather
than incorporated into the modelling.

2.6. Common Vegetation Indices Calculation

To compare the UAV hyperspectral and satellite spectral response with other remote
sensing approaches, a selection of vegetation indices used in the literature for identifying
nitrogen or chlorophyll content variability were calculated from the averaged hyperspectral
reflectance as per Table 1. All VIs have the same GSD of 5.2 cm. The mean derivative
curve between 650 and 800 nm was assessed for troughs, to find the left (REmin) and right
(REmax) side of the feature, and for peaks, to find the midpoint between the peaks (REmid).
Further, to compare the best performing Sentinel 2 products against the hyperspectral dat-
acube, the spectral region in the UAV imagery covered by the Green and Red Edge Position
1 bands (see Table 3) were averaged and tested against the field observed N concentration.

Table 1. Vegetation indices used for discriminating N or chlorophyll content.

Name Equation Source

NDVI R800−R670
R800+R670

[36]

NDRE R790−R720
R790+R720

[37]

VOG1 R740
R720

[38]

CCCI
R790−R720
R790+R720
R800−R670
R800+R670

[39]

TCARI
OSAVI

3
[
(R700−R670)−0.2(R700−R550)

R700
R670

]
1.16(R800−R670)
(R800+R670+0.16)

[40]

mND705 R750−R705
R750+R705−2(R475)

[19]

NDDAmid
(∫ REmax

REmid
dRλ
dλ dλ−

∫ REmid
REmin

dRλ
dλ dλ

)
∫ REmax

REmin
dRλ
dλ dλ

[13]

DIDAmid
∫ REmax

REmid
dRλ
dλ dλ−

∫ REmid
REmin

dRλ
dλ dλ [13]

RIDAmid
∫ REmax

REmid
dRλ
dλ dλ∫ REmid

REmin
dRλ
dλ dλ

[13]

LSDRmid
∫ REmid

REmin
dRλ
dλ dλ [13]

RSDRmid
∫ REmax

REmid
dRλ
dλ dλ [13]

2.7. Sentinel 2 Data Extraction

For the satellite multispectral imagery, several platforms were investigated to find
the highest spatial resolution available at or near the UAV data collection. Sentinel sur-
face reflectance was downloaded through Google Earth Engine (image dataset: Coper-
nicus/S2_SR) as the mean of two flights (13 and 23 February, 2019), one on either side
of the hyperspectral flight [63]. Data were taken from the same orbit (23) to maintain
consistent sensor geometry, without BRDF correction, and was filtered with a bitmask to
exclude nonzero cloud and cirrus scenes. Each layer was sampled with the georeferenced
shapefiles, downscaled to 5 m with nearest neighbour at download, while both the red edge
and green bands were additionally downloaded in their native resolution (20 m and 10 m,
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respectively). Sentinel bands were combined to form the same VIs as the hyperspectral
reflectance and tested against N concentration.

2.8. Analysis of Nitrogen Prediction

Both the hyperspectral and Sentinel data set were assessed in predicting leaf N con-
centration using ordinary least squares with leave one out cross validation. Results were
compared using the coefficient of determination (2), root mean square error (3), and Lin’s
concordance correlation coefficient (4):

R2 =
∑i(ŷi − y)2

∑i(yi − y)2 (2)

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(3)

LCCC =
2
(

1
n ∑n

i=1(xi − x)(yi − y)
)

1
n ∑n

i=1(xi − x)2 + 1
n ∑n

i=1(yi − y)2 + (x − y)2 (4)

where ŷi is the predicted values at observation i, x and y are the mean values of observed
remote sensing and N respectively, and xi and yi are the observed values at observation i
of n total observations. The reported R2 is adjusted for degrees of freedom in all cases.

Raster processing was handled in QGIS and Python, and all analyses and plotting
were done in Python.

3. Results
3.1. Hyperspectral Reflectance

Initial reflectance vectors from the single pixel contrasted heavily with the average
areal estimate, with much greater noise from the red region onwards (Figure 2a,b). Due to
the high noise and atypical reflectance curves of the single pixel vectors, the average
reflectance was used throughout the analysis.
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within 20 cm.

When reflectance over the red edge was separated into samples with N concentration
lower or higher than 3%, there was a clear shift in the mean reflectance curve towards the
NIR region for higher N levels (Figure 3a). The impact of differing N levels can also be
seen in the derivative spectra, with the curve offset to longer wavelengths for higher N
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(Figure 3b). The field sampled N concentration was highly correlated with the N treatment
applied (r = 0.87).
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Figure 3. (a) mean spectral reflectance (b) mean derivatives in the red edge region for lower versus higher N plots.

The first derivative curve around the red edge (Figure 4) showed a clear separation
into REmin, REmid, and REmax bands, used in the calculation of the derivative VIs (e.g.,
NDDA). The REmid band identified from the hyperspectral derivative peaks assessment
(720 nm) agreed with the iterative method of Miller, Hare, and Wu (1990), and was between
the 710 nm returned by Bonham-Carter’s (1988) approach and the 730 nm derived from
the slope intercept technique of Cho and Skidmore (2006).
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Figure 4. First derivative curve showing band separators.

3.2. Vegetation Indices

The VIs were mixed in their ability to predict N variability across the site (Table 2).
The VI which used the ratio of the area of the right side of the first derivative curve the area
under the left side of the curve explained the most variation of all VIs (RIDAmid; R2 = 0.813,
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RMSE = 0.21 and LCC = 0.898). Several other derivative-based VIs also showed good results
(DIDAmid and NDDAmid providing similar results as RIDAmid), with those based on
including only a single side of the derivative curve performed less well than the others
(e.g., RSDRmid with R2 = 0.682, RMSE = 0.273 and LCC = 0.815). Out of the traditional
VIs based on nominal reflectance values, VOG1 had the best predictive ability (R2 = 0.806,
RMSE = 0.214 and LCC = 0.894) with CCCI, mND705, and NDRE also performing well.

Table 2. Vegetation Indices results.

VI RMSE R2 LCC Equation

RIDAmid 0.210 0.813 0.898 y = 1.491x − 0.065
VOG1 0.214 0.806 0.894 y = 4.71x − 6.161

DIDAmid 0.222 0.791 0.885 y = 54.436x + 0.682
CCCI 0.222 0.789 0.884 y = 12.683x − 3.6

mND705 0.223 0.788 0.884 y = 15.827x − 9.577
NDDAmid 0.226 0.783 0.880 y = 7.072x + 0.598

NDRE 0.227 0.780 0.878 y = 12.856x − 2.935
RSDRmid 0.273 0.682 0.815 y = 84.685x − 4.091
LSDRmid 0.282 0.662 0.800 y = −106.438x + 7.413

TCARI
OSAVI 0.292 0.636 0.786 y = 1.511x + 6.171
NDVI 0.325 0.550 0.720 y = 56.311x − 46.92

* GSD: Ground Sampling Distance or spatial resolution.

3.3. Machine Learning of Hyperspectral Reflectance for Optimised N Prediction

To explore the ability of machine learning to classify the reflectance bands into clusters
based on their relationship with N concentration, density-based scanning was used after
principal component analysis. The first two principal components explained 99% of the
variance in the dataset. Figure 5 shows two strong clusters that were classified by the
DBSCAN algorithm; one in the visible spectral region (475–715 nm separated from another
in the top of the red edge and NIR (740–920 nm). The 720–735 nm and 925 nm bands were
found to be noise in the clustering.

Hierarchical clustering showed the same split with bands < 740 nm in one cluster
and those ≥ 740 nm in another (Figure 6). Further, the region 705–735 nm is separated in
its own sub-group (labelled ‘RE’ in Figure 6). The grouping on the right side of the NIR
main cluster (labelled ‘Mix’) is composed of 740–755 nm and 915–925 nm. While the ‘RE’
and ‘Mix’ regions have been clustered in separate larger hierarchies, both have similar and
much larger distance metrics than either of the left and right extremes of the dendrogram
(labelled ‘NIR’ and ‘RGB’ respectively).

Random forest regression over the full 91 bands returned a similar grouping (Figure 7)
showing the top 20 bands were between 540 nm and 715 nm. The red edge inflection point
(705–715 nm) had the best mean importance across all cross validation increments with
35.8% total. When only the top 10 most important bands were analysed using random
forest, the predictive ability was near identical, with the top four bands being at the red
edge inflection point 700–715 nm and accounting for over half the relative importance
(Figure 8). The top 15 bands subset returned no improvement over the top 10 bands
(not shown).

3.4. Novel Hyperspectral Vegetation Indices

All possible configurations of the top 10 bands identified by Random Forest regression
were iteratively combined into three band difference, sum and product ratios. When these
2700 band combinations were tested against N, 1832 had R2 > 0.40, but only 20 had R2 > 0.80.
The best novel VI (Figure 9) had similar or better predictive ability than most other remote
sensing products tested (R2 = 0.809, RMSE = 0.212 and LCC = 0.896). The exceptions being
the Sentinel Green (B3) band and RIDAmid (Tables 2 and 3 respectively). The novel VI
focuses on the inflection point from the absorption well in the red region to the reflection
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peak in NIR and is referred to as the inflection point ratio vegetation index (IPRVI) and is
calculated as:

IPRVI =
(R695 − R700)

R705
(5)

where R is the reflectance at wavelength λ.
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When applied to the derivative spectra, notable differences emerged from the re-
flectance in the bands identified in the supervised learning, with bands closer to the
left and right slopes of the double peak feature being most important (685–695 nm and
740–750 nm). The regression using these 10 bands was able to explain 79% of the vari-
ation in the N samples, an improvement on the 74% when incorporating all 91 bands
(Figures 10 and 11).

Applying these 10 bands in the same iterative optimisation approach as for nominal
reflectance, there were 1,424 combinations which had R2 > 0.40, while 286 had R2 > 0.80.
The best novel derivative VI (Figure 12) had a similar result as the Sentinel Green band,
while giving a stronger separation between the treatment plots in the novel reflectance VI.
The derivative inflection point ratio vegetation index (DIPRVI) leverages information from
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a broader spectral window to characterise the transition from green into red and red-edge
into NIR regions, scaled by the trough of the red absorption well, and is calculated as:

DIPRVI =
dλR745

dλ − dλR645
dλ

dλR685
dλ

(6)

where dλR
dλ is the first order reflectance derivative at wavelength λ.

The application of the iteratively identified linear equation to the derivative spectra
did show some instability in the tractor rows and near the stitching artefact along the top
row on the right side of the array.
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3.5. Sentinel Reflectance

Sampled reflectance from the Sentinel bands had mixed performance in predicting
N (Table 3; best 4 N predictions in Figure 13a–d). Out of the raw bands, Sentinel bands 3
and 5 each explained most of the variation in the N samples across the trial site, with the
10 m Green (B3) outperforming the Green at 5 m and all others. The VIs calculated
from the Sentinel layers had a similar performance in predicting N to those derived from
the hyperspectral data, with CCCI the best at predicting N with a slightly improved R2

(0.81 vs. 0.78) while TCARI
OSAVI was materially improved with R2 rising from 0.63 to 0.76.
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The two top performing hyperspectral VIs VOG1 and mND705 were much less effective
in predicting N when calculated using the Sentinel layers, with VOG1 R2 dropping from
0.81 to 0.71). The Red Edge Point 1 band (B5) had a strong performance when downscaled
to 5 m, but less so at its native 20 m resolution. The hyperspectral imagery was binned to
match the discrete sentinel spectral ranges and tested, with the averaged hyperspectral
bands matching the sentinel Red Edge Point 1 performing better than the Green region
at predicting N concentration (R2 of 0.672, RMSE of 0.277, LCC of 0.807 and R2 of 0.433,
RMSE of 0.364 LCC of 0.62, respectively).

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 9. Novel red edge IPRVI predictions of N concentration. 

When applied to the derivative spectra, notable differences emerged from the 

reflectance in the bands identified in the supervised learning, with bands closer to the left 

and right slopes of the double peak feature being most important (685–695 nm and 740–

750 nm). The regression using these 10 bands was able to explain 79% of the variation in 

the N samples, an improvement on the 74% when incorporating all 91 bands (Figures 10 

and 11). 

 

Figure 10. Random forest regression with derivative spectra. 

 

Figure 11. Random forest regression with top 10 derivative spectra bands. 

Figure 9. Novel red edge IPRVI predictions of N concentration.

Table 3. Sentinel N prediction results.

Band GSD (m) RMSE R2 LCC Equation

Green (B3 543–578 nm) 10 0.187 0.852 0.921 y = −163.972 x + 13.22
Green (B3 543–578 nm) 5 0.204 0.823 0.904 y = −161.298x + 13.001

CCCI 5 0.208 0.816 0.900 y = 29.96x − 19.133
REP1 (B5 698–713 nm) 5 0.225 0.785 0.882 y = −114.364x + 15.364

TCARI
OSAVI 5 0.236 0.762 0.868 y = −44.607x + 10.538

mND705 5 0.242 0.750 0.861 y = 27.209x − 14.748
NDRE 5 0.243 0.748 0.860 y = 23.798x − 12.602
VOG1 5 0.260 0.713 0.838 y = 2.516x − 6.481

REP1 (B5 698–713 nm) 20 0.271 0.688 0.818 y = −110.096x + 14.984
NIR (B8 785–899 nm) 5 0.355 0.462 0.642 y = 19.512 − 7.12

REP3 (B7 773–793 nm) 5 0.391 0.348 0.536 y = 22.854 − 8.588
NDVI 5 0.395 0.337 0.531 y = 36.428x − 29.282

Red (B4 650–680 nm) 5 0.442 0.169 0.328 y = −152.78x + 7.798
REP2 (B6 733–748 nm) 5 0.486 0.000 0.085 y = 22.348 − 6.007
Blue (B2 458–523 nm) 5 0.488 0.000 0.064 y = −314.119x + 12.034

* GSD: Ground Sampling Distance or spatial resolution.
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4. Discussion
4.1. Hyperspectral Performance

The hyperspectral imagery had very high spatial resolution (~5.2 cm) giving the ability
to discriminate individual plant crowns, crop rows and field features such as low vigour
areas on the edges, as well as gaps in canopy cover. Comparing Figures 1, 9 and 12, the treat-
ment plots and buffer regions are clearly visible, with the different areas within treatment
plots that responded strongly to the applied N distinguishable with those that may require
further investigation for subsoil or other constraints. The ability to identify inter-plot as
well as intra-plot variability provides insight for the implementation of precision agricul-
ture approaches. These results suggest that high resolution hyperspectral remote sensing
would be able to detect fine-scale variability, allowing more tailored management in a
broadacre cropping commercial setting.

The average areal reflectance (Figure 2a) had a stronger relationship with N con-
centration than the single pixel values (Figure 2b) and so average areal reflectance was
used throughout this study. This is most likely due to three main causes: (1) the mature
canopy structure of the cotton stands had multiple layers of leaves returning additive
transmittance and reflectance that could distort the signal received at the sensor; (2) impact
of Bi-directional Reflectance Distribution Function from the highly variable geometry of
individual leaves relative to the sensor pixel’s individual field of view; and, (3) the field N
samples were areal averages taken from multiple plants around a location so an averaged
signal represents the N impact on canopy reflectance more accurately. Upscaling from
leaf level to canopy reflectance has been found to introduce strong spectral noise from
including green along with non-green elements and canopy structure [10].

Interestingly, the simpler remote sensing approaches gave some of the strongest
predictions of N across the trial site. Indices such as TVI or TCARI-OSAVI are robust against
soil background, for this experiment, however, the reflectance vectors were sampled from
the middle of the crop rows and had minimal to no impact from soil reflectance. The indices
that included fewer bands focussing on photosynthetically active spectral regions were
more successful in detecting N than those which included additional bands to reduce the
impact of confounding factors. As expected with a mature closed canopy, NDVI performed
poorly most likely due to the high LAI causing saturation, whereas NDRE and the red edge
VIs performed strongly, the red edge being less affected by the spongy mesophyll layers in
plant leaves than NIR.

The critical role of the red edge spectral region is clearly demonstrated by the per-
formance of both the simple (VOG1, NDRE and mND705) and derivative spectra VIs
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(RIDAmid, DIDAmid, and NDDAmid). The supervised and unsupervised learning results
from the hyperspectral dataset shown in the novel IPRVI from this study confirmed the
importance of the red edge inflection point around 705 nm to reflectance samples. Similarly,
the shape of the curve between the red and red edge regions (the 645 nm, 685 nm and
745 nm) was more critical to derivative spectra and the novel DIPRVI discussed in this
study. As seen in Figure 3a, the mean reflectance curve for the group of samples with
higher apparent N is shifted to longer wavelengths on the right, and in Figure 3b the
importance of spectra around the slope of the peak shows the separation between N levels
clearly with the slope being around 5 nm shorter in wavelength on each of the peak’s sides
for the lower N levels. Those derivative spectra VIs which incorporated both sides of the
peak performed better than single side area indices as the full range of spectral information
available in the red edge region, both the inflection points near red (left side) and NIR
(right side), provided better distinction between plants with lower N reflecting more energy
as higher N plants continued absorbing.

The novel VI results use these key bands identified in the machine learning to max-
imise the information content in this spectral region. The reflectance VI focuses solely
on the inflection point, while the derivative VI leverages the gradient and position of the
peak’s sides. There is a useful comparison in the performance of the two iterative regression
results. While the nominal reflectance returned more ratios with moderate predictive ability
than the derivative spectra (1832 and 1424 with R2 > 0.40 respectively), while having fewer
ratios with high predictive potential (20 and 286 with R2 > 0.80 respectively). This suggests
the information content for predicting N concentration in the derivative spectra is worth
further investigation. With the higher N content due to applied N, leaves are able to sustain
greater chlorophyll pigment levels and so absorb more radiation for photosynthesis, lead-
ing to the wider red region absorption well and the red edge shift into longer wavelengths.
With the crop being irrigated the possibility of highly variable water content levels between
plants is reduced. A small gradient in plant water availability due to minor differences in
soil type or other factors may be responsible for the limited variability visible within the
treatment zones in the hyperspectral data.

4.2. Machine Learning Impact

The machine learning approach narrowed the range of bands required to investigate
plant condition over this trial site, greatly improved processing time and reduced pro-
cessing complexity. Iterative optimisation over the machine learning identified subset of
10 bands compared to the full 91 bands in the hyperspectral datacube, sped up processing
dramatically. Even with parallel processing, testing the full datacube took more than 8 h,
as opposed to ~40 min for the subset. Further, the approach of using clustering along with
multilayered decision trees is useful to explore the spectral feature space from different
approaches as evidence for band selection. This approach may be useful to explore labelled
training data of other variables of interest.

When implementing extreme boosted gradient trees, however, the result was dis-
carded as the “F-score” metric, basically an indicator of frequency of splits on the variable,
returned the first band as the most important by a factor of more than 3 for both single and
average pixels as well as derivative spectra (not shown). Partial least squares regression
returned similar results to the random forest investigation (not shown). Machine learning
promises useful classification and prediction potential, however, with the more sophis-
ticated approaches, there is considerable complexity. This can involve substantial pre-
processing, which can have non-trivial impacts on both multispectral and hyperspectral
imagery, as, for example, both have large null value regions around the borders.

4.3. Sentinel Performance

The Sentinel Green B3 product at 10 m ground sampling distance performed the best
out of the imagery tested on this sample set, with slightly lower error compared to the
best derivative spectra VI (RMSE = 0.187 vs. 0.188). The performance of the red edge
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B5 product at 5 m was similar to many of the conventional VIs, however, lower than
expected considering the results from the other red edge VIs and machine learning tests.
At native 20 m resolution it was amongst the lowest prediction outcomes. While the
550 nm band is important for photosynthesis, its relatively higher reflectance and smaller
variation across the reflectance samples (Sentinel reflectance curve is very similar in outline
to Figure 3b) most likely reduced its importance in the hyperspectral analysis of the present
study. Out of the Sentinel VIs, the performance was very similar to the hyperspectral
VIs, though with VOG1 and mND705 performing less well. VOG1 may have been im-
pacted by a poor fit of the Sentinel bands to its prescribed configuration, as there is no
Sentinel band that easily fits the VI’s denominator (720 nm). For this study, we used REP2

REP1 ,
though REP1 ends at approximately 713 nm. CCCI having a strong prediction ability is
not surprising generally as it was conceived to represent chlorophyll content, which is
strongly correlated with N concentration in crop canopies and performed very similarly to
its hyperspectral counterpart.

The positions of the samples relative to the pixel boundaries may have influenced
the stronger performance of some Sentinel bands over other remote sensing data used
in this study. For example, at the south edge of the Sentinel arrays (Figure 13a–d) the
impact of the empty paddock on that side is evident in N concentration predictions of ~1%.
This may lie behind the relatively poorer red edge performance. When this was tested by
replicating the spectral ranges of the sentinel instrument with the hyperspectral dataset the
predictive ability dropped dramatically for the B3 equivalent spectral range, while those
approximating the B5 band showed much reduced predictive ability. This suggests the
strong performance of the Sentinel B3 band on these samples is more likely due to the pixel
position relative to the sample position, rather than the strength of the spectral information
itself. The mixed pixel effects of having multiple alternating crop canopy and tractor
rows combined, even at 5 m GSD would also impact bands in different ways; for example,
the moderate reflectance of the green bands may be less impacted than the higher reflectance
red edge. Additionally, with the study site being well-irrigated, the impact of wet soil,
which has a similar reflectance to vegetation at 550 nm, may homogenise the signal received
by the Sentinel MSI, whereas all other bands would be more heavily impacted by variability
in spectral response within the mixed pixel.

For broadacre crop scale applications where a pixel size of 20 m is ample discrimination
and pixel boundaries are less relevant, Sentinel products provide a low-cost data source
with a long historical record to inform precision agriculture and site management. For a
research context, however, many field plots are significantly smaller than 10 m on all sides
and Sentinel data may not be suitable. The overflight schedule can also pose a challenge to
match data collection to key phenology milestones.

5. Conclusions

The main objectives of this study were to explore machine learning of a hyperspectral
datacube to identify novel reflectance measures of cotton canopy nitrogen concentration
and compare UAV hyperspectral against satellite multispectral remote sensing. There were
several key outcomes:

• The hyperspectral datacube reported in this study was able to predict N levels across
the site with high accuracy, both from simpler conventional VIs as well as machine
learning derived VIs. The crop features were clearly discernible at plot, row, and down
to plant scale.

• A machine learning approach narrows the optimisation search window making new
spectral features easier and quicker to find and test.

• Sentinel data proved capable with these field samples to delineate N levels at coarse,
production scale, though the sample locations compared to pixel boundaries suggest
further comparison is needed.

• There were challenges with this study that could be addressed with further research.
While the stitching artefacts had no impact on the sampled reflectance due to the field
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sample location being distant from the area involved, the stitching does impact the
ability to visually infer N levels from that part of the field.

• The high-resolution continuous spectra argue for hyperspectral remote sensing’s abil-
ity to identify inter-plot as well as intra-plot variability, providing strong insight for
development and refinement of a precision agriculture strategy while UAV platforms
demonstrate high spatial resolution and responsiveness to producers or researchers
needs. The machine learning derived VIs need further testing to ensure this perfor-
mance holds across multiple seasons, sites and crops.
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