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Abstract: There has been little rigorous investigation of the transferability of existing empirical
water clarity models developed at one location or time to other lakes and dates of imagery with
differing conditions. Machine learning methods have not been widely adopted for analysis of lake
optical properties such as water clarity, despite their successful use in many other applications of
environmental remote sensing. This study compares model performance for a random forest (RF)
machine learning algorithm and a simple 4-band linear model with 13 previously published empirical
non-machine learning algorithms. We use Landsat surface reflectance product data aligned with
spatially and temporally co-located in situ Secchi depth observations from northeastern USA lakes
over a 34-year period in this analysis. To evaluate the transferability of models across space and
time, we compare model fit using the complete dataset (all images and samples) to a single-date
approach, in which separate models are developed for each date of Landsat imagery with more than
75 field samples. On average, the single-date models for all algorithms had lower mean absolute
errors (MAE) and root mean squared errors (RMSE) than the models fit to the complete dataset. The
RF model had the highest pseudo-R2 for the single-date approach as well as the complete dataset,
suggesting that an RF approach outperforms traditional linear regression-based algorithms when
modeling lake water clarity using satellite imagery.

Keywords: Landsat; lakes; Secchi depth; machine learning; random forest; water clarity

1. Introduction

Water clarity is both an indicator and an influencer of lakes’ function in the landscape.
For example, water clarity influences lake ecosystem function [1,2] and modulates sus-
ceptibility to climate change [3]. At the same time, a change in clarity can affect human
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perceptions of a lake’s value [4–7] and thus the provisioning of ecosystem services to
society [8]. Monitoring and observing trends in lake water clarity is therefore important for
local and regional stakeholders.

Secchi depth is a reliable, easy, and affordable measurement of water clarity (or light
attenuation within the water column) that is or has been used by scientists, lake managers,
and community members [9–14] across wide geographic areas for decades [9,10,12–16].
A Secchi disk is a white or black-and-white disk [17] that is lowered into a lake, and the
depth at which the observer can no longer see the disk and where it reappears again when
it is raised is recorded [18]. Secchi depth is typically measured in the deeper areas of the
lake, ideally at regular intervals throughout the ice-off season, and it is often measured in
multiple locations within a lake when a lake monitoring program is present. Measurements
can range from a few centimeters in very turbid lakes to more than 10 meters in deep,
clear lakes [19]. Secchi depth depends on multiple factors such as suspended sediment,
dissolved organic matter, and phytoplankton biomass [20–22]. In many lakes, ice-out
is followed by a period of low water transparency due to turbidity from spring snow-
melt and destratification conditions as well as the spring phytoplankton bloom [23]. This
period is followed by the spring “clear-water phase” as zooplankton populations increase
and consume phytoplankton. Once deep lakes stratify, phytoplankton populations are
re-established and summer water clarity is determined by nutrient availability, weather
conditions, and lake food web structure. Collections of in situ Secchi measurements
over wide areas are labor-intensive and often logistically challenging, necessitating other
methods to expand the temporal and spatial scope of water quality assessment.

One such method is satellite remote sensing, whose data have been used to evaluate
water clarity in lakes for more than 40 years [24–32] and have been acknowledged as
effective tools for monitoring local and regional trends in Secchi depth. The same optical
water properties that influence attenuation of light in the water column (and thus in situ
measurements of transparency) also determine spectral reflectance back to the satellite,
such as turbidity due to suspended sediments, brown coloration resulting from dissolved
organic compounds, and chlorophyll and other pigments used by phytoplankton to harvest
light for photosynthesis [33]. The water-leaving radiance is then mediated by absorption
and scattering in the atmosphere before being recorded by the sensor. As a result, the use of
remotely sensed data for widespread monitoring of water quality is attractive and the focus
of several federal, state, and local agencies and organizations. Previous remote sensing
research on water clarity has generally focused on small sample sizes (<20 lakes) over short
periods of time (<3 years) [34–39], although exceptions do exist [40–42]. The transferability
of models among locations and times is critical to the operational application of remote
sensing methods to lake monitoring because an ultimate goal is to expand spatial and
temporal coverage and avoid relying on field data collection campaigns as the only source
of water quality data. There are, however, some limitations to satellite remote sensing; for
instance, poor atmospheric conditions can make images unusable, pixel size may be too
large to pair with small waterbodies, or the temporal return period may be too long to
effectively capture rapid changes in surface water conditions.

One tool that has been used to address algorithm transferability is machine learning,
which harnesses computational power to learn and identify underlying patterns within
data sets [43]. While machine learning techniques are rapidly being adopted in other
environmental applications of remote sensing, they have been less frequently used for
remote sensing of lake water quality [44–47]. When machine learning has been used,
the papers have predominantly focused specifically on chlorophyll-A [44] or suspended
sediment [48] rather than overall light attenuation. Here, we pioneer the use of random
forest (RF) modeling with regression (hereafter, RF), a type of machine learning that selects
class membership based on a network of classification and regression trees [49], for use
with Secchi depth-specific algorithms.

This analysis aims to (1) investigate whether RF modeling can produce more accu-
rate estimates of lake water clarity from satellite imagery than 13 previously published
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regression-based algorithms (Tables 1 and 2) evaluate the transferability of both RF models
and traditional regression models across a very large dataset. All of the algorithms consid-
ered here can be categorized as empirical, meaning that they begin with observations and
attempt to find a model that best fits those observations. The main alternative approach,
not included in this study, consists of physically-based or quasi-analytical algorithms
that model the bio-optical properties of the water column based on the scattering and
absorption of light [33,50–54]. Each of these approaches, empirical and physical, has its
advantages. We focus here on empirical algorithms because they are in widespread use for
monitoring Secchi depth, and because RF itself is an empirical method. In addition, many
of the physical or quasi-analytical methods require narrower or differently placed spectral
bands than those available on Landsat. To date, there has been limited investigation of the
applicability of empirical models developed at one location or time to other lakes and other
image dates with differing atmospheric conditions [41] or bio-optical properties; filling
that gap is the focus of this study.

2. Materials and Methods

We gathered Landsat satellite imagery from 4 Landsat missions collected on 1962 dates
over 34 years, along with 36,621 in situ Secchi depth observations across 397 lakes on
4745 dates for this analysis. First, we compared the performance of an RF algorithm
trained on the full dataset to that of 13 previously published algorithms fit to the same data
alongside a 4-band multivariate algorithm, as measured by mean absolute error (MAE),
root mean squared error (RMSE), and a pseudo- coefficient of determination (pseudo- R2,
calculated as 1—(residual sum of squares (RSS)/total sum of squares (TSS))) [55]. Then, for
all the algorithms, we compared the performance of models fit separately to each Landsat
date to the model fit to the full dataset.

2.1. Study Area

This study focused on lakes with surface areas of at least 150 ha in the US states of
Maine, New Hampshire, Vermont, and New York. Though there is a considerable body of
literature on remote sensing of lake water clarity in the midwestern USA [14,24,40,56,57],
this study area is primarily forested and contains a large number of clear water lakes with
long-term in situ measurements [58] (Figure 1). Although water quality in this region
is of tremendous environmental, recreational [59], and economic importance [4,5], few
algorithms are available to estimate Secchi depth in clear water systems.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 19 

 

traditional regression models across a very large dataset. All of the algorithms considered 
here can be categorized as empirical, meaning that they begin with observations and at-
tempt to find a model that best fits those observations. The main alternative approach, not 
included in this study, consists of physically-based or quasi-analytical algorithms that 
model the bio-optical properties of the water column based on the scattering and absorp-
tion of light [33,50–54]. Each of these approaches, empirical and physical, has its ad-
vantages. We focus here on empirical algorithms because they are in widespread use for 
monitoring Secchi depth, and because RF itself is an empirical method. In addition, many 
of the physical or quasi-analytical methods require narrower or differently placed spectral 
bands than those available on Landsat. To date, there has been limited investigation of the 
applicability of empirical models developed at one location or time to other lakes and 
other image dates with differing atmospheric conditions [41] or bio-optical properties; fill-
ing that gap is the focus of this study. 

2. Materials and Methods  
We gathered Landsat satellite imagery from 4 Landsat missions collected on 1962 

dates over 34 years, along with 36,621 in situ Secchi depth observations across 397 lakes 
on 4745 dates for this analysis. First, we compared the performance of an RF algorithm 
trained on the full dataset to that of 13 previously published algorithms fit to the same 
data alongside a 4-band multivariate algorithm, as measured by mean absolute error 
(MAE), root mean squared error (RMSE), and a pseudo- coefficient of determination 
(pseudo- R², calculated as 1—(residual sum of squares (RSS)/total sum of squares (TSS))) 
[55]. Then, for all the algorithms, we compared the performance of models fit separately 
to each Landsat date to the model fit to the full dataset. 

2.1. Study Area 
This study focused on lakes with surface areas of at least 150 ha in the US states of 

Maine, New Hampshire, Vermont, and New York. Though there is a considerable body 
of literature on remote sensing of lake water clarity in the midwestern USA 
[14,24,40,56,57], this study area is primarily forested and contains a large number of clear 
water lakes with long-term in situ measurements [58] (Figure 1). Although water quality 
in this region is of tremendous environmental, recreational [59], and economic importance 
[4,5], few algorithms are available to estimate Secchi depth in clear water systems. 

 
Figure 1. Landsat paths (tan rectangles) and Secchi measurement locations (blue diamonds) across the study region [60]. Figure 1. Landsat paths (tan rectangles) and Secchi measurement locations (blue diamonds) across

the study region [60].



Remote Sens. 2021, 13, 1434 4 of 18

2.2. Field Observations of Secchi Depth

In this study, the in situ Secchi depth measurements originated from lake monitoring
programs that rely on volunteers, lake organizations, and researchers to collect measure-
ments (Supplementary Table S1). We compiled data from four organizations (Maine
Department of Environmental Protection, New Hampshire Department of Environmental
Services, Vermont Department of Environmental Conservation, and New York Department
of Environmental Conservation) into a unified database containing 34 years of measure-
ments across the study region [61–66]. Selecting pixels from near the central basin of a
lake is the standard approach [67]. Here, Secchi measurements were limited to those that
were taken more than 125 meters from shore to avoid mixed remote sensing pixels, varying
lake depths due to changing lake level, and overhanging vegetation. Because many of the
contributing data sources had duplicate entries or multiple entries for a lake on a given
day, a ranking system was created to choose a single Secchi measurement for each lake
on each day. Rank was weighted by distance from shore, where distances greater than
500 meters from the shore were favored, as well as time from remote sensing image, where
Secchi measurements taken closer in time to the matched image were favored.

2.3. Data Extraction

We used Google Earth Engine [68], a cloud-based geospatial analysis tool, to extract
spectral data from Landsat-4, -5, -7, and -8 surface reflectance images [69,70] (Supplemen-
tary Figure S1) for a buffer around site coordinates that have measurements between May
and October from 1984–2017. Specifically, we utilized the Landsat Surface Reflectance
tier-1 products from Landsat 4–5 TM, 7 ETM+, and 8 OLI [69,70] which have been at-
mospherically corrected and contain quality assurance bands. With the transition from
ETM+ to OLI, both the radiometric resolution and atmospheric correction process were
improved. The standard Landsat surface reflectance product is based on two different
processors (LEDAPS for Landsat TM and ETM+, and LaSRC for Landsat OLI; [71,72]).
In both cases, the algorithm was optimized for land rather than aquatic systems, but the
standard LEDAPS/LaSRC products are nonetheless frequently used for lake monitoring ap-
plications. While other, potentially more effective atmospheric correction algorithms exist
(e.g., ACOLITE [73] Polymer [74], and C2RCC [75]), they were not considered here due to
constraints in implementation of the Earth Engine code, lack of applicability to TM/ETM+,
or other factors. The results will therefore be conservative such that future work with better
atmospheric correction algorithms will yield more transferable results. Supplementary
Figure S2 compares Landsat-7 ETM+ and Landsat-8 OLI spectra for six randomly selected
lakes with Landsat-7 (blue) and Landsat-8 (orange) images one day apart, for top of atmo-
sphere (TOA) reflectance, ρλ (before atmospheric correction), and Rrs (after atmospheric
correction, in units of sr−1) to demonstrate the efficacy of the correction process.

We extracted spectral data only for those images that were captured within ±5 days
of the in situ collection date, following Bohn et al. [36] and Boucher et al. [76]. We extracted
pixel data within a buffer zone of 1.8 times the Landsat pixel size (30 meters) surrounding
each Secchi observation location, based on comparing results from buffer zone sizes from
0.1–5 times the pixel size to the same buffer zone in a single Landsat scene downloaded
from the USGS server. For Landsat-7 ETM+ SLC-off images, we did not include any pixels
that fell inside a data gap [77]. The image data for each extracted buffer zone were filtered
using the bit quality assessment (BQA) band to remove clouds and cloud shadows. The
remaining data were filtered to remove any null values. We extracted the mean values of
each buffer region surrounding a sample in bands 1–4 (blue, green, red, near-infrared) and
7 (short-wave infrared) for Landsat 4–5 TM and 7 ETM+ and bands 2–5 (blue, green, red,
near-infrared) and 7 (short-wave infrared) for Landsat-8 OLI images. When pixels were
removed due to quality considerations of the BQA bands, these data were not incorporated
into the mean for the buffer region.

The extracted mean reflectance data for each buffer region surrounding a sample were
then processed in the R Programming language [78]. To filter haze- and glare-affected
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imagery, we removed all data associated with scaled reflectance values greater than 250
(ρλ > 0.025 or Rrs > 0.00796) in band 7, the second shortwave-infrared band between
roughly 2.064 µm and 2.294 µm [79]. We also removed obvious outliers, defined as those
outside 1.5 times the interquartile range beyond the first and third quartiles. There was a
single image-measurement pair that was excluded from all analyses after these QA/QC
steps were completed due to a very low red band value (scaled reflectance < 3; ρλ < 0.0003
or Rrs < 9.56 × 10−5) that caused issues with the application of historical algorithms that
included the red band. To confirm that the Google Earth Engine code was handling the
data extraction process correctly, spectral band values were extracted for the same sample
locations in one Landsat-8 image downloaded directly from the United States Geological
Survey (USGS) server and compared using ArcGIS Desktop (Supplementary Figure S3).

2.4. Implementation of Algorithms

We identified 13 unique algorithms previously published in the scientific literature
(Table 1, Supplementary Table S2) for comparison to our machine learning methodology.
When algorithms appeared multiple times in the literature, we cited the first (or a promi-
nent early) appearance of the algorithm. In addition to these published algorithms, we
constructed a new 4-band multivariate linear algorithm using the blue, green, red, and
near-infrared bands to examine whether the contribution of all bands with no machine
learning assistance would improve model fit and if the result of the machine learning model
was a meaningful improvement. Our machine learning algorithm was a random forest
regression model and the predictor variables were the same four bands used for previously
published models and the 4-band linear model described (Table 1), allowing us to isolate the
effectiveness of machine learning relative to traditional algorithm construction techniques.

An RF model uses a random sampling of training data to build independent decision
trees, resulting in trees with high variance and low bias [80]. The final classification is the
average of the probabilities from each tree [49,80]. RF modeling has been shown to work
well with satellite imagery in prior contexts [81–84]. In practice, the RF selects a training
sample with replacement from a dataset and uses repeated regression trees to decide the
final class membership based on given predictor variables [80]. The samples that were
not selected for training were used to evaluate model performance [49,80]. We used the
randomForest package [85] within the R programming environment [78]. This package is
often used in remote sensing of lake water quality across large datasets [11,86–89]. Though
the default number of regression trees in R is 500, following Belgiu and Drăguţ [80], we
used 128 regression trees because model performance past 128 trees requires significant
computational costs for marginal improvements in accuracy [90].

We compared 13 existing algorithms, the 4-band linear models, and the RF model.
In all cases, we used the same variables (e.g., individual spectral bands or band ratios)
as in the originally published version, but the coefficients were re-calculated empirically
for our dataset in R [78]. This recalculation was necessary because the coefficients were
meant to be re-estimated for all iterations of the model in new contexts and, additionally,
some of the original versions were based TOA reflectance rather than surface reflectance
(SR) [69,70]. The sensor calibration coefficients and SR algorithms have both changed over
time such that originally published coefficients would not be directly applicable to the
current versions of image data [91]. All algorithms were linear models except Domínguez
Gómez et al. [92]. For that model, we used a nonlinear least-squares method [93] to
re-calculate the coefficients and exponents.
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Table 1. Description of published algorithms for predicting water clarity, as reported by original
sources. Ln indicates natural logarithm. R2 is reported by the original authors on their predicted
variable, including any transformations. Any operation (e.g., ln (Red)) is applied to the pixels in the
buffer zone surrounding each sampling location.

Name Source
Predicted
Variable

(m)
Formula Samples Images R2

Allee and
Johnson [34] Secchi

Depth

Red −
mean
(Red)

30 10 0.74

Baban [94] Secchi
Depth Blue 14 1 0.68

Chipman et al. [95] ln (Secchi
Depth) Blue/Red 15,615 17 0.85

Dekker and
Peters 1 [26,96] ln (Secchi

Depth) ln (Red) 15 1 0.86

Dekker and
Peters 2 [26,97] Secchi

Depth Red 15 1 0.81

Dominguez
Gomez et al. [92] Secchi

Depth (Green)x 16 5 0.9

Giardino et al. [35] Secchi
Depth Blue/Green 4 1 0.85

Kloiber et al. [30,31,40,
98,99]

ln (Secchi
Depth)

Blue/Red
+ Blue 374 13 0.93

Lathrop and
Lillesand [38,56] ln (Secchi

Depth) Green 9 1 0.98

Lavery et al. [100] Secchi
Depth

Red +
Blue/Red 18–25 4 0.81

Mancino et al. [101] Secchi
Depth

Red/Green
+

Blue/Green
+ Blue

60 1 0.82

Wu et al. [41,102] ln (Secchi
Depth) Blue + Red 25 5 0.83

Yip et al. [14] Secchi
Depth

Infrared +
Green +

Blue
120 136 0.6

2.5. Algorithm Assessment

For each of the algorithms (all 13 published algorithms, the 4-band linear algorithm,
and the RF), two types of models were constructed: one using the entire dataset (“overall
model”) and one using only single dates of imagery (“single-date model”). The overall
model for a given algorithm was based on all in situ measurements and Landsat images
across the entire study region for the 34-year time period. A total of 52 “single-date” models
were developed for every date of Landsat imagery across the region that included at least
75 in situ Secchi measurements within five days of image acquisition [76]. Due to the nature
of the Landsat orbital cycle, all the Landsat images from a given date in the study area lie
along a single orbit path (Figure 1).

Two datasets were used to assess model performance: a “training” dataset and an
out-of-bag “test” dataset. The test dataset was a stratified random selection of lakes totaling
10 percent of the total number of lakes in the complete dataset. To account for widely
varying numbers of samples at individual lakes over the 34-year period, we tallied the
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total number of Secchi-Landsat pairs within each lake and constructed deciles of lakes
based on their sample count. We randomly chose 10 percent of lakes from each decile to
create a testing dataset of 3937 samples. The goal of this test set was to isolate the influence
of specific lake properties and be able to assess model performance on lakes that did not
contribute to model training. In the text we refer to these two datasets as the training (n =
32,683 in the overall model, 90% of total) and testing (n = 3937 in the overall model, 10% of
total) datasets. The data in these two datasets were similar, with the training dataset having
a lower median Secchi depth (5.6 m; Supplementary Table S3) than the test dataset (6.5
m, Supplementary Table S3, Supplementary Figure S5). The single-date models used this
same 90/10 split of data, so the total number of training data points and test data points
varied by image date (Supplementary Table S4).

We assessed model performance for both the training and test datasets by calculating
the root mean square error (RMSE), mean absolute error (MAE), bias, and a pseudo-
coefficient of determination (pseudo-R2). Bias is the mean of the residuals, and because
the residuals are both positive and negative (and roughly equal in magnitude), it is not
necessarily a valid measure of model performance without some constraint on variance,
especially since most of our models are regression-based and the residuals will be zero
by definition. While we have included bias, the pseudo-R2 and RMSE values give a more
complete picture of model performance. Pseudo-R2, also known as the Nash-Sutcliffe
efficiency coefficient [103], has been used in prior machine learning efforts [104,105].

In addition to these standard measures of algorithm performance, we also calculated
the slope of the line describing the relationship between predicted Secchi depth and
observed Secchi depth. Since RF models ostensibly do not require cross-validation from
a separate test due to the method by which regression trees are bootstrapped during
model construction, these error statistics have been asserted by other authors to provide
a sensible test of the model [49]. In order to facilitate comparison among natural log-
transformed Secchi (e.g., Chipman et al., Kloiber et al., etc.), untransformed Secchi (e.g.,
Allee and Johnson, Baban, etc.) and nonlinear (e.g., Dominguez-Gomez et al.) models, we
report a pseudo-R2 [55,106,107] for all algorithms using the formula (1—(residual sum of
squares)/(total sum of squares)) [108].

3. Results

For the complete dataset, the overall random forest model had a lower MAE (Table 2,
Figure 2) and RMSE (Table 2, Figure 3), as well as a higher pseudo-R2 (Table 2, Figure 4)
than the other algorithms. Of all the models, the random forest was the only model that,
when constructed from the complete data set, explained more than 25% of the variability
in observed Secchi depth (Figure 4). However, most algorithms (except Baban, Dominguez
Gomez, and the untransformed Dekker and Peters) produced at least one single-date model
with a pseudo-R2 value over 0.6 (Figure 4).

In Figures 2–4, each model result is color coded based on the relationship between pre-
dicted and observed. For cases with very low slope values (shown in white) the model is es-
sentially unresponsive such that the models are predicting consistent Secchi depths regard-
less of band characteristics and are therefore not useful, regardless of low MAE or RMSE
values. The RF approach yielded a lower error (MAE: 0.47 m–0.86 m, RMSE: 0.66m–1.13 m)
on individual scene training than nearly all other algorithms (MAE: 0.90 m–2.54 m, RMSE:
1.11 m–3.04 m).
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Table 2. Summary statistics for all algorithms created from the complete dataset of lake Secchi depths in ME, NH, VT, and
NY, for both the training (n = 32,683) and testing (n = 3937) subsets. Pseudo-R2 was calculated as 1-RSS/TSS.

Training Data Test Data

Model Name MAE (m) RMSE (m) Pseudo-R2 MAE (m) RMSE (m) Pseudo-R2 Bias (m)

Allee and Johnson 1.79 2.26 0.05 1.79 2.31 −0.16 0.85

Baban 1.83 2.31 0.01 1.80 2.32 −0.18 0.9

Chipman et al. 1.82 3.83 0.09 2.04 3.73 −0.33 1.28

Dekker and Peters 1.82 2.32 0.08 1.99 2.56 −0.33 1.35

Dekker and Peters 2 1.80 2.26 0.05 1.79 2.31 −0.16 0.85

Dominguez Gomez et al. 1.81 2.27 0.04 1.79 2.31 −0.17 0.86

Giardino et al. 1.72 2.16 0.13 1.75 2.25 −0.11 0.75

Kloiber et al. 1.82 3.60 0.10 2.04 3.58 −0.34 1.27

Lathrop and Lillesand 1.82 2.32 0.09 1.98 2.54 −0.31 1.32

Lavery et al. 1.75 2.21 0.09 1.77 2.30 −0.16 0.83

Mancino et al. 1.71 2.14 0.15 1.75 2.25 −0.11 0.74
Wu et al. 1.75 2.24 0.16 1.92 2.48 −0.27 1.25

Yip et al. 1.64 2.07 0.20 1.67 2.17 −0.03 0.65

4-Band 1.63 2.06 0.21 1.67 2.17 −0.04 0.65

Random Forest 1.37 1.81 0.39 1.60 2.08 0.05 0.61

The RF approach consistently explained more variability (had higher pseudo-R2

values) in the training data than the historical algorithms (Figure 4). Performance for
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all models was much weaker for the test data not used to fit the model, with negative
pseudo-R2 values indicating that the residual sum of squares was much higher than the
total sum of squares. In other words, a simple mean of the data would have outperformed
the statistical models. None of the algorithms differentiate between the deepest Secchi
depths particularly well, even with the training data (Figure 5).
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4. Discussion
Algorithm Comparison

We found that, when compared across the complete dataset, the random forest ap-
proach predicts water clarity with lower error rates and higher pseudo-R2 values than any
of the 13 published algorithms evaluated here, even after the existing algorithms were re-fit
to this dataset. Additionally, single-date models tended to outperform the overall models.
The previously published algorithms, except for Yip et al., do not have meaningful model
fits (where meaningful fit is defined as pseudo-R2 > 0.2) in the overall dataset analysis
(Table 2). Though some of the error metrics are relatively small, it is not clear how to
interpret them given the poor model fits. This result suggests that these algorithms may not
be widely applicable outside of the lakes and time frame for which they were developed
and should be very cautiously utilized [42] for monitoring Secchi depth with remotely
sensed imagery.

In terms of performance for the overall model versus single-date models, the single-
date versions of all 15 algorithms generally provided more precise estimates of water clarity
and higher pseudo-R2 values, but only when applied within the same dates. This approach
is similar to the approach taken by many early studies [31,56,94,95,97] of using a single
date of imagery from one Landsat path to develop a model, and this finding suggests there
are limits to the transferability of these algorithms across time. The most ‘fair’ comparison
between the RF models fit here and the results reported from prior publications would be
based on the single-date models with the highest pseudo-R2 values. However, even the best
single-date models in this analysis tend to perform less well than in prior studies elsewhere.
This is likely due to the constraint of which dates we considered, which was driven by the
availability of at least 75 in situ samples (to avoid overfitting by the RF algorithm), rather
than image quality, as was the criterion in the past. Relaxing this minimum sample size
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for the regression algorithms would allow more single-date models to be included, some
of which may have pseudo-R2 values falling in the range of those reported from previous
studies (R2 > 0.8).

While single-date models can perform well under optimal conditions, these models
cannot necessarily be transferred to other locations and times because they are greatly
influenced by lake-specific factors and the atmospheric conditions of that day [109], such as
haze. Insofar as much of the problem is due to imperfect atmospheric correction algorithms
and the low radiometric resolution of Landsat TM/ETM+, we can expect improvement
in the future as better surface reflectance products are developed and the sensors’ ra-
diometric resolution improves. As shown in the right-hand column of Supplementary
Figure S2b,d,f,h,j,l, the Landsat-7 atmospheric correction algorithm (LEDAPS) very closely
matches the shape of the corresponding Landsat-8 spectrum. In some instances, such
as the elevated near-infrared reflectance for Wilson Pond in Landsat-7 (Supplementary
Figure S2b), differences in Rrs between the two sensors are also found in the TOA spectra
(Supplementary Figure S2a), suggesting that changes occurred during the intervening day
between the Landsat-7 and Landsat-8 images. More concerning are the spectra for Junior
Lake (e,f) and China Lake (k,l), where the TOA spectra for Landsat-7 and -8 match quite
closely in TOA reflectance but show slightly elevated values of Rrs for Landsat-7 in the
short-wavelength bands, suggesting poorer performance by the LEDAPS algorithm in
these cases. While this is just a small (but random) sample from the thousands in this study,
it is reassuring to see the relative consistency between LEDAPS and LaSRC in most cases,
but cautionary to see exceptions where the LEDAPS output may not be as reliable as that
of LaSRC.

Given that both the radiometric resolution and atmospheric correction process changed
from Landsat-4/5/7 to Landsat-8, we examined the RF model predictions for the full data
set with and without Landsat-8. There was no large, consistent difference in the RF model
predictions for the two cases (Supplementary Figure S7). While the radiometric proper-
ties and surface reflectance processor for Landsat-8 are superior to its predecessors, the
combination of Landsat-8 with Landsat-4/5/7 in the RF analysis does not substantially
change the outcome. Ultimately, it would be beneficial to not need expensive field data
collection campaigns for every date of imagery, so some transferable overall model would
be helpful. Even when field data are available, a transferable model is invaluable for
variance reduction and anomaly detection [110].

The RF approach has a meaningful model fit and yields lower error across the overall
model (Figures 2 and 3). However, the predicted values still exhibit error, especially for
Secchi depths > 5 m—i.e., clearer-water lakes (Supplementary Figure S8). This indicates
that for our dataset, a widely applicable RF model created from the same band data as the
historical algorithms does not appear to be attainable. Even the best-performing algorithms
(including the RF) do not differentiate Secchi depths of >5 m vs. >10 m well, especially in
the complete dataset (Figure 5, Supplementary Figure S8). Though the RF’s performance on
the independent test data is very poor, there is no way to know if this is due to overfitting
the training data or to small sample sizes (n < 200). Based on the difference in median
Secchi depth between the training and testing datasets (5.5 m and 6.4 m, respectively,
Supplementary Table S4, Supplementary Figure S5), it may be possible that the slight skew
towards greater Secchi depths in the testing dataset greatly affects the performance in all
test cases. In the day-by-day models, the number of samples included in the test set range
from 3 to 20 (Supplementary Table S5) and summarizing fit metrics from that few samples
could also contribute to the prevalence of negative pseudo-R2 values [111].

The best performing algorithms tended to be those that included the near-infrared
band, such as Yip et al., the 4-band multivariate algorithm, and the RF algorithm. These
algorithms tended to predict Secchi depth more accurately in the overall model when
the water clarity was relatively poor. A possible rationale for this performance is that
the inclusion of a near-infrared band allows for greater ability to predict Secchi depths
across a wide range of water optical properties and turbid conditions [112]. Given that
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the RF algorithm produced nearly equal Gini-based importance values [113] for the four
bands (Supplementary Table S5), it is possible that all are necessary to make progress in
creating better algorithms to predict Secchi depth, although further examination is needed
to test this hypothesis. Some of the historical algorithms tended to produce stronger
fits for the single-date method later in the season, when lakes are more likely to have
lower in situ Secchi depths (less clear water) and when the atmosphere is more stable [41].
The lack of sensitivity at the higher end of the Secchi scale is widely known from prior
work [96,114,115], and the reason the RF, Yip et al., and 4-band algorithms perform better
than others is that they are better able to differentiate among lakes with lower levels of
water clarity.

The machine learning model does better estimate Secchi depth than the traditional
algorithm development approach, when just comparing the 4-band linear model with the
RF. Though these two algorithms use the same band data, the RF approach yields a lower
MAE (1.37 m) and RMSE (1.81 m) as well as higher pseudo-R2 (0.39) than the linear model
approach (MAE: 1.63 m, RMSE: 2.06 m, pseudo-R2: 0.21) in the training dataset.

Although our results indicate that published algorithms did not accurately predict
Secchi depth for this dataset as a whole, this does not altogether invalidate those prior
publications’ results; the 13 algorithms work extremely well for the study areas and time
periods for which they were originally developed (Table 1), especially when applied to
clear-sky imagery and validated using data from the same location and time period. The
high R2 values of some previous studies may also have resulted from being developed with
relatively turbid, productive lakes [20,24,30,56]. Instead, we believe the reduced applicabil-
ity to a completely new study area (in most cases) and imagery with varying atmospheric
conditions emphasizes the importance of lake-specific factors and atmospheric correction,
which at the present time only imperfectly compensates for variations in scattering and
absorption by the atmosphere.

Future work should include an investigation of the timing of precipitation events
relative to the difference between measurement and image. We used a 5-day timeframe,
but it is entirely possible that a precipitation event could occur within that window and
introduce noise into the analysis. To do a full analysis, we would need consistent precipita-
tion data for every location for every measurement date over the 34 years. Instead, we plot
the residuals from the RF algorithm versus the time difference (either positive or negative)
from the Secchi observation and demonstrate that there is no structure in the residuals for
this dataset (Supplementary Figure S4).

Findings from this research also engender questions related to underlying distribu-
tions of lake bio-optical water properties and how these differences may require appropriate
consideration in remote sensing-based algorithms. Optical water types are now frequently
utilized when examining remotely sensed data from lakes [109,116,117], and these cate-
gories may provide additional information for machine learning approaches. Previously
published empirical algorithms based on regression models with single or multiple spectral
bands do not appear to adequately characterize water clarity in our large dataset across
a range of lake types and Secchi depths. Various methods for optimizing the selection of
band ratios or spectral features, such as optimal band ratio analysis (OBRA, [118]) and
related methods [119] or a transformed feature space approach [120], could help maximize
the effectiveness of these empirical spectral models. Additionally, our work focuses pre-
dominantly on Landsat-specific algorithm testing and does not address methods using
other satellite platforms (e.g., MODIS, Sentinel-2); additional information captured in
data containing a wider range of bands may yield more accurate models and should be
explored. Biophysical or quasi-analytical modeling approaches, such as those that model
and reconstruct the scattering of light within the water column, may also provide insight
into atmospheric controls on algorithm performance [50,118–124], although we did not
consider these methods in the research described here.

Altogether, we view our findings as a progressive step forward in identifying optimal
methods for monitoring water quality changes over time using the Landsat archive.
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5. Conclusions

Satellite remote sensing provides an attractive method for monitoring changes in lake
water quality at regional scales. The analyses reported here use in situ measurements from
397 lakes to investigate the potential for random forest modeling with regression to improve
estimates of lake water clarity from satellite imagery and evaluate the transferability of
both RF models and traditional regression-based models across space and time.

Previously published historical algorithms were mostly developed using small sample
sizes (<20 lakes) over short time periods (<3 years) and were therefore limited by the
temporal and spatial specificity of the in situ data used to test these algorithms as well
as the number of in situ samples (Table 1). These algorithms perform well on the images
and timeframe for which they were developed but generally cannot be applied across
the entire Landsat image archive as they often produce non-meaningful fits. While the
RF approach and many of the historical algorithms yielded meaningful model fits for
individual Landsat scenes, the RF approach resulted in models that had lower overall
error than the historical algorithms. An RF approach seems promising in a regional, multi-
Landsat-mission analysis, but it is still difficult to predict lake clarity with greater Secchi
depths. We find that Secchi depth can be generally predicted with the RF algorithm, but
there is not enough precision for explicit lake-specific depth predictions. For example, one
could estimate whether a lake has low (Secchi depth < 3 m) or high (Secchi depth > 5 m)
transparency reasonably well from the RF algorithm, whereas with previously published
algorithms, the error is generally too large for such distinction.

The single-date models have better fits than the overall model for the non-machine
learning algorithms; however, the improvement from machine learning is clouded by the
possibility of overfitting. The RF also does very well in the overall model comparison. This
suggests that the approach taken by most prior researchers of relying on single dates of
imagery is effective, as demonstrated by their reported high R2 values. However, with
the increased emphasis on automating and operationalizing the process of extracting
environmental information from remote sensing imagery, methods that are the most
transferable over space and time will be best equipped to deal with spatially and temporally
extensive data.

Our work provides an important contribution to the use of long-term satellite monitor-
ing of water quality in freshwater lakes. Advancements in cloud processing and gathering
of data from the USGS [91] provide the aquatic monitoring and remote sensing community
the opportunity to investigate changes across space and time in new ways. However, as
our results indicate, methodological designs and algorithms that were constructed during a
time of limited data availability are not transferrable across very wide regions, particularly
when lakes may vary considerably with respect to their bio-optical properties. Overall, this
work furthers the research community’s ability to remotely monitor water clarity as a com-
plement to expensive and time-consuming in situ measurements and provides a framework
for evaluating broad spatiotemporal trends in water clarity across the Northeast.

Supplementary Materials: All code is available from GitHub at https://github.com/steeleb/Rubin_
etal_repository, Figure S1: Distribution of Landsat imagery used in this study by satellite and decade,
Figure S2: Comparison of TOA reflectance (ρλ; a,c,e,g,i,k) and Rrs (b,d,f,h,j,l) for six randomly selected
lakes with Landsat-7 (blue) and Landsat-8 (orange) images one day apart. Chart titles include lake
name, latitude/longitude coordinates, and dates of the two images. Note that Landsat-8 includes
an extra short-wavelength band, Figure S3: Landsat-8 image (ultrablue band). Green points are
pixels properly included in the dataset when filtering with the BQA band and blue points are pixels
properly excluded, Figure S4: The residuals from the RF algorithm versus the difference in days
from the Secchi measurement. There is no clear pattern in the residuals, Figure S5: Histograms
of the (top) test and (bottom) training set showing similar Scheme 6.4 m) was slightly higher than
that of the “training” set (5.5 m), Figure S6: Full-range of pseudo-R2 for 15 tested algorithms for
predicting Secchi depth from Landsat imagery, Figure S7: The difference between predictions from
the overall models with Landsat-8 and the overall model predictions without Landsat-8, Figure S8:
Testing dataset model output for the overall dataset. Panels with a single asterisk (“*”) after the

https://github.com/steeleb/Rubin_etal_repository
https://github.com/steeleb/Rubin_etal_repository
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model indicate that there are values that are not displayed because there are negative predicted
Secchi. Panels with two asterisks (“**”) indicate that there are values that are not displayed because
they are outside of the bounds of the limits displayed here (maximum Secchi depth displayed is
20 m), Table S1: The sources for a four-state (Maine, New Hampshire, Vermont, and New York)
in-lake Secchi database consisting of six data providers, Table S2: Further description of published
algorithms for predicting Secchi depth from Landsat imagery, as reported by original sources, Table
S3: Summary statistics for the overall model training and testing data, in meters, Table S4: Summary
statistics for the single-date model training and testing data, in meters, Table S5: This table reports
the Gini-based importance values [113] for the four variables used in the random forest algorithm.
Since Gini importance values are relative to one another, this indicates that the four bands used in
this algorithm are all fairly balanced in importance in the building of the algorithm.
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