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Abstract: Pan-sharpening methods allow the transfer of higher resolution panchromatic images to 
multispectral ones concerning the same scene. Different approaches are available in the literature, 
and only a part of these approaches is included in remote sensing software for automatic applica-
tion. In addition, the quality of the results supplied by a specific method varies according to the 
characteristics of the scene; for consequence, different algorithms must be compared to find the best 
performing one. Nevertheless, pan-sharpening methods can be applied using GIS basic functions in 
the absence of specific pan-sharpening tools, but this operation is expensive and time-consuming. 
This paper aims to explain the approach implemented in Quantum GIS (QGIS) for automatic pan-
sharpening of Pléiades images. The experiments are carried out on data concerning the Greek island 
named Lesbo. In total, 14 different pan-sharpening methods are applied to reduce pixel dimensions 
of the four multispectral bands from 2 m to 0.5 m. The automatic procedure involves basic functions 
already included in GIS software; it also permits the evaluation of the quality of the resulting images 
supplying the values of appropriate indices. The results demonstrate that the approach provides 
the user with the highest performing method every time, so the best possible fused products are 
obtained with minimal effort in a reduced timeframe. 

Keywords: pan-sharpening; accuracy assessment; GIS basic functions; software routine develop-
ment; data fusion; Pléiades satellite imagery; high resolution imagery 
 

1. Introduction 
If close-range geomatics techniques are useful for the survey and investigation of 

civil engineering constructions, such as buildings, bridges and water towers [1], satellite 
remote sensing is traditionally suitable to support studies on geographic areas, e.g., urban 
growth effects [2,3], glacier inventory [4,5], desertification [6,7], grassland monitoring 
[8,9], burned area detection [10,11], seismic damage assessment [12,13], land deformations 
monitoring aims—landslides [14], land subsidence [15], coastal changes [16], etc. How-
ever, a detailed investigation of the Earth’s surface and land cover can be performed using 
Very High Resolution (VHR) satellite images, characterised by pixel dimension of pan-
chromatic (PAN) data equal or less than 1 m. Generally, VHR sensors carried on a satellite 
can capture also multispectral (MS) images that have a lower resolution than PAN [17,18]. 
In fact, typical spectral imaging systems supply multiband images of high spatial resolu-
tion at a small number of spectral bands or multiband images of high spectral resolution 
with a lower spatial resolution [19]. Since MS bands are requested for many applications, 
it is desirable to increase the geometric resolution of MS images. This operation is possible 
by pan-sharpening, which allows the pixel size of a PAN image to be combined with the 
radiometric information of MS images at a lower spatial resolution [18,20–23]. Pan-
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sharpening is usually applied to images from the same sensor but can also be used for 
data supplied by different sensors [24,25]. 

In the framework of the multi-representation of the geographical data [26], pan-
sharpened images are the most detailed layer of information acquired from space. The 
pan-sharpened images’ field of use is very large. We can distinguish at least three different 
macro-areas: visualisation, classification and feature extraction. 

The first includes the production of orthophotos: substituting the panchromatic im-
age in grey level with Red—Green—Blue (RGB) true-colour composition based on the 
respective multispectral pan-sharpened bands allows the user to have a better vision of 
the scene. In fact, most of the high-resolution imagery in Google Earth Maps is the Digi-
talGlobe Quickbird, which is roughly 65 cm pan-sharpened (65 cm panchromatic at nadir, 
2.62 m multispectral at nadir) [27]. 

Supervised classification algorithms applied on pan-sharpened images produce a 
more detailed thematic map than in the case of the initial images. However, pan-sharp-
ened products cannot be considered at the same level as real sensor products. In fact, the 
procedure introduces distortions of the radiometric values, and this influences the classi-
fication accuracy. Nevertheless, the benefit of the enhanced geometric resolution is higher 
than the loss of the radiometric match. Pan-sharpened images are very advantageous to 
support land cover classification [28], and often they are integrated with other data to 
perform a better investigation of the considered area, e.g., SAR images [29] to detect envi-
ronmental hazards [30]. 

The injection of PAN image details into multispectral images enables the user to per-
form the geospatial feature extraction process, which has been the subject of extensive 
research in the last decades. In 2006, Mohammadzadeh et al. [31] proposed an approach 
based on fuzzy logic and mathematical morphology to extract main road centrelines from 
pan-sharpened IKONOS images: the results were encouraging, considering that the ex-
tracted road centrelines had an average error of 0.504 pixels and a root-mean-square error 
of 0.036 pixels. More recently (2020), Phinzi et al. [32] applied Machine Learning (ML) 
algorithms to a Systeme Pour l’Observation de la Terre (SPOT-7) image to extract gullies. 
They compared three commonly used ML algorithms, including Discriminant Analysis 
(LDA), Support Vector Machine (SVM), and Random Forest (RF); the pan-sharpened 
product from SPOT-7 multispectral image successfully discriminated gullies, with an 
overall accuracy > 95%. 

Several methods for pan-sharpening applications are described in literature, and the 
most frequently used of them are implemented in software for remote sensing. Most of 
them are based on steps that can be easily executed using typical algorithms of Map Al-
gebra and raster processes that are present in GIS software. Coined by Dana Tomlin [33], 
the framework, Map Algebra, includes operations and functions that allow the production 
of a new raster layer starting from one or more raster layers (“maps”) of similar dimen-
sions. Depending on the spatial neighbourhood, Map Algebra operations and functions 
are distinguished into four groups: local, focal, global, and zonal. Local ones work on indi-
vidual pixels; focal ones work on pixels and their neighbours; global ones work on the 
entire layer; zonal ones work on areas of pixels presenting the same value [34]. Map Al-
gebra allows basic mathematical functions like addition, subtraction, multiplication and 
division, as well as statistical operations such as minimum, maximum, average and me-
dian. GIS systems use Map Algebra concepts, e.g., ArcGIS implements them in Python 
(ESRI), MapInfo in MapBasic [35], GRASS GIS in C programming language. Finally, Map 
Algebra operators and functions are available as specific algorithms in GIS software but 
can be combined into a procedure or script to perform complex tasks [34]. 

In this paper, the attention is focused on the possibility to automatise the pan-sharp-
ening process of VHR satellite images, e.g., Pléiades images, based on raster utilities pre-
sent in Quantum GIS (QGIS) [36], a free and open-source GIS software. Particularly, the 
graphical modeller, a simple and easy-to-use interface, is employed to include different 
phases and algorithms in a single process to facilitate the pan-sharpening application. 
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Experiments to test the performance of the automatic procedure are developed on Pléia-
des imagery concerning Lesbo—a Greek island located in the north-eastern Aegean Sea. 
The remainder of this paper is organised as follows. Section 2 describes 14 pan-sharpening 
methods and 7 quality indices chosen for this work (Correlation Coefficient (CC), Univer-
sal Image Quality Index (UIQI), Root-Mean-Square Error (RMSE), Relative Average Spec-
tral Error (RASE), Erreur Relative Globale Adimensionalle de Synthèse (ERGAS), Spatial 
Correlation Coefficient (SCC), Zhou Index (ZI)). Section 3 explains the experimental pro-
cedure: first, a very brief description of the main characteristics of the Pléiades images 
used for this study is supplied; then, the implementation of the fusion techniques in the 
QGIS graphical modeller is illustrated; finally, the procedure steps are explained. Section 
4 presents and discusses the results of the automatisation of pan-sharpening method ap-
plication, highlighting the relevance of the quality index calculation and comparison to 
support the choice of the best-fused products in relation to the user purposes; particularly, 
a multi-criteria analysis is proposed as a methodological tool based on weight attribution 
to each quality index. Section 5 resumes the proposed approach and remarks the efficiency 
of it in consideration of the good results. 

2. Pan-Sharpening Methods and Product Evaluation 
2.1. Pan-Sharpening Methods 

Many pan-sharpening methods are available in literature to fuse the high spectral 
resolution of an MS image with the high spatial resolution of a PAN image [37,38]. The 
pan-sharpening methods can be generalised as the injection of spatial details derived from 
the PAN image into the up-sampled MS images to obtain high spatial resolution MS im-
ages. Currently, the focus is on reducing the spectral distortions of fused images, optimis-
ing the spatial details derived from the PAN image, as well as optimising the weights by 
which the spatial details are multiplied during the injection [39]. 

Due to their numerousness, it is very difficult to classify the sharpening methods in 
a few categories that facilitate the reader in understanding the different types of ap-
proaches for reversing the spatial detail of PAN images into the MS images. Attempts in 
this regard and for this purpose [22,40] identify three different groups, namely component 
substitution (CS), modulation-based (MB), and multi-resolution analysis (MRA). 

The CS is a consistent group where methods are characterised by three steps: the 
transformation of the MS images after their registration to the PAN image; replacement 
of one component of the new data space similar to the PAN with the higher resolution 
image; inverse transformation to the original space for fused image production [22]. The 
CS methods include, among others, the intensity-hue-saturation (IHS) [22], principal com-
ponent analysis (PCA) [41] and Gram–Schmidt transformation (GS) [42] methods. 

MB category includes methods that are centred on the principle of modulating the 
spatial detail into MS images by multiplying MS images with the ratio of the PAN image 
to a synthesised image [43]. The MB group includes, among others, Brovey transformation 
[44] colour normalisation [45], smoothing filter-based intensity modulation (SFIM) [46] 
and high-pass filtering (HPF) [41]. 

The MRA group includes methods that are based on the decomposition of an image 
into a sequence of signals (or pyramid) with decreasingly informative content by applying 
a given operator in an iterative way [47]. MRA methods are characterised by three main 
steps: multi-resolution decomposition (MRA application), i.e., using wavelet transfor-
mation [48]; replacement of PAN’s approximation coefficients by those of the MS band; 
inverse multi-resolution transformation [22]. MRA category includes, among other meth-
ods, the additive wavelet fusion algorithm (AWL) [49], the generalised Laplacian pyramid 
and context-based decision (GLP–CBD) fusion algorithm [50] and the bi-dimensional em-
pirical mode decomposition (BEMD) fusion method [51]. 
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In general, the pan-sharpened images derived by CS methods have high spatial qual-
ity but suffer from spectral distortions; on the other hand, images obtained using MRA 
techniques are not as sharp as CS methods but present a better spectral consistency [47]. 

However, the above-described classification is forced in the sense that, for some 
methods, it is not easy to establish an exclusive association to one of them. For example, 
the Brovey transformation, included in the MB group, and wavelet transformation, in-
cluded in the MRA group, are both considered as IHS-like image fusion methods [52]. 

Even if many pan-sharpening methods seem to be complex, they can be easily imple-
mented by means of GIS basic functions and used in an appropriate way. In addition, the 
timeframes can be vastly reduced by resorting to the automation of the operations 
properly programmed in sequence, according to a logic flowchart. To demonstrate this, 
the following 14 methods are considered in this study: IHS, FAST IHS, Brovey, Fast 
Brovey, Multiplicative, Simple Mean, Gram–Schmidt, Fast Gram–Schmidt, Gram–
Schmidt Mode 2, High Pass Filter, Smoothing Filter-based Intensity Modulation (SFIM), 
Modulation Transfer Function - Generalized Laplacian Pyramid (MTF–GLP), MTF–GLP–
Context-Based Decision (MTF–GLP–CBD), MTF–GLP–High Pass Modulation (MTF–
GLP–HPM). The main characteristics of those methods are reported below, including for-
mulas in view of implementing them by means of GIS tools. However, those formulas are 
firstly inserted in our proposed GIS-based procedure for Pléiades images, then applied 
manually to the same dataset to verify their correct in an automatic way. 

2.1.1. IHS and IHS Fast 
Included in the Component Substitution techniques group [22,53], it is based on the 

projection of multispectral images from Red–Green–Blue (RGB) to Intensity-Hue-Satura-
tion (IHS) colour space [54]. The Intensity component (I) is used to fuse PAN, character-
ized by higher spatial resolution, and MS data, presenting less spatial resolution, because 
of its similarity with the panchromatic image. According to the fusion framework called 
Generalized IHS (GIHS) [52], the Intensity component is supplied by:  

𝐼𝐼 =
1
𝑛𝑛
� 𝑀𝑀𝑀𝑀𝑘𝑘

𝑛𝑛

𝑘𝑘=1
 (1) 

where n represents the number of the multispectral bands. 
The fused multispectral images 𝑀𝑀𝑀𝑀𝑘𝑘

𝑓𝑓are produced using the following formula: 

𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑘𝑘 + 𝛿𝛿 (2) 

where δ is the difference between PAN and I. 
An interesting variation of IHS is the so called IHS Fast (IHSF) that introduce weights 

for each multispectral image. In this case Intensity is supplied by [55]: 

𝐼𝐼 =
1

∑ 𝜑𝜑𝑘𝑘𝑛𝑛
1

� 𝜑𝜑𝑘𝑘 ∙ 𝑀𝑀𝑀𝑀𝑘𝑘
𝑛𝑛

𝑘𝑘=1
 (3) 

where 𝜑𝜑𝑘𝑘 is the weight of k-th multispectral band. 
Different solutions are present in literature for weight determination: such as using 

an empirical approach or the spectral response analysis [56]. 

2.1.2. Brovey Transformation and Brovey Transformation Fast 
Developed by an American scientist to visually increase the contrast in the low and 

high ends of an image’s histogram and thus change the original scene’s radiometry [44], 
the Brovey transformation (BT) normalizes multispectral bands by dividing each of them 
with the synthetic panchromatic obtained from the same multispectral data. Then, the re-
sults are multiplied with the original panchromatic. The fused images are defined by the 
following equations [57,58]: 
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𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 =

𝑀𝑀𝑀𝑀𝑘𝑘
𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡

∙ 𝑃𝑃𝑃𝑃𝑃𝑃 (4) 

where 𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 is the combination of the multispectral images according to the formula: 

𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 =
1
𝑛𝑛
∙�𝑀𝑀𝑀𝑀𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 (5) 

Additionally, for this method, weights are introduced, so (5) is substituted by the 
following formula: 

𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ 𝜑𝜑𝑘𝑘 ∙ 𝑀𝑀𝑀𝑀𝑘𝑘𝑛𝑛
𝑘𝑘=1
∑ 𝜑𝜑𝑘𝑘𝑛𝑛
𝑘𝑘=1

 (6) 

This approach is called Brovey Transformation Fast (BTF). 

2.1.3. Multiplicative Method 
With the Multiplicative method (MLT) [59], the pan-sharpened image is attained by 

the formula: 

𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 =

𝑃𝑃𝑃𝑃𝑃𝑃
µ𝑃𝑃𝑃𝑃𝑃𝑃

∙ 𝑀𝑀𝑀𝑀𝑘𝑘 (7) 

where, µ𝑃𝑃𝑃𝑃𝑃𝑃  is the mean of panchromatic image. 

2.1.4. Simple Mean Method 
The Simple Mean method (SM) uses a simple mean-averaging equation for each com-

bination of PAN with one multispectral image [60]. Consequently, the pan-sharpened im-
age is supplied by the formula:  

𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 =

𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑀𝑀𝑀𝑀𝑘𝑘
2

 (8) 

2.1.5. Gram-Schmidt and Fast Gram-Schmidt 
The Gram–Schmidt pan-sharpening method is based on the Gram–Schmidt transfor-

mation (GST), a mathematical approach that ortho-normalizes a set of vectors, usually in 
the Euclidean space Rn, not orthogonal, rotating them until they are orthogonalized; par-
ticularly, in the case of images, each band (panchromatic or multispectral) corresponds to 
one high-dimensional vector [61]. 

The method is well described in the Laben and Brower patent [42], based on the se-
quel of steps summarized below. 
1. A lower spatial resolution panchromatic image is simulated from the multispectral 

band images. 
2. GST is performed on the simulated lower spatial resolution panchromatic image and 

the lower spatial resolution spectral band images. Particularly, the simulated lower 
spatial resolution panchromatic image is used as the first band in the Gram–Schmidt 
process. 

3. The statistics (mean and standard deviation) of the first transform band resulting from 
the GST are used as a reference to adjust the statistics of the higher spatial resolution 
panchromatic image; in this way, a modified higher spatial resolution panchromatic 
image is produced. 

4. The modified higher spatial resolution panchromatic image (with adjusted statistics) 
takes the place of the first transform band resulting from the GST to produce a new 
set of transform bands. 

5. The inverse GST is performed on the new set of transform bands to produce the en-
hanced spatial resolution multispectral digital image. 
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The simulated lower spatial resolution panchromatic image can be obtained as a lin-
ear combination of the n MS bands: 

𝑃𝑃𝑃𝑃𝑃𝑃′ =
1
𝑛𝑛
�𝑀𝑀𝑀𝑀𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 (9) 

𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑘𝑘 + 𝑔𝑔𝑘𝑘(𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃′) (10) 

In this formula, 𝑔𝑔𝑘𝑘 is the gain, given by:  

𝑔𝑔𝑘𝑘 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝑀𝑀𝑘𝑘,𝑃𝑃𝑃𝑃𝑃𝑃′)
𝑐𝑐𝑣𝑣𝑣𝑣(𝑃𝑃𝑃𝑃𝑃𝑃′)

 (11) 

where 𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝑀𝑀𝑘𝑘,𝑃𝑃𝑃𝑃𝑃𝑃′) is the covariance between the initial k-th multispectral image and 
the low-resolution panchromatic image; 𝑐𝑐𝑣𝑣𝑣𝑣(𝑃𝑃𝑃𝑃𝑃𝑃′) is the 𝑃𝑃𝑃𝑃𝑃𝑃′ variance. 

Different versions of GST are available because of how 𝑃𝑃𝑃𝑃𝑃𝑃′ is generated. The sim-
plest way to produce the lower spatial resolution panchromatic image is supplied by the 
formula (9): in this case, the method is named GS mode 1 (GS1). If weights are introduced 
to generate 𝑃𝑃𝑃𝑃𝑃𝑃′ as a weighted average of the MS bands, formula (9) is substituted by 
the following formula: 

𝑃𝑃𝑃𝑃𝑃𝑃′ = �𝑤𝑤𝑘𝑘𝑀𝑀𝑀𝑀𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 (12) 

This method is referred to as Gram–Schmidt Fast (GSF). 
Another possibility is to degrade the panchromatic by applying a smoothing filter. 

The degraded image (D) is then used as follows: 

𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑘𝑘 + 𝑔𝑔𝑘𝑘(𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐷𝐷) (13) 

This method is known as Gram-Schmidt mode 2 (GS2). 

2.1.6. High Pass Filter 
The High Pass Filter method (HPF) was introduced by Chavez and Bowel to merge 

multispectral Landsat Thematic Mapper data with SPOT PAN data [62]. In the HPF 
method, a small high-pass spatial filter is applied to the PAN image: the results contain 
the high-frequency component/information that is related mostly to spatial information 
while the greatest part of the spectral information is removed; the HPF results are added, 
pixel by pixel, to the lower spatial resolution and higher spectral resolution data set [41]. 

According to the authors of [63], the high-frequency component of the PAN image 
can be extracted in an alternative way by applying the smoothing filter to the PAN image 
and subtracting the result to the PAN. Finally, the pan-sharpened image is obtained by 
the formula: 

𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑘𝑘 + 𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐷𝐷 (14) 

2.1.7. Smoothing Filter-Based Intensity Modulation 
The smoothing filter-based intensity modulation (SFIM) technique was developed by 

Liu to fuse a Landsat TM multispectral image with a resolution of 30 m with a SPOT pan-
chromatic image with a resolution of 10 m of south-east Spain [46]. This approach can be 
considered as a refinement of the methods of Pradines [64] and of Guo and Moore [65]; it 
extracts by a filtering technique the high frequencies of the SPOT image and injects them 
into the Landsat imagery [66]. 

This technique is based on the concept that, by using a ratio between a higher reso-
lution image and its low pass-filtered (with a smoothing filter) image, spatial details can 
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be modulated to a co-registered lower resolution multispectral image without altering its 
spectral properties and contrast [46]. 

Therefore, the gains in Equation (13) can be considered as a ratio between the k-th 
multispectral image and the degraded image: 

𝑔𝑔𝑘𝑘 =
𝑀𝑀𝑀𝑀𝑘𝑘
𝐷𝐷

 (15) 

In such way the final formula would be: 

𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑘𝑘
𝐷𝐷

(𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐷𝐷) (16) 

Liu remarks that the visual evaluation and statistical analysis compared with the IHS 
and Brovey transform techniques confirmed SFIM as the superior fusion technique for 
pan-sharpening. However, the authors of [66] propose a more careful analysis of this as-
pect using the appropriate protocol present in [67]. 

2.1.8. Modulation Transfer Function–Generalized Laplacian Pyramid 
The Laplacian Pyramid (LP) was first proposed by Burt and Adelson [68] for compact 

image representation. It allows the decomposition of an image using the Gaussian Pyra-
mid (GP), which is a multiresolution image representation obtained through a recursive 
reduction (low-pass filtering and decimation) of the image data set [69]. 

To degrade the panchromatic image for pan-sharpening, a generalized LP based on 
Gaussian modulation function can be used [70,71]. 

The resulting degraded panchromatic image (D′) can be used to generate the multi-
spectral pan-sharpened images according to the following formula: 

𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑘𝑘 + 𝑔𝑔𝑘𝑘(𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐷𝐷′) (17) 

Assuming 𝑔𝑔𝑘𝑘 = 1, this method is known as Modulation Transfer Function–General-
ized Laplacian Pyramid (MTF–GLP). 

Two variants of this method are applied in this work, as gains are taken into account. 
If gains are calculated as: 

𝑔𝑔𝑘𝑘 =
𝑀𝑀𝑀𝑀𝑘𝑘
𝐷𝐷′  (18) 

the method is named Modulation Transfer Function–Generalized Laplacian Pyramid–
High Pass Modulation (MTF–GLP–HPM) [63,72], and the final equation is: 

𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑘𝑘
𝐷𝐷′ (𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐷𝐷′) (19) 

If gains are calculated as: 

𝑔𝑔𝑘𝑘 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝑀𝑀𝑘𝑘,𝐷𝐷′)
𝑐𝑐𝑣𝑣𝑣𝑣(𝐷𝐷′)

 (20) 

the method is named Modulation Transfer Function–Generalized Laplacian Pyramid–
Context Based Decision (MTF–GLP–CBD) [37]. 

2.2. Quality Indices 
The accuracy of the pan-sharpened images is not easy to determine because a refer-

ence image at the same resolution as the fused one does not exist [18]. Several indices are 
available to evaluate the quality of the pan-sharpened data, and they can be distinguished 
into two groups based on their ability to assess spectral or spatial fidelity. The dissimilar-
ity between the fused image and the expanded MS image represents the spectral differ-
ence introduced by the pan-sharpening [73]. The similarity between the shape of the ob-
jects included in the fused image and the corresponding one in the panchromatic image 
represents the preservation of the spatial details guaranteed by the pan-sharpening. In 
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this study, spectral indices, such as Correlation Coefficient (CC), Universal Image Quality 
Index (UIQI), Root-Mean-Square Error (RMSE), Relative Average Spectral Error (RASE) 
and Erreur Relative Globale Adimensionalle de Synthèse (ERGAS), are calculated. In ad-
dition, the spatial indices, such as Spatial Correlation Coefficient (SCC) and Zhou Index 
(ZI), are used. 

Although indices support the evaluation of pan-sharpening algorithm performance 
and facilitate the comparison between multiple options, a visual inspection of the result-
ing images is useful to assess the colour preservation quality and the spatial improve-
ments in object representation [74]. Consequently, in this study, a visual analysis of the 
pan-sharpened multispectral images derived from the 14-method implementation in GIS 
is conducted, and 7 indices are calculated to support the evaluation process. A brief over-
view of the adopted indices, including formulas, is reported below. 

(1) Correlation Coefficient (CC) measures the correlation between the original multi-
spectral (𝑀𝑀𝑀𝑀𝑘𝑘) and fused images (𝑀𝑀𝑀𝑀𝑘𝑘

𝑓𝑓): values close to one indicate that 𝑀𝑀𝑀𝑀𝑘𝑘 and 𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓 

are correlated [75,76]. 
(2) Universal Image Quality Index (UIQI), proposed by [77], is a product of three 

components: 

𝑈𝑈𝐼𝐼𝑈𝑈𝐼𝐼 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝑀𝑀𝑘𝑘,𝑀𝑀𝑀𝑀𝑘𝑘

𝑓𝑓)

�𝑐𝑐𝑣𝑣𝑣𝑣(𝑀𝑀𝑀𝑀𝑘𝑘) 𝑐𝑐𝑣𝑣𝑣𝑣(𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓)
∙

2(𝑀𝑀𝑀𝑀𝑘𝑘)��������(𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓)���������

�(𝑀𝑀𝑀𝑀𝑘𝑘)���������2 + �(𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓)����������

2 ∙
2�𝑐𝑐𝑣𝑣𝑣𝑣(𝑀𝑀𝑀𝑀𝑘𝑘) 𝑐𝑐𝑣𝑣𝑣𝑣(𝑀𝑀𝑀𝑀𝑘𝑘

𝑓𝑓)

𝑐𝑐𝑣𝑣𝑣𝑣(𝑀𝑀𝑀𝑀𝑘𝑘) + 𝑐𝑐𝑣𝑣𝑣𝑣(𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓)

 (21) 

where (𝑀𝑀𝑀𝑀𝑘𝑘)�������� is the mean value of 𝑀𝑀𝑀𝑀𝑘𝑘; (𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓)��������� is the mean value of 𝑀𝑀𝑀𝑀𝑘𝑘

𝑓𝑓. 
The first factor in Equation (21) is CC between the two considered images; the second 

measures the mean shift between the original and fused images; the third evaluates 
changes in the contrast between the images [18]. The dynamic range of UIQI is [−1, 1]: 
values close to 1 indicate a good performance of the pan-sharpening application [78,79]; 
the best value one is achieved if and only if the tested image is equal to the reference image 
for all pixels [80]. 

(3) Root-Mean-Square Error (RMSE) is a frequently used method for measuring the 
similarity between each original image and the corresponding fused image [81] and de-
fined as Equation (23): 

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 = �
1
𝑀𝑀𝑃𝑃

��(𝑀𝑀𝑀𝑀𝑘𝑘(𝑖𝑖, 𝑗𝑗) −𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓(𝑖𝑖, 𝑗𝑗))2

𝑃𝑃

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

 (22) 

where 𝑀𝑀𝑀𝑀𝑘𝑘(𝑖𝑖, 𝑗𝑗) represents the pixel value in the original (reference) image; 𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓(𝑖𝑖, 𝑗𝑗) 

represents the pixel value in the corresponding fused image; i and j identify the pixel po-
sition in each image; M and N are the number of rows and the number of columns that 
are present in each image, respectively. The smaller the RMSE value, the better the corre-
spondence between the images. 

(4) Relative average spectral error (RASE) characterizes the average performance of 
a method in the considered spectral bands [82]. This index is calculated including all mul-
tispectral images by the following formula [83,84]: 

𝑅𝑅𝑃𝑃𝑀𝑀𝑅𝑅 =
100
𝑚𝑚

�
1
𝑛𝑛
�𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅𝑘𝑘2
𝑛𝑛

k=1

 (23) 

where m is the mean value of Brightness Values (BVs) of the n input images (𝑀𝑀𝑀𝑀𝑘𝑘). 
(5) Erreur Relative Globale Adimensionalle de Synthèse (ERGAS) quantifies the spec-

tral quality of the different fused images by means of the following formula [67]: 
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𝑅𝑅𝑅𝑅𝐸𝐸𝑃𝑃𝑀𝑀 = 100 ∙
ℎ
𝑙𝑙
∙ �

1
𝑛𝑛
∙��

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅(𝑀𝑀𝑀𝑀𝑘𝑘)
𝜇𝜇𝑘𝑘

�
2𝑛𝑛

𝑘𝑘=1

 (24) 

Where: 
h is the spatial resolution of reference image (PAN); 
l is the spatial resolution of original multispectral images (𝑀𝑀𝑀𝑀𝑘𝑘); 
n is the number of spectral bands; 
RMSE is the Root-Mean-Square Error for k-band between fused (𝑀𝑀𝑀𝑀𝑘𝑘

𝑓𝑓) and original 
bands (𝑀𝑀𝑀𝑀𝑘𝑘); 
µk is the mean of the k-th band of original image. 
Low values of ERGAS suggest a likeness between the original and fused bands. 
(6) Spatial Correlation Coefficient (SCC) measures the correlation between the PAN 

and fused images (𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓): values close to one indicate that 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑀𝑀𝑀𝑀𝑘𝑘

𝑓𝑓 are correlated. 
The SCC is given by [85]: 

𝑀𝑀𝑆𝑆𝑆𝑆�𝑃𝑃𝑃𝑃𝑃𝑃/𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓� =

𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑃𝑃𝑃𝑃,𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓)

�𝑐𝑐𝑣𝑣𝑣𝑣(𝑃𝑃𝑃𝑃𝑃𝑃) 𝑐𝑐𝑣𝑣𝑣𝑣(𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓)

 (25) 

where, 𝑐𝑐𝑐𝑐𝑐𝑐�𝑃𝑃𝑃𝑃𝑃𝑃,𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓� is the covariance between PAN and the k-th pan-sharpened im-

age. 
(7) Zhou’s spatial index (ZI), in order to extract high frequency information from 

PAN and 𝑀𝑀𝑀𝑀𝑘𝑘
𝑓𝑓, uses a high frequency Laplacian filter: 

𝐿𝐿𝑣𝑣𝐿𝐿𝑙𝑙𝑣𝑣𝑐𝑐𝑖𝑖𝑣𝑣𝑛𝑛 𝐾𝐾𝐾𝐾𝑣𝑣𝑛𝑛𝐾𝐾𝑙𝑙 = �
−1 −1 −1
−1 8 −1
−1 −1 −1

� (26) 

The results of the filtering operations are the High Pass PAN (HPP) and the High 
Pass 𝑀𝑀𝑀𝑀𝑘𝑘

𝑓𝑓, (𝐻𝐻𝑃𝑃𝑀𝑀𝑘𝑘
𝑓𝑓), which are used to obtain ZI as follows [86]: 

𝑍𝑍𝐼𝐼 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝐻𝐻𝑃𝑃𝑃𝑃,𝐻𝐻𝑃𝑃𝑀𝑀𝑘𝑘

𝑓𝑓)

�𝑐𝑐𝑣𝑣𝑣𝑣(𝐻𝐻𝑃𝑃𝑃𝑃) 𝑐𝑐𝑣𝑣𝑣𝑣(𝐻𝐻𝑃𝑃𝑀𝑀𝑘𝑘
𝑓𝑓)

 (27) 

3. Experimental Procedure 
3.1. Dataset: Pléiades Images 

The Pléiades constellation is composed of two VHR optical Earth-imaging satellites 
named Pléiades-HR 1A (launched in December 2011) and Pléiades-HR 1B (launched in 
December 2012). These satellites of CNES (Centre National d’Études Spatiales), the Space 
Agency of France, provide coverage of the Earth’s surface with a repeat cycle of 26 days. 
Designed for civil and military users, the Pléiades system is suitable for emergency re-
sponse and change detection [87]. Pléiades imagery consists of panchromatic and multi-
spectral data. The former present a spatial resolution of 0.50 m, and the spectral range is 
0.480–0.830 μm. The latter have resolution of 2.00 m and include four Multispectral bands: 
Blue (0.430–0.550 μm), Green (0.490–0.610 μm), Red (0.600–0.720 μm) and Near Infrared 
(0.750–0.950 μm) [88]. The spectral response associated with the Pléiades MS and PAN 
sensors is shown in Figure 1. 
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Figure 1. Spectral response of the Pléiades multispectral (MS) and panchromatic (PAN) sensors. 

In this study, Pléiades-HR 1B imagery concerning the island of Lesbo (Greece) is con-
sidered. The whole scene was acquired on 1 July 2014. It has been made available free of 
charge by European Space Agency (ESA). The clip used for the experiments (Figure 2) 
extends 2000 m × 2000 m and is georeferenced in the UTM/WGS84 (Zone 35 N) coordinate 
system (Figure 2). Particularly, the area is included between coordinates East 407,000–
409,000 m and North 4,332,000–4,334,000 m. 
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Figure 2. The study area: localization of Lesbo Island into Aegean Sea, in equirectangular projec-
tion and WGS84 geographic coordinates (upper); the RGB overview of the Pléiades images, in 
UTM/WGS84 plane coordinate (lower). 
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3.2. Implementation of Pan-Sharpening Methods in QGIS 
QGIS is a free and open-source GIS software licensed under the GNU General Public 

License. It is the product of the Open Source Geospatial Foundation (OSGeo), and version 
1.0 was released in 2009. Built in C++, it uses Python for scripting and plugins. It is com-
monly defined as user-friendly, fully functional and relatively lightweight. It runs on Win-
dows, Linux, Unix, Mac OSX and Android and is integrated into OSGeo tools (GRASS, 
Saga, GDAL, etc.) [89]. 

QGIS has a graphical modeller built-in that can help to define the workflow of two 
or more operations and run it with a single invocation. GIS Workflows typically involve 
many steps, with each step generating intermediate output that is used by the next step. 
Using the graphical modeller, it is not necessary to run through the entire process again 
manually to change the input data or a parameter. In other terms, the model is executed 
as a single algorithm [90]. 

The following steps are required to create a model. 
1. Definition of necessary inputs. The inputs are added to the parameters window, so 

the user can set their values when executing the model. Because the model itself is an 
algorithm, the parameters window is generated automatically as it occurs with all 
the algorithms available in the processing framework. 

2. Definition of the workflow. The workflow is defined by adding algorithms and se-
lecting how they use the input data of the model or the outputs created by other 
algorithms already in the model. 
For example, to implement the IHS pan-sharpening method for Pléiades images, the 

workflow reported in Figure 3 has been created. All formulas reported in the previous 
subparagraph have been implemented using the algorithm named r.mapcalc [91] includ-
ing in GRASS. Particularly, the workflow highlights that the user is asked to choose the 
images to which to apply the IHS method and the automatic procedure begins: using the 
algorithm r.mapcalc, the routine firstly implement formula (1) and then formula (2), fi-
nally generating the MS fused images. 

 
Figure 3. Workflow of the IHS pan-sharpening algorithm implementation in the graphical model-
ler based on r.mapcalc. 
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3.3. Procedure Steps 
Once the pan-sharpening algorithms and the calculation of the indices in QGIS have 

been implemented, the procedure is fully automated by following the steps below: 
1. Selection of the images to use in order to achieve pan-sharpening from the Pléiades 

image set; 
2. Application of the selected pan-sharpening methods among the 14 available ones; 
3. Visualization of the fusion products; 
4. Calculation of 7 different indices to evaluate the quality of the products; 
5. Comparison of quality indices, through an evaluation process based on the attribu-

tion of different weights, to detect the best-fused products. 
The above-described steps are reported in the flow-chart shown in Figure 4. 

 
Figure 4. Flow-chart of the automated procedure. 

The process is created for the Pléiades dataset, but it is repeatable for any set of sat-
ellite images. 

The weights assigned to each index can be freely chosen by the user based on the 
required needs. Finally, the best performing method is detected by multi-criteria analysis 
[92]. 

As the purpose of this manuscript is not to compare different pan-sharpening meth-
ods but to automate the image fusion process and support the choice of the best pan-
sharpening method, we decided to repeat all operations manually in QGIS to have images 
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produced in the usual way to compare with the automatic outputs. In this way, the accu-
racy of the proposed approach is evaluated. 

4. Results and Discussion 
Considering that the starting multispectral images are 4 and the methods imple-

mented are 14, the implementation of our proposal generates 56 pan-sharpened images. 
The products obtained from the application of each method are quantitatively evaluated 
using the quality indices mentioned in Section 2.2. The results of these metrics are shown 
in the following tables (Tables 1–14), one for each method. 

Table 1. Quality indices for MLT pan-sharpening. 

MLT RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 44.855 

7.791 29.089 

0.909 

0.925 

0.573 

0.721 

0.930 

0.901 

0.834 

0.763 
Green 41.606 0.955 0.686 0.925 0.769 

Red 39.566 0.954 0.801 0.875 0.657 
NIR 38.640 0.881 0.824 0.875 0.792 

Table 2. Quality indices for SM pan-sharpening. 

SM RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 45.980 

5.927 24.090 

0.889 

0.932 

0.867 

0.916 

0.961 

0.937 

0.859 

0.798 
Green 36.699 0.947 0.941 0.968 0.814 

Red 17.404 0.957 0.949 0.941 0.735 
NIR 21.101 0.934 0.908 0.878 0.782 

Table 3. Quality indices for GS pan-sharpening. 

GS RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 11.440 

3.399 12.858 

0.928 

0.934 

0.911 

0.913 

0.890 

0.884 

0.915 

0.908 
Green 15.846 0.921 0.894 0.957 0.960 

Red 21.795 0.925 0.900 0.930 0.948 
NIR 18.694 0.963 0.947 0.757 0.808 

Table 4. Quality indices for BT pan-sharpening. 

BT RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 17.665 

3.314 12.906 

0.835 

0.919 

0.777 

0.890 

0.946 

0.883 

0.960 

0.889 
Green 17.685 0.915 0.879 0.963 0.963 

Red 17.599 0.966 0.955 0.889 0.847 
NIR 16.757 0.959 0.948 0.732 0.787 

Table 5. Quality indices for IHS pan-sharpening. 

IHS RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 16.948 

3.215 12.548 

0.856 

0.922 

0.817 

0.898 

0.921 

0.886 

0.966 

0.905 
Green 16.948 0.911 0.880 0.960 0.968 

Red 16.948 0.953 0.939 0.913 0.899 
NIR 16.948 0.969 0.956 0.750 0.788 
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Table 6. Quality indices for BTF pan-sharpening. 

BTF RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 18.384 

3.158 12.435 

0.846 

0.922 

0.796 

0.897 

0.920 

0.871 

0.949 

0.888 
Green 16.481 0.918 0.887 0.950 0.957 

Red 14.599 0.967 0.957 0.883 0.852 
NIR 18.150 0.958 0.949 0.733 0.793 

Table 7. Quality indices for GSF pan-sharpening. 

GSF RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 10.108 

3.111 11.699 

0.944 

0.943 

0.933 

0.929 

0.861 

0.868 

0.884 

0.895 
Green 14.184 0.934 0.914 0.940 0.943 

Red 19.727 0.935 0.918 0.915 0.940 
NIR 18.097 0.961 0.950 0.756 0.814 

Table 8. Quality indices for IHSF pan-sharpening. 

IHSF RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 16.304 

3.092 11.935 

0.864 

0.925 

0.830 

0.905 

0.896 

0.873 

0.957 

0.903 
Green 16.304 0.914 0.888 0.946 0.963 

Red 16.304 0.955 0.944 0.903 0.900 
NIR 16.304 0.967 0.959 0.749 0.794 

Table 9. Quality indices for HPF pan-sharpening. 

HPF RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 15.998 

3.034 11.914 

0.864 

0.920 

0.832 

0.904 

0.798 

0.823 

0.918 

0.874 
Green 15.998 0.906 0.886 0.887 0.916 

Red 15.998 0.951 0.944 0.862 0.857 
NIR 15.998 0.958 0.956 0.747 0.803 

Table 10. Quality indices for SFIM pan-sharpening. 

SFIM RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 17.127 

3.022 12.052 

0.850 

0.918 

0.812 

0.902 

0.793 

0.820 

0.909 

0.857 
Green 15.751 0.909 0.890 0.884 0.905 

Red 14.314 0.962 0.956 0.856 0.807 
NIR 17.421 0.950 0.948 0.749 0.807 

Table 11. Quality indices for MTF-GLP-HPM pan-sharpening. 

MTF-GLP-HPM RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 15.578 

2.743 10.957 

0.863 

0.927 

0.836 

0.916 

0.790 

0.816 

0.888 

0.853 
Green 14.289 0.920 0.907 0.885 0.905 

Red 12.962 0.969 0.965 0.851 0.821 
NIR 15.832 0.958 0.957 0.737 0.797 

Table 12. Quality indices for MTF-GLP pan-sharpening. 

MTF-GLP RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 14.410 

2.733 10.733 

0.880 

0.931 

0.857 

0.920 

0.794 

0.818 

0.900 

0.867 
Green 14.410 0.918 0.905 0.886 0.914 

Red 14.410 0.960 0.955 0.856 0.864 
NIR 14.410 0.965 0.964 0.734 0.791 
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Table 13. Quality indices for GS2 pan-sharpening. 

GS2 RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 7.999 

2.651 10.265 

0.967 

0.954 

0.960 

0.948 

0.784 

0.821 

0.748 

0.817 
Green 11.678 0.949 0.940 0.885 0.841 

Red 16.158 0.950 0.942 0.862 0.860 
NIR 17.277 0.951 0.949 0.753 0.820 

Table 14. Quality indices for MTF-GLP-CBD pan-sharpening. 

MTF-GLP-CBD RMSE ERGAS RASE CC CCM UIQI UIQIM SCC SCCM ZI ZIM 
Blue 7.061 

2.349 9.077 

0.975 

0.964 

0.971 

0.960 

0.776 

0.813 

0.751 

0.817 
Green 10.375 0.959 0.954 0.882 0.852 

Red 14.410 0.960 0.955 0.856 0.864 
NIR 15.131 0.962 0.961 0.737 0.800 

Table 15 is a comparative table of all the methods (note: for each index, only the mean 
value is reported for an easier synoptic view). 

Table 15. Quality indices comparison of all the pan-sharpening methods. 

METHOD RMSEM ERGAS RASE CCM UIQIM SCCM ZIM 
MLT 41.167 7.791 29.089 0.925 0.721 0.901 0.763 
SM 30.296 5.927 24.090 0.932 0.916 0.937 0.798 
GS 16.944 3.399 12.858 0.934 0.913 0.884 0.908 
BT 17.427 3.314 12.906 0.919 0.890 0.883 0.889 

IHS 16.948 3.215 12.548 0.922 0.898 0.886 0.905 
BTF 15.853 2.953 11.604 0.922 0.907 0.871 0.888 

IHSF 15.103 2.865 10.969 0.926 0.915 0.873 0.903 
GSF 13.404 2.707 10.022 0.952 0.945 0.868 0.895 

SFIM 14.110 2.639 10.545 0.930 0.921 0.820 0.857 
HPF 13.766 2.611 10.254 0.920 0.910 0.823 0.874 

MTFGLP 13.836 2.588 10.323 0.929 0.922 0.818 0.867 
MTF–GLP–HPM 12.965 2.459 9.659 0.938 0.933 0.816 0.853 

GS2 10.944 2.190 8.457 0.969 0.966 0.821 0.817 
MTF–GLP–CBD 9.567 1.911 7.377 0.977 0.976 0.813 0.817 

However, the results highlight some significant aspects, as reported below. 
Even if all spectral indices do not supply the same classification, underlying trends 

are evident. For example, the level of correlation between each pan-sharpened image and 
the corresponding original one is high in many cases, testifying to the effectiveness of the 
analysed method. The lowest values are usually obtained for the blue band as a conse-
quence of the low level of overlap between the PAN sensor’s spectral response and the 
Blue sensor’s spectral response (Figure 1). In addition, all spectral indices supply the same 
result for the best performing method (MTF–GLP–CBD); however, they do not identify 
the same method as the weakest (i.e., BT for CC and MLT for ERGAS). 

On the other hand, spatial indices provide a ranking that is in some respects different 
from that given by spectral indices. In fact, the best performing method in terms of spectral 
fidelity, MTF–GLP–CBD, supply poor results in terms of spatial fidelity. As testified by 
other studies [44,93], the improvement of the spatial quality of one image means the de-
terioration of the spectral quality and vice versa. 

In light of the above considerations, a compromise must be sought in terms of spec-
tral preservation and spatial enhancement to ensure good pan-sharpened products. 
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To better compare the results, we decided to assign a score to each method. In par-
ticular, as a first step, a ranking is made for the methods in consideration of each indicator, 
assigning a score from 1 to 14. The spectral indicators are then mediated between them, 
as well as the spatial indicators. Figure 5 shows the results obtained by each method tak-
ing into account the mean spectral indicator and the mean spatial indicator. 

 
Figure 5. Mean Spectral Indicator, on the x-axis, and Mean Spatial Indicator, on the y-axis, are 
plotted and compared. 

As the last step, a general ranking can be obtained by introducing weights for Mean 
Spectral Indicator and Mean Spatial Indicator. For example, using the same weight (0.5) 
for both indicators, the resulting classification is shown in Table 16. 
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Table 16. Ranking of the pan-sharpening methods. 

Method Ranking 
GSF 1° 
GS 2° 

IHSF 3° 
IHS 4° 
GS2 5° 

MTF–GLP–CBD 6° 
MTF–GLP 7° 

HPF 7° 
MTF–GLP–HPM 9° 

BTF 9° 
SFIM 11° 

BT 12° 
SM 12° 

MLT 14° 

To give an idea of the quality of the derived images, Figure 6 shows the zoom of the 
RGB composition of the initial multispectral images as well as the zoom of the RGB com-
position of the multispectral pan-sharpened images obtained from each method. 
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Figure 6. Zoom of the RGB composition of the initial multispectral images (a) and zoom of the 
RGB composition of the multispectral pan-sharpened images obtained from each method, respec-
tively: (b) MLT; (c) SM; (d) GS; (e) BT; (f) IHS; (g) BTF; (h) GSF; (i) IHSF; (j) HPF; (k) SFIM; (l) 
MTF–GLP–HPM; (m) MTF–GLP; (n) GS2; (o) MTF–GLP–CBD. 
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Comparing these results by means of visual inspection, the increase of the geometric 
resolution as well as the level of the reliability of the obtained colours are evident. In some 
cases, e.g., for the images resulting from the GSF, the colours are correctly preserved, and 
the details injected by the panchromatic data are impressive. This result confirms the high 
performance certified for this method by our classification based on the Multi-criteria ap-
proach. In other cases, however, e.g., for the images deriving from the BTF or HPF, there 
is a lower level of fidelity to the original gradations of the colours. Finally, as in the case 
of SFIM-derived images, there is a loss of spatial detail that is not opportunely injected in 
the multispectral products. 

All the operations conducted in an automated way by means of GIS tools were also 
executed in a non-automated way by the authors to test the exactness of the algorithms 
implemented in the graphical modeller. Particularly, for each method, the differences be-
tween the single multispectral pan-sharpened image obtained in an automated way and 
the corresponding one obtained in a non-automated way were calculated. The residuals 
were zero in every case. Ultimately, both products are perfectly coincident, and the pro-
posed approach is positively tested, so it can be used as a valuable tool to deal with a 
critical aspect of pan-sharpening. In fact, according to [44], there is no single method or 
processing chain for image fusion: in order to obtain the best results, a good understand-
ing of the principles of fusing operations and especially good knowledge of the data char-
acteristics are compulsory. Since each method can give different performances in different 
situations, applications of several algorithms and comparison of the results are preferable. 
This approach is very demanding and time-consuming, so the automation of pan-sharp-
ening methods using GIS basic functions proposed in this work enables the user to achieve 
the best results in a rapid, easy and effective way. 

5. Conclusions 
The work presented here analyses the possibility to apply pan-sharpening methods 

to Pléiades images by means of GIS basic functions, without using specific pan-sharpen-
ing tools. The free and open-source GIS software named QGIS was chosen for all applica-
tions carried out. Finally, 14 methods are automatically applied and compared using qual-
ity indices and multi-criteria analysis. 

The results demonstrate that the transfer of the higher geometric resolution of pan-
chromatic data to multispectral ones does not require specific tools because it can be im-
plemented using filters and Map Algebra functions. QGIS software supplies the Raster 
calculator, a simple but powerful tool to support specific operations that are fundamentals 
for pan-sharpening method applications, i.e., direct and reverse transformations between 
RGB and IHS space, synthetic image production, co-variance estimation. This tool is also 
useful to calculate indices for a quantitative evaluation of the quality of the resulting pan-
sharpened images. The whole process can be automatised using a graphical modeller to 
simplify the user’s task by reducing it to select data. 

Since the best performing method cannot be fixed in an absolute way but rather de-
pends on the characteristics of the scene, several algorithms must be compared to select 
one providing suitable results for a defined purpose each time. For evaluating the quality 
indices by means of multi-criteria analysis, weights can be introduced in accordance with 
the user needs, i.e., putting spatial requirements before spectral ones or vice versa. In other 
words, our proposal aids the user by giving the automatic execution of pan-sharpening 
methods but also supporting the choice of the best-fused products. For this reason, the 
calculation of quality indices and the comparison of their values are both necessary. 

Concerning the future developments of this work, further applications will be fo-
cused on the possibility to integrate other pan-sharpening methods in order to increase 
the number of available options for the user. In addition, we will be mainly focused on 
the possibility to facilitate the choice of the best performing method, also supplying other 
results in an automatic way, i.e., feature extractions in sample area to compare them with 
known shape objects for accuracy estimation. 



Remote Sens. 2021, 13, 1550 21 of 24 
 

 

Author Contributions: C.P. has conceived the article and designed the experiments; E.A. and A.V. 
conducted the bibliographic research; C.P. organized data collection and supervised the GIS appli-
cations; E.A. and A.V. conducted the experiments on pan-sharpening applications; E.A. conducted 
the quality tests; C.P. designed the flow-charts of the graphical modeller; A.V. supervised the algo-
rithm implementation; all authors took part in the result analysis and writing the paper. All au-
thors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the University of Naples “Parthenope”. 

Acknowledgments: This paper presents results of experiments performed within a research pro-
ject supported by the University of Naples “Parthenope”. The images used for the experiments 
have been made available free of charge by the European Space Agency (ESA). The authors wish 
to thank Miss Theresa Gavin for supporting the revision of the English text of the manuscript. We 
also would like to give our sincere thanks to the editors and the reviewers for their useful sugges-
tions and constructive comments for improving the quality of this article. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Dardanelli, G.; Allegra, M.; Giammarresi, V.; Brutto, M.L.; Pipitone, C.; Baiocchi, V. Geomatic Methodologies for The Study of 

Teatro Massimo in Palermo (Italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-5/W1, 475–480, doi:10.5194/isprs-
archives-XLII-5-W1-475-2017. 

2. Weng, Q. Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS. Environ. Manag. 
2001, 28, 737–748, doi:10.1007/s002670010258. 

3. Xian, G.; Crane, M. Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sens. Environ. 
2005, 97, 203–215, doi:10.1016/j.rse.2005.04.017. 

4. Kääb, A.; Paul, F.; Maisch, M.; Hoelzle, M.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: II. First 
results. Ann. Glaciol. 2002, 34, 362–366, doi:10.3189/172756402781817473. 

5. Baumhoer, C.A.; Dietz, A.J.; Dech, S.; Kuenzer, C. Remote Sensing of Antarctic Glacier and Ice-Shelf Front Dynamics—A Re-
view. Remote Sens. 2018, 10, 1445, doi:10.3390/rs10091445. 

6. Helldén, U.; Tottrup, C. Regional desertification: A global synthesis. Glob. Planet. Chang. 2008, 64, 169–176, doi:10.1016/j.glopla-
cha.2008.10.006. 

7. Fu, B.; Shi, P.; Fu, H.; Ninomiya, Y.; Du, J. Geological Mapping Using Multispectral Remote Sensing Data in the Western China. 
In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 
2019; pp. 5583–5586. 

8. Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. 
J. Plant Ecol. 2016, 9, 649–671. 

9. Mardian, J. Evaluating the utility of remote sensing time series analysis for the identification of grassland conversions in Alberta, 
Canada. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2020. 

10. Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm for the MODIS 
sensor. Remote Sens. Environ. 2009, 113, 408–420, doi:10.1016/j.rse.2008.10.006. 

11. De Araújo, F.M.; Ferreira, L.G. Satellite-based automated burned area detection: A performance assessment of the MODIS 
MCD45A1 in the Brazilian savanna. Int. J. Appl. Earth Obs. Geoinf. 2015, 36, 94–102, doi:10.1016/j.jag.2014.10.009. 

12. Baiocchi, V.; Brigante, R.; Radicioni, F. Three-dimensional multispectral classification and its application to early seismic dam-
age assessment. Ital. J. Remote Sens. 2010, 42, 49–65, doi:10.5721/itjrs20104234. 

13. Baiocchi, V.; Brigante, R.; Dominici, D.; Milone, M.V.; Mormile, M.; Radicioni, F. Automatic three-dimensional features extrac-
tion: The case study of L’Aquila for collapse identification after April 06, 2009 earthquake. Eur. J. Remote Sens. 2014, 47, 413–435, 
doi:10.5721/eujrs20144724. 

14. Chen, X.; Achilli, V.; Fabris, M.; Menin, A.; Monego, M.; Tessari, G.; Floris, M. Combining Sentinel-1 Interferometry and Ground-
Based Geomatics Techniques for Monitoring Buildings Affected by Mass Movements. Remote Sens. 2021, 13, 452, 
doi:10.3390/rs13030452. 

15. Fiaschi, S.; Fabris, M.; Floris, M.; Achilli, V. Estimation of land subsidence in deltaic areas through differential SAR inter-ferom-
etry: The Po River Delta case study (Northeast Italy). Int. J. Remote Sens. 2018, 39, 8724–8745. 

16. Specht, M.; Specht, C.; Lewicka, O.; Makar, A.; Burdziakowski, P.; Dąbrowski, P. Study on the Coastline Evolution in Sopot 
(2008–2018) Based on Landsat Satellite Imagery. J. Mar. Sci. Eng. 2020, 8, 464, doi:10.3390/jmse8060464. 

17. Maglione, P. Very High Resolution Optical Satellites: An Overview of the Most Commonly used. Am. J. Appl. Sci. 2016, 13, 91–
99, doi:10.3844/ajassp.2016.91.99. 

18. Maglione, P.; Parente, C.; Vallario, A. Pan-sharpening Worldview-2: IHS, Brovey and Zhang methods in comparison. Int. J. Eng. 
Technol. 2016, 8, 673–679. 

19. Arablouei, R. Fusing Multiple Multiband Images. J. Imaging 2018, 4, 118, doi:10.3390/jimaging4100118. 



Remote Sens. 2021, 13, 1550 22 of 24 
 

 

20. Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE Pan Sharpening of Very High Resolution Multispectral Images. IEEE 
Trans. Geosci. Remote Sens. 2008, 46, 228–236, doi:10.1109/tgrs.2007.907604. 

21. Li, X.-Z.; Wang, P.; Zang, Y.-B. Application of SPOT 5 data fusion on investigating the ecological environment of mining area. 
In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–6, 
doi:10.1109/urs.2009.5137594. 

22. Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24, 
doi:10.1080/19479830903561035. 

23. Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89, doi:10.1016/j.inffus.2016.03.003. 
24. Sekrecka, A.; Kedzierski, M. Integration of Satellite Data with High Resolution Ratio: Improvement of Spectral Quality with 

Preserving Spatial Details. Sensors 2018, 18, 4418, doi:10.3390/s18124418. 
25. Kizel, F.; Benediktsson, J.A. Spatially Enhanced Spectral Unmixing Through Data Fusion of Spectral and Visible Images from 

Different Sensors. Remote Sens. 2020, 12, 1255, doi:10.3390/rs12081255. 
26. Falchi, U. IT tools for the management of multi—Representation geographical information. Int. J. Eng. Technol. 2017, 7, 65–69, 

doi:10.14419/ijet.v7i1.8810. 
27. Mohammed, N.Z.; Ghazi, A.; Mustafa, H.E. Positional accuracy testing of Google Earth. Int. J. Multidiscip. Sci. Eng. 2013, 4, 6–9. 
28. Shah, V.P.; Younan, N.H.; King, R.L. A novel method to evaluate the performance of pan-sharpening algorithms. In Proceedings 

of the Defense and Security Symposium, Orlando, FL, USA, 9April 2017; Volume 6571, p. 657102. 
29. Byun, Y.; Choi, J.; Han, Y. An Area-Based Image Fusion Scheme for the Integration of SAR and Optical Satellite Imagery. IEEE 

J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2212–2220, doi:10.1109/jstars.2013.2272773. 
30. Errico, A.; Angelino, C.V.; Cicala, L.; Persechino, G.; Ferrara, C.; Lega, M.; Vallario, A.; Parente, C.; Masi, G.; Gaetano, R.; et al. 

Detection of environmental hazards through the feature-based fusion of optical and SAR data: A case study in southern Italy. 
Int. J. Remote Sens. 2015, 36, 3345–3367, doi:10.1080/01431161.2015.1054960. 

31. Mohammadzadeh, A.; Tavakoli, A.; Valadan Zoej, M.J. Road extraction based on fuzzy logic and mathematical morphology 
from pan-sharpened ikonos images. Photogramm. Rec. 2006, 21, 44–60. 

32. Phinzi, K.; Abriha, D.; Bertalan, L.; Holb, I.; Szabó, S. Machine Learning for Gully Feature Extraction Based on a Pan-Sharpened 
Multispectral Image: Multiclass vs. Binary Approach. ISPRS Int. J. Geo-Inf. 2020, 9, 252, doi:10.3390/ijgi9040252. 

33. Tomlin, D.C. GIS and Cartographic Modeling; Prentice Hall: New Jersey, NJ, USA, 1990. 
34. Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Systems and Science, 2nd ed.; John Wiley & 

Sons: New York, NY, USA, 2005. 
35. Pitney Bowes, Mapbasic, Version 17.0, User Guide 2018. Available online: https://www.pitneybowes.com/content/dam/sup-

port/software/product-documentation/public/mapinfo-mapbasic/v17-0-0/en-us/mapinfo-mapbasic-v17-0-0-user-guide.pdf (ac-
cessed on 25 September 2020). 

36. QGIS. Welcome to the QGIS Project! Qgis. 2016. Available online: http://www.qgis.org/ (accessed on 25 September 2020). 
37. Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L.M. Comparison of Pansharpening Algorithms: Outcome 

of the 2006 GRS-S Data-Fusion Contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021, doi:10.1109/tgrs.2007.904923. 
38. Pushparaj, J.; Hegde, A.V. Evaluation of pan-sharpening methods for spatial and spectral quality. Appl. Geomat. 2016, 9, 1–12, 

doi:10.1007/s12518-016-0179-2. 
39. Li, H.; Jing, L.; Wang, L.; Cheng, Q. Improved Pansharpening with Un-Mixing of Mixed MS Sub-Pixels near Boundaries between 

Vegetation and Non-Vegetation Objects. Remote Sens. 2016, 8, 83, doi:10.3390/rs8020083. 
40. Yang, J.; Zhang, J. Pansharpening: From a generalised model perspective. Int. J. Image Data Fusion 2014, 5, 1–15, 

doi:10.1080/19479832.2014.936528. 
41. Chavez, P.; Sides, S.C.; Anderson, J.A. Comparison of three different methods to merge multiresolution and multispectral data- 

Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1991, 57, 295–303. 
42. Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. United 

States Eastman Kodak Company (Rochester, New York). U.S. Patent 6,011,875, 4 January 2000. 
43. Basaeed, E.; Bhaskar, H.; Al-Mualla, M. Comparative analysis of pan-sharpening techniques on DubaiSat-1 images. In Proceed-

ings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 227–234. 
44. Švab, A.; Oštir, K. High-resolution image fusion: Methods to preserve spectral and spatial resolution. Photogramm. Eng. Remote 

Sens. 2006, 72, 565–572. 
45. Vrabel, J. Multispectral imagery advanced band sharpening study. Photogramm. Eng. Remote Sens. 2000, 66, 73–80. 
46. Liu, J.G. Smoothing Filter-based Intensity Modulation: A spectral preserve image fusion technique for improving spatial details. 

Int. J. Remote Sens. 2000, 21, 3461–3472, doi:10.1080/014311600750037499. 
47. Licciardi, G.; Vivone, G.; Mura, M.D.; Restaino, R.; Chanussot, J. Multi-resolution analysis techniques and nonlinear PCA for 

hybrid pansharpening applications. Multidimens. Syst. Signal Process. 2015, 27, 807–830, doi:10.1007/s11045-015-0359-y. 
48. Gonzalez-Audicana, M.; Saleta, J.; Catalan, R.; Garcia, R. Fusion of multispectral and panchromatic images using improved IHS 

and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1291–1299, 
doi:10.1109/tgrs.2004.825593. 

49. Nunez, J.; Otazu, X.; Fors, O.; Prades, A.; Pala, V.; Arbiol, R. Multiresolution-based image fusion with additive wavelet decom-
position. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1204–1211, doi:10.1109/36.763274. 



Remote Sens. 2021, 13, 1550 23 of 24 
 

 

50. Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on 
oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312, doi:10.1109/tgrs.2002.803623. 

51. Liu, Z.; Song, P.; Zhang, J.; Wang, J. Bidimensional Empirical Mode Decomposition for the fusion of multispectral and panchro-
matic images. Int. J. Remote Sens. 2007, 28, 4081–4093, doi:10.1080/01431160601075483. 

52. Tu, T.-M.; Su, S.-C.; Shyu, H.-C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 177–186, 
doi:10.1016/s1566-2535(01)00036-7. 

53. Pohl, C.; Van Genderen, J.L. Review article Multisensor image fusion in remote sensing: Concepts, methods and applications. 
Int. J. Remote Sens. 1998, 19, 823–854, doi:10.1080/014311698215748. 

54. Zhang, Y. Understanding image fusion. Photogramm. Eng. Remote Sens. 2004, 6, 657–661. 
55. Tu, T.-M.; Huang, P.S.; Hung, C.-L.; Chang, C.-P. A Fast Intensity–Hue–Saturation Fusion Technique with Spectral Adjustment 

for IKONOS Imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 309–312, doi:10.1109/lgrs.2004.834804. 
56. Parente, C.; Santamaria, R. Increasing geometric resolution of data supplied by Quickbird multispectral sensors. Sens. Trans-

ducers 2013, 156, 111–115. 
57. Gharbia, R.; El Baz, A.H.; Hassanien, A.E.; Tolba, M.F. Remote Sensing Image Fusion Approach Based on Brovey and Wavelets 

Transforms. Intell. Fuzzy Tech. Big Data Anal. Decis. Mak. 2014, 303, 311–321, doi:10.1007/978-3-319-08156-4_31. 
58. Johnson, B. Effects of Pansharpening on Vegetation Indices. ISPRS Int. J. Geo-Inf. 2014, 3, 507–522, doi:10.3390/ijgi3020507. 
59. Du, Q.; Younan, N.H.; King, R.; Shah, V.P. On the Performance Evaluation of Pan-Sharpening Techniques. IEEE Geosci. Remote 

Sens. Lett. 2007, 4, 518–522, doi:10.1109/lgrs.2007.896328. 
60. ESRI. What is Map Algebra? Available online: https://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/map-al-

gebra/what-is-map-algebra.htm (accessed on 25 March 2021). 
61. Karakus, P.; Karabork, H. Effect of pansharpened image on some of pixel based and object based classification accuracy. Int. 

Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 7, 235–239. 
62. Chavez Jr, P.S.; Bowell, J.A. Comparison of the spectral information content of Landsat Thematic Mapper and SPOT for three 

different sites in the Phoenix, Arizona region. Photogramm. Eng. Remote Sens. 1988, 54,1966–1708. 
63. Vivone, G.; Alparone, L.; Chanussot, J.; Mura, M.D.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A Critical Comparison 

Among Pansharpening Algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586, doi:10.1109/tgrs.2014.2361734. 
64. Pradines, D. Improving SPOT images size and multispectral resolution. In Earth Remote Sensing Using the Landsat Thermatic 

Mapper and SPOT Sensor Systems. Int. Soc. Optics Photonics 1986, 660, 98–102. 
65. Guo, L.J.; Moore, J.M. Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery. Int. J. Remote Sens. 

1998, 19, 2477–2491, doi:10.1080/014311698214578. 
66. Wald, L.; Ranchin, T. Liu ’Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improv-

ing spatial details. Int. J. Remote Sens. 2002, 23, 593–597, doi:10.1080/01431160110088772. 
67. Wald, L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions; Les Presses de l’École des Mines: 

Paris, France, 2002. 
68. Burt, P.J.; Adelson, E.H. The Laplacian Pyramid as a Compact Image Code. IEEE Trans. Commun. 1983, 31, 532–540, 

doi:10.1109/tcom.1983.1095851. 
69. Aiazzi, B.; Baronti, S.; Selva, M. Image fusion through multiresolution oversampled decompositions. Image Fusion 2008, 27–66, 

doi:10.1016/b978-0-12-372529-5.00002-0. 
70. Aiazzi, B.; Alparone, L.; Baronti, S.; Pippi, I. Fusion of 18 m MOMS-2P and 30 m Landsat TM multispectral data by the general-

ized Laplacian pyramid. ISPRS Int. Arch. Photogramm. Remote Sens. 1999, 32, 116–122. 
71. Delleji, T.; Kallel, A.; Ben Hamida, A. Iterative scheme for MS image pansharpening based on the combination of multi-resolu-

tion decompositions. Int. J. Remote Sens. 2016, 37, 6041–6075, doi:10.1080/01431161.2016.1249303. 
72. Lee, J.; Lee, C. Fast and Efficient Panchromatic Sharpening. IEEE Trans. Geosci. Remote Sens. 2009, 48, 155–163, 

doi:10.1109/tgrs.2009.2028613. 
73. Shahdoosti, H.R.; Ghassemian, H. Fusion of MS and PAN Images Preserving Spectral Quality. IEEE Geosci. Remote Sens. Lett. 

2014, 12, 611–615, doi:10.1109/lgrs.2014.2353135. 
74. Saroglu, E.; Bektas, F.; Musaoglu, N.; Goksel, C. Fusion of multisensory sensing data: Assessing the quality of resulting images. 

ISPRS Arch. 2004, 25, 575–579. 
75. Rahimzadeganasl, A.; Alganci, U.; Goksel, C. An Approach for the Pan Sharpening of Very High Resolution Satellite Images 

Using a CIELab Color Based Component Substitution Algorithm. Appl. Sci. 2019, 9, 5234, doi:10.3390/app9235234. 
76. Meng, X.; Li, J.; Shen, H.; Zhang, L.; Zhang, H. Pansharpening with a Guided Filter Based on Three-Layer Decomposition. 

Sensors 2016, 16, 1068, doi:10.3390/s16071068. 
77. Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84, doi:10.1109/97.995823. 
78. Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. A Global Quality Measurement of Pan-Sharpened Multispectral Imagery. IEEE 

Geosci. Remote Sens. Lett. 2004, 1, 313–317, doi:10.1109/lgrs.2004.836784. 
79. Nikolakopoulos, K.; Oikonomidis, D. Quality assessment of ten fusion techniques applied on Worldview-2. Eur. J. Remote Sens. 

2015, 48, 141–167. 
80. Garzelli, A.; Nencini, F. Hypercomplex Quality Assessment of Multi/Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2009, 

6, 662–665, doi:10.1109/lgrs.2009.2022650. 



Remote Sens. 2021, 13, 1550 24 of 24 
 

 

81. Sarp, G. Spectral and spatial quality analysis of pan-sharpening algorithms: A case study in Istanbul. Eur. J. Remote Sens. 2014, 
47, 19–28, doi:10.5721/eujrs20144702. 

82. Meinel, G.; Neubert, M. A comparison of segmentation programs for high resolution remote sensing data. Int. Arch. Photogramm. 
Remote Sens. 2014, 35, 1097–1105. 

83. Hegde, G.P.; Hegde, N.; Muralikrishna, V.D.I. Measurement of quality preservation of pan-sharpened image. Int. J. Eng. Res. 
Dev. 2012, 2, 12–17. 

84. Parente, C.; Pepe, M. Influence of the weights in IHS and Brovey methods for pan-sharpening WorldView-3 satellite images. 
Int. J. Eng. Technol. 2017, 6, 71–77, doi:10.14419/ijet.v6i3.7702. 

85. Li, S.; Kwok, J.T.; Wang, Y. Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images. 
Inf. Fusion 2002, 3, 17–23, doi:10.1016/s1566-2535(01)00037-9. 

86. Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. 
Remote Sens. 1998, 19, 743–757, doi:10.1080/014311698215973. 

87. Airbus Defence and Space Geo-Intelligence. Pléiades Spot the Detail. Available online: http://www.intelligence-air-
busds.com/files/pmedia/public/r61_9_geo_011_pleiades_en_low.pdf (accessed on 25 March 2021). 

88. Gleyzes, M.A.; Perret, L.; Kubik, P. Pleiades system architecture and main performances. ISPRS Int. Arch. Photogramm. Remote 
Sens. Spat. Inf. Sci. 2012, XXXIX-B1, 537–542, doi:10.5194/isprsarchives-xxxix-b1-537-2012. 

89. GRASS Development Team. GRASS GIS 7.9.dev Reference Manual. 2020. Available online: 
https://grass.osgeo.org/grass79/manuals/index.html (accessed on 25 March 2021). 

90. Gandhi, U. Automating Complex Workflows Using Processing Modeler, QGIS Tutorials. Available online: http://www.qgis-
tutorials.com/it/docs/processing_graphical_modeler.html (accessed on 25 March 2021). 

91. Shapiro, M.; Westervelt, J.R. MAPCALC: An Algebra for GIS and Image Processing; Construction Engineering Research Lab: Cham-
paign, IL, USA, 1994. 

92. Dodgson, J.S.; Spackman, M.; Pearman, A.; Phillips, L.D. Multi-Criteria Analysis: A Manual; Department for Communities and 
Local Government, Eland House: London, UK, 2009. 

93. Amolins, K.; Zhang, Y.; Dare, P. Wavelet based image fusion techniques—An introduction, review and comparison. ISPRS J. 
Photogramm. Remote Sens. 2007, 62, 249–263, doi:10.1016/j.isprsjprs.2007.05.009. 

 


	1. Introduction
	2. Pan-Sharpening Methods and Product Evaluation
	2.1. Pan-Sharpening Methods
	2.1.1. IHS and IHS Fast
	2.1.2. Brovey Transformation and Brovey Transformation Fast
	2.1.3. Multiplicative Method
	2.1.4. Simple Mean Method
	2.1.5. Gram-Schmidt and Fast Gram-Schmidt
	2.1.6. High Pass Filter
	2.1.7. Smoothing Filter-Based Intensity Modulation
	2.1.8. Modulation Transfer Function–Generalized Laplacian Pyramid

	2.2. Quality Indices

	3. Experimental Procedure
	3.1. Dataset: Pléiades Images
	3.2. Implementation of Pan-Sharpening Methods in QGIS
	3.3. Procedure Steps

	4. Results and Discussion
	5. Conclusions
	References

