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Abstract: In most countries, landslides have caused severe socioeconomic impacts on people, cities,
industrial establishments, and lifelines, such as highways, railways, and communication network
systems. Socioeconomic losses due to slope failures are very high and they have been growing as the
built environment expands into unstable hillside areas under the pressures of growing populations.
Human activities as the construction of buildings, transportation routes, dams, and artificial canals
have often been a major factor for the increasing damage due to slope failures. When recovery actions
are not durable from an economic point of view, increasing the population’s awareness is the key
strategy to reduce the effects of natural and anthropogenic events. Starting from the case study of
the Pan-American Highway (the Ecuadorian part), this article shows a multi-approach strategy for
infrastructure monitoring. The combined use of (i) DInSAR technique for detection of slow ground
deformations, (ii) field survey activities, and (iii) the QPROTO tool for analysis of slopes potentially
prone to collapse allowed us to obtain a first cognitive map to better characterize 22 km of the highway
between the cities of Cuenca and Azogues. This study is the primary step in the development of a
landslide awareness perspective to manage risk related to landslides along infrastructure corridors,
increasing user safety and providing stakeholders with a management system to plan the most urgent
interventions and to ensure the correct functionality of the infrastructure.

Keywords: DInSAR; QPROTO; landslides; infrastructure monitoring; awareness system; Pan-
American Highway

1. Introduction

Road networks play a key role in the economic and social development of a society,
such that the maintenance of safety conditions for users is the most important challenge
for the decision-makers and stakeholders. Landslide interaction with populated areas
and transportation infrastructures may induce the loss of human lives and meaningful
economic damage [1], both reducing road-user safety and modifying the roadway geome-
try [2]. In these scenarios, the detection of critical sectors along infrastructure corridors is
essential [3]. These considerations are emphasized by the lack of awareness concerning
natural hazards [4].

In areas where recovery actions are not sustainable from an economic point of view,
the population’s awareness is the key strategy to reduce the effects of natural and anthro-
pogenic events. Landslide hazard awareness is interlinked with the community resilience
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level (in terms of technical and financial capacity), especially in developing countries [5].
In order to manage risk related to landslides along infrastructure corridors, increasing user
safety, it is essential to provide policymakers with awareness instruments such as landslide
inventory and related susceptibility maps with potential information related to stability
conditions of slopes along hillsides [6–8].

In these conditions, landslide consequences need to be examined through either
(i) impact assessment analysis, focused on cost surveys or risk analyses [9,10], or (ii)
vulnerability assessments, where the sensitivity to landslide damage is often studied
starting from technical reports and from a retrospective point of view [11,12].

In the last decades, structural and infrastructural health monitoring with differen-
tial interferometry SAR (DInSAR) [13] technique has become one of the most powerful
and economic methodologies [14–16]. In particular, DInSAR has been widely used in
landslide identification and infrastructures monitoring involved with slow and very slow
mass movements since it captures data covering wide areas [17–22]. Thanks to the short
temporal baseline and the relatively low costs of acquisition and processing procedures,
interferometric tools have grown as one of the most important and valuable methods for
the investigation of unstable areas. Actually, the possibility of detecting areas affected by
deformation phenomena makes it possible to estimate the instability proneness of urban-
ized areas or transport infrastructures in a timely manner and with sufficient precision at
the same time.

Unfortunately, in many cases, infrastructures are also affected by rapid phenomena
such as falls and topples [23–25]. It is known that DInSAR technique allows exploratory
study on the comprehensive rock mass stability and slow ground displacements, to detect
and monitor possible precursory phenomena [26]. Rockfalls are usually characterized by
fast velocities reducing the suitability of spaceborne DInSAR methodologies [27]. How-
ever, several studies (e.g., [28]) have pointed out the opportunity of detecting precursory
deformation preceding blocks detachment in rockfalls. In this perspective, in order to be
able to investigate all types of landslides (including rockfalls) that may affect urbanized
areas and linear infrastructures, accounting also for their propagation mode [29], it is
necessary to also implement other methodologies that allow to estimate the effects of rapid
phenomena. In this regard, the use of computer tools for rockfall simulations has become
popular in determining runout distance, jump height, kinetic energy, and impact force [30],
and consequently identifying potential rockfall areas [31]. In this study, the QPROTO tool
was used [32–34].

A relevant example of transport infrastructure corridor exposed to landslide hazard
is the Ecuadorian linear infrastructure network (Pan-American Highway) [35–37]. The
Pan-American Highway is located in the Andes mountain region and the roads of these
territories have proved to be more prone to landsliding [38]. Since its construction, the
Pan-American Highway, in particular the sector between the cities of Cuenca and Azogues,
has been involved in landslides, also induced by earthquakes, with severe effects on the
economy [39] and users’ safety. The blocking of the Pan-American Highway breaks off
several important population centers, creating a road communication emergency which
affects the economy and the mobility of the population.

On these bases and considering both the frequency of landslide events and the lack of
a comprehensive product for highway safety management from a landslide perspective,
this work aims at providing local authorities a cognitive tool depicting slope dynamics
in terms of actively moving and potential landslides affecting user safety and the correct
functionality of the Pan-American Highway. The results, consisting of an updated slow-
moving landslide inventory and associated prospective rockfall susceptibility scenario, can
be considered as an operational landslide awareness system that might guide mitigation
measurement design and slope monitoring to improve highway user safety. The last
inventory update is dated 1994 [40]. In addition, the development of such a tool, based also
on smart technologies [41], might have a direct impact on the local population resilience
increasing landslide risk awareness.
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2. Pan-American Highway Cuenca–Azogues (Troncal de la Sierra E35)

The segment of the highway analyzed in this study connects the city of Cuenca with
the city of Azogues (Figure 1). Known as the South Pan-Americana, it has a length of about
22 km and has six lanes (three per direction).

Its construction began in 1995 and ended in 1997. It is one of the fundamental arteries
of the city of Cuenca; according to the Ministry of Transport and Public Works [42], it is
estimated an average traffic of about 46,000 vehicles per day. Since the beginning of its
construction, the E35 has been affected by a large number of different types of landslides,
from falls and topples to rotational and translational sliding. Such landslides have often
caused damage to the infrastructure and incidents to the users, especially in winter. In
some cases, such landslides caused the interruption of the road as well, with the need to
remove the material that affected the highway (Figure 2b,d), even causing the deviation of
the road axis (Figure 2a).

The main issues relating to artificial slope instabilities (Figure 2c) can be attributed
to the techniques used during infrastructure construction, creating sub-vertical fronts
without mitigation works connected. In general, it is possible to identify the triggering
causes (i.e., rainfalls or/and earthquakes) and the predisposing ones, making the territory
prone to instability. Rock masses are made by heterogeneous materials having different
structural settings, and consequently different responses to destabilizing factors. The
knowledge of the geological properties (i.e., lithology, structure, bedding, faults, tectonics,
hydrogeological regime, etc.) is of primary importance and of great help for the engineering
activity. Unfortunately, all these geological considerations are not always taken into account.
The main cause determining problems of instability of the rocky fronts is the presence of
water. It is known that the presence of infiltration water in a rock slope always represents a
negative factor for stability. In fact, infiltration through fractures represents an element of
considerable risk, due to possible generation of high interstitial pressures within the slope.
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Figure 2. The functionality of the Pan-American Highway is often interrupted by rockfalls. (a) Deviation
of the original road axis (red dotted line) caused by rockfall events; (b) landslide deposits have almost
completely invaded the highway; (c) overdip cataclinal slope: the stratification is slope-oriented; (d)
boulders detached from the slopes block the lane.

3. Geological Setting

The Cuenca area (in full, Santa Ana de los Cuatro Rios de Cuenca) is situated in the
southern part of Ecuador, in the Azuay province, between the two main Andes cordilleras
at an elevation ranging from 200 meters to 4500 meters above sea level. The study area
is surrounded to the east by the Eastern Cordillera edge [43] and to the west by uplifted
Tertiary volcanic arc piles, whose basement is very probably continental, as evidenced
by crystalline outcrops west of Cuenca [44,45]. This relative depression received thick,
marine to subaerial deposits [46–48]. In the first phase, the basin was filled with marine
sediments and metamorphic clasts derived from the Eastern Cordillera and subsequently
with coarse-grained fluvial and alluvial sediments derived from the west. In the Cuenca
areas, Faucher et al. [49] and Bristow [50] identify three distinct lithologic units: cherts and
greywackes; poorly consolidated shales with limestone lenses and arkosic sandstones beds,
and marine shales.

The Pan-American Highway crosses, nearby the Cuenca city, the Azoguez formation
(Figure 3), composed mostly of conglomerates, which provoke many instability phenomena.
The dominant features of the city’s geography are also the source of its name in Spanish:
the four rivers of Cuenca (meaning a basin made up of a confluence of rivers). These rivers
are the Tomebamba (named after the Inca culture), Yanuncay, Tarqui, and Machangara,
in order of importance. The first three rivers originate in the Páramo of Parque Nacional
Cajas to the west of the city. These four rivers are part of the Amazon River watershed.
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Figure 3. Geological sketch map of the Cuenca canton (Southern Ecuador): (a) alluvial deposits, (b) terrace deposits, (c) colluvial
and alluvial deposits, (d) colluvial deposits, (e) slope deposits, (f) Azogues Formation, tuffaceous sandstones, (g) Biblian
Formation, sandy clays, (h) Loyola Formation, laminated shales with gypsum, (i) Magan Formation, siltstones and
conglomeratic sandstones, (j) Gualaceo/Llacao Formations, volcanic deposits, (k) Tarqui Formation, kaolinized tuffs,
(l) Turi Formation, coarse conglomerates, (m) Yanguilla Formation, gray massive siltstones.

4. Materials and Methods

Operational landslide identification, from an awareness system development per-
spective, was executed through a multi-step procedure. As a first step, a field survey
and remote-sensing analysis were realized in order to accomplish a landslide inventory
as completely as possible. Subsequently, rockfall-prone areas analysis was performed
thorough the cone method modeling approach.

4.1. Multi-Approach Landslide Inventory

A landslide inventory map (LIM) represents a fundamental tool to display information
on landslides activity and their multitemporal evolution [9]. In most cases, inventories
are discontinuous over time and so-called event-based landslide inventories are available,
which are landslides inventories based on a singular severe event (rainfall, earthquake).

The LIM was derived from interferometric data and the visual interpretation of aerial
photos integrated and validated by field investigation [51–55]. DInSAR allows to measure
ground displacements with sub-centimetric accuracy, starting from data acquired from
satellites orbiting the Earth at an average height of 600 km. The DInSAR approach is
based on the analysis of phase difference in interferometric stacks of radar images. The
A-DInSAR technique operates at a full spatial resolution and identifies reliable scatterers
(permanent scatterers—PS) [56] by measuring their multitemporal coherence related to
the phase stability. In particular, DInSAR methodology allows to analyze long data series
producing mean displacement rate maps and time series of deformations along the direction
between the SAR sensor and the target (line of sight—LoS). In this work, Sentinel-1A and
B, ascending and descending mode images acquired in the timespan from October 2016 to
May 2019 (Table 1), were processed by the SUBSIDENCE software, which uses the coherent
pixel technique–temporal phase coherence (CPT–TPC) approach [57,58], and developed
at the Remote Sensing Laboratory (RSLab) of the Universitat Politècnica de Catalunya of
Barcelona.
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Table 1. Synthetic aperture radar (SAR) imagery analyzed in the present study.

Satellite Orbit Time Span Nr Scenes

Sentinel-1 Ascending 1 October 2016–25 May 2019 114

Sentinel-1 Descending 10 October 2016–16 May 2019 99

The datasets available from this study consist of 114 images acquired in ascending
orbit with a time-revisiting variable between 6 and 36 days, and 99 images acquired in
descending orbit with a time-revisiting variable between 12 and 96 days. Specifically, the
interferometric chain implemented in SUBSIDENCE is divided into four main steps. The
first is the generation and selection of interferogram and consists of selecting a quality
set of interferograms, considering the temporal and spatial thresholds, from all the pos-
sible combinations among available images, in order to minimize spatial and temporal
correlation which affects the results. The second step is the pixel selection, named stable
coherence scatterers (SCS), characterized by a reliable phase. The temporal phase coherence
(TPC) estimator was used in order to select SCS. The third one is the evaluation of the
linear term of deformation to define the linear velocity and location of the targets; then the
evaluation of the nonlinear deformation component and atmospheric artefacts to assess the
deformation evolution of selected pixels. Finally, the geocoding of the results in WGS84
and WGS84-UTM coordinate reference systems was performed. For the last step men-
tioned, a high-accuracy digital elevation model (DEM) with a resolution of 3 × 3 meters
was considered. The DEM was used to produce the slope map and, in a second moment,
accordingly with the Pan-American Highway route, a buffer zone of 1.5 km surrounding
the infrastructure was created in Geographic Information System (GIS) environment in
order to isolate critical SCS around the road.

This approach allows to obtain the LoS mean displacement rate and the time series
of deformations to the entire data processing interval for each SCS around the road in
both acquisition geometries. After the processing step, the interferometric results were
post-processed using the “Heatmap” plugin in the QGIS environment. This tool, through
the application of the kernel density estimation (KDE) algorithm, allows to identify the
unstable areas (UAs) affected by meaningful deformations [59–61].

Subsequently, geomorphological field surveys were carried out between November
2019 and January 2020 using 1:5000 topographical maps as a basemap, whereas visual
interpretation activities were carried out on Google Earth satellite images. Data collected
from the field and remote sensing activities were then georeferenced and digitized as
polygons within a GIS environment. The slope failures were recognized and classified
according to Cruden and Varnes [62] and Hungr et al. [63].

4.2. Identification of Potential Rockfall Sectors

Although the DInSAR technique has proven to be effective for the assessment of
surface displacements with sub-centimeter accuracy and at the same time covering very
large areas, it is limited to studying only phenomena that demonstrate displacement rates
of less than a few tens of centimeters per year [64]. Referring to rock masses, the DInSAR
technique only allows to estimate the presence of precursory phenomena of a collapse.
Therefore, to better characterize the potential damage due to mass movement impact and
stability analysis, QPROTO software was exploited.

QPROTO (QGIS Predictive ROckfall TOol) is a plugin developed entirely in Python
language that can be run by open-source QGIS software (https://plugins.qgis.org/p
lugins/qproto/ accessed on 12 March 2021). The plugin aims at executing the cone
method [32,65] to reproduce the rockfall phenomenon. The algorithm adopts a simplified
energy assumption in which the falling block path is summarized by an equivalent sliding
motion of the boulder along a straight line (i.e., the energy line) linking the more distant
observed fallen block to the slope apex (i.e., the shadow angle method) [34]. The plugin
applies the model by performing a viewshed analysis starting from a fixed set of viewpoints

https://plugins.qgis.org/plugins/qproto/
https://plugins.qgis.org/plugins/qproto/
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(i.e., the rockfall source points). From each of these points of view, a visibility cone is
determined in the vertical and horizontal plane through the angles ϕp and α that represent
the energy line angle and the lateral spreading one, respectively. The first angle constitutes
the main cone method parameter and has to incorporate all the information concerning
the block (e.g., size and shape) and the cliff (e.g., roughness, soil type, slope, length,
forest density, protection works) [34]. The angle is estimated by using the following
relationship [32]:

ϕp = arctan

(∣∣∣∣∣ zsp − z f

dsp − d f

∣∣∣∣∣
)

(1)

where zsp is the rockfall trigger point quote, zf is the farthest location of the block elevation,
and (dsp − df) is the distance between the farthest deposit point and the rockfall source.

The key parameters used to calculate the cone method phenomenon characteristics
are schematically shown in Figure 4:
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H = trigger point quote;
P0 = trigger point;
P = observed block;
ϕp = energy line angle;
α = lateral spreading angle;
ω = angle between the maximum slope direction and the north;
h = intercept point;
hk = difference between energy line and topography;
Starting from the slope map, obtained by DEM 3 × 3 m data, of the region of interest,

the highest acclivity areas (>45◦) [66] were chosen to perform the QPROTO investigation.
The detected areas were subsequently divided into 15 sectors to better execute the algo-
rithm (Figure 5). The plugin provided various output maps with a preset chromatic scale
that indicates the different susceptibility classes as number of occurrences. It allows to
preliminarily evaluate the effects of a rockfall event along a slope in terms of exposed areas
to runout boulders. The elaborations implemented with QPROTO provide different output
maps directly displayed in the QGIS interface and with a preset chromatic scale which
facilitates the visualization.
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Figure 5. Red polygons correspond to sectors identified through geomorphological analysis and then used to perform
QPROTO investigation. On 15 identified sectors, 12 correspond to road cuts.

5. Results
5.1. Multi-Approach Landslide Inventory

Using the CPT–TPC approach, about 78,000 SCS were detected for the ascending
geometry imagery and 42,000 SCS for the descending one. Among all the obtained scat-
terers, only those that fall within the buffer zone surrounding the infrastructure were
taken into consideration to interpret potential slope instability affecting the Pan-American
Highway. In the buffer area, only the slopes that overlook the road were considered as
the source of mass movements that can potentially affect it (Figure 6). Hence, two mean
displacement rate maps were obtained, each for both acquisition geometries. The SCS’
mean displacement rate was represented using a color scale from red to blue: the positive
values, conventionally represented with blue scale color, indicate a movement of the tar-
get towards the satellite; the negative values, represented with red scale color, indicate
movement far from the sensor; and the green colors indicate stable points (Figure 6). As
showed in Figure 6a–c, SCS are distributed in a homogeneous way along the whole ana-
lyzed road’s section. The most meaningful displacement rates, identified by blue and red
points, are located in the NE sector where the pelitic and argillitic deposits outcrop (Loyola
Formation).

The KDE analysis identified different clusters for both acquisition geometries. For the
ascending data (Figure 6b), the kernels are mainly distributed along the central and NE
sectors with high values of density. On the contrary, for the descending data (Figure 6d),
the kernels detected are less frequent and show lower density values. This analysis allowed
to identify only the SCS clusters that correspond to mass movements potentially involving
the road’s track.

Combining the KDE output and information from field surveys, a total of 141 land-
slides were identified and mapped within the study area surrounding the infrastructure
(Figure 7). Among these, 30 landslides were recognized during the field surveys, and for
the remaining deformation areas, detected through remote sensing techniques, a subse-
quent field validation and classification were carried out (Table 2). Detecting with this
procedure, on a total length of 22 km analyzed between the cities of Cuenca and Azougues,
3.5 km have been potentially affected by slow landslides.
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as a deformation movement with major component along the vertical axis.
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mass movements detected both through field surveys and with the application of KDE algorithm to SAR data are reported.
In the bottom right corner, the types of movements of detected landslides are summarized.

Table 2. Methods of detection for the landslides in the buffer zone surrounding the Pan-American
Highway.

Rotational
Slide

Planar
Slide Fall Topple Total

Field-surveyed
landslides 6 3 20 1 30

Remote-sensed
landslides 82 29 - - 111

The mapped landslides cover a total area of about 6 km2. Referring to the classification
proposed by Cruden and Varnes [59] and Hungr et al. [60], recognized slope failures were
grouped into the following principal landslide types and a percentage distribution analysis
was then performed (Figure 7).

A high number of mass movements can be classified as rotational slides (88–62.4%),
followed by falls (20–14.2%), planar slides (32–22.7%), and topples (1–0.7%), which are
typical phenomena affecting mountainous and hilly areas, commonly related to the interac-
tion between the geostructural features and rainfall events. The most common landslide
types along the road axis are rotational slides and falls. In fact, the Pan-American, for long
stretches, runs parallel to the Azogues Formation, composed mainly of conglomerates.

5.2. Identification of Potential Rockfall Sectors with QPROTO

The results implemented in QPROTO provide different output maps directly displayed
in the QGIS interface and with a preset chromatic scale that facilitates the visualization.
For this application, three classes were identified: blue color is associated with the lowest
potential slope failure class, yellow color indicates the moderate class, and red color is
used to highlight the higher one. For the stretch of the Pan-American Highway considered,
about 7 km were found to be exposed to landslides (Figures 8–11).
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of potential rockfall runout occurrences; pictures (c,e) show the slopes prone to collapse for sector 2
and sector 4, respectively.
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5, 6, and 7, respectively.
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classes of potential rockfall runout occurrences; picture (c) shows the slopes prone to collapse for
sector 9.
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Figure 11. Outcomes of QPROTO algorithm for sector n◦ 13 (a), 14 (c), and 15 (e) with different
classes of potential rockfall runout occurrences; the pictures (b,d,f) show the slopes prone to collapse
for sector numbers 13, 14, and 15, respectively.

In detail, about 6 km of the highway is potentially intersected by low- to medium-
intensity rockfall runout, with 1 km by high-intensity occurrence of boulder invasion.
Among the different sectors identified, only one sector (i.e., 14) is not intersected by high-
intensity rockfall runout (Figure 12). All the other sectors are prone to be intersected by
low-, moderate-, and high-intensity mass movements.
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Among the 15 sectors identified, eight are most affected by moderate intensity rockfalls
and six are the most suitable to low intensity. Sector number 15, located in the northeastern
part of the study area, shows the highest number of occurrences (Figure 12). The highest
intensity class is present almost along the whole track studied, and only in three cases is it
less than 10% of all the susceptible areas identified through QPROTO plugin (i.e., sectors 5,
7, 13, 14). Hence, this approach has made it possible to recognize that the propensity for
rapid phenomena instability, such as rockfalls, is present along the entire Pan-American
Highway.

6. Discussion

Natural and anthropogenic slope failures are frequent in the Andes of Ecuador, causing
severe and constant issues [67]. Regrettably, only a few studies have been carried out about
the relationship between the structures to be built, or already present, and the natural
phenomena. As for this case study, the produced LIM emphasizes how landslides represent
the principal hazard within the study area and how such phenomena interact with the Pan-
American Highway. The proposed methodological approaches allowed the investigation of
different types of mass movements that involve the infrastructure. The analyses benefited
from the availability of medium-resolution DInSAR data (Sentinel-1), and information of
QPROTO tool to identify detachment and runout areas. Both the results obtained with
these two methods were used to validate and integrate the surveyed landslides.

Although the DInSAR technique is characterized by some limitations, such as the
underestimation of the real vector of motion due to the acquisition mode, and the capability
to detect only slow or extremely slow deformations, this study has confirmed its great
value to monitor deformations in the study area in near real time and that it could be used
for the monitoring of the whole infrastructure network thanks to high spatial and temporal
resolution. Such a technique can help in the identification of stretches and sections along
linear infrastructures affected by active deformations, providing information on spatial
and temporal evolution. Therefore, DInSAR allows periodically to update boundary and
state of activity of ground instability phenomena reported in the LIM. High spatial and
temporal resolution of SAR images enables, nowadays, to investigate deformations and
structural behavior both of large areas and single parts of infrastructure (with revisiting
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time of 6 days). Furthermore, the DInSAR technique allowed to detect and monitor possible
precursory phenomena highlighted by local accelerations in SCS time series. Rockfalls
are usually characterized by fast velocities and affect high slope angles [68], reducing the
suitability of spaceborne DInSAR methodologies.

Subsequently, to perform a quantitative analysis of the areas potentially affected by
rockfalls, the QPROTO plugin was used. As input, slope analysis to identify areas with
acclivity greater than 45 degrees was performed, allowing quick identification of the areas
with greater rockfall properties. The subdivision of the various sectors also made it possible
to choose in which areas to carry out priority stabilization interventions. Thanks to this
application, it was possible to ascertain that of the total 22 km, about 7 km are affected by
rockfall phenomena. The propensity of the lithologies to collapse is stressed by the poor
cohesion which considerably increases the probability of detachment of conglomerates and
blocks of rocks. These phenomena mainly manifest themselves where anthropic actions
have occurred, such as cutting linked to the construction of infrastructures.

The combined use of DInSAR techniques and the QPROTO tool allowed the identi-
fication of both slow and rapid kinematic landslides. Thus, the Pan-American Highway
can be divided according to different occurrence probability and to the various types of
landslides that could occur. This sectorialization makes it possible to take action where the
critical issues are greater without having to operate on the entire road track. The securing
of instability phenomena which could affect the infrastructure, during their initial stage,
allows to preserve the huge economic resources that were employed in the past to reroute
the original road axis when no longer usable. In fact, in recent decades, the irreversible
phenomena occurrence has caused road system interruption with consequent socioeco-
nomic problems. Over the years, landslides have led to the closure of road sections and, in
some cases, also involved motorists. Furthermore, it is not uncommon to notice substantial
deviations of the road path due to these events, trying to circumvent phenomena of very
high magnitudes.

For this purpose, given the widespread diffusion of new technologies, such as smart-
phones, an upgrade procedure can be implemented via app for the instability phenomena
occurring along the Pan-American Highway. In this way, a first level of information on
landslides’ status and activity can be reported by the population. Subsequently, technicians
should verify the received information, planning the most suitable interventions. This
strategy would make it possible to promptly intervene where instability phenomena occur.
The obtained outcomes will be used in future applications based on statistical modeling to
achieve a susceptibility map of the whole region.

Therefore, the implementation of a monitoring system that allows to intervene in
near real time, and at the same time provide quantitative information, is an instrument of
fundamental importance.

Pursuing an optimization of economic and technical resources, it is important to under-
line that the proposed methodology does not require expensive costs. The use of DInSAR
techniques could reduce the high costs for ordinary road maintenance, which are valued today
between USD 200,000 and USD 300,000 per kilometer (https://ww2.elmercurio.com.ec/2020
/08/07/el-nuevo-ingreso-sur-a-cuenca-tendra-peajes-y-sera-concesionado/; https://ww2.el
mercurio.com.ec/2018/07/13/el-gobierno-nacional-entrego-la-reconstruccion-de-la-cuenca
-azogues-biblian-se-intervinieron-42-km/; https://paisenvivo.com/se-inici-estudios-para-
ampliacin-de-autopista-cuenca-azogues-biblin/, accessed on 15 March 2021). In fact, adding
the costs of the methodologies used in this study, it is calculated that the monitoring and field
survey activities for instability phenomena detection in the investigated sectors cost few tens
of thousands of dollars. The costs are reduced because the SENTINEL-1 images are free of
charge, and at the same time the DInSAR techniques and the QPROTO plugin are completely
accessible through the use of free software. This would allow stakeholders to implement a
near real-time monitoring system to identify the most prone road sections to landslides.

https://ww2.elmercurio.com.ec/2020/08/07/el-nuevo-ingreso-sur-a-cuenca-tendra-peajes-y-sera-concesionado/
https://ww2.elmercurio.com.ec/2020/08/07/el-nuevo-ingreso-sur-a-cuenca-tendra-peajes-y-sera-concesionado/
https://ww2.elmercurio.com.ec/2018/07/13/el-gobierno-nacional-entrego-la-reconstruccion-de-la-cuenca-azogues-biblian-se-intervinieron-42-km/
https://ww2.elmercurio.com.ec/2018/07/13/el-gobierno-nacional-entrego-la-reconstruccion-de-la-cuenca-azogues-biblian-se-intervinieron-42-km/
https://ww2.elmercurio.com.ec/2018/07/13/el-gobierno-nacional-entrego-la-reconstruccion-de-la-cuenca-azogues-biblian-se-intervinieron-42-km/
https://paisenvivo.com/se-inici-estudios-para-ampliacin-de-autopista-cuenca-azogues-biblin/
https://paisenvivo.com/se-inici-estudios-para-ampliacin-de-autopista-cuenca-azogues-biblin/
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7. Conclusions

The paper presents a cognitive tool depicting slope dynamics in terms of actively
moving and potential landslides affecting users’ safety and the correct functionality of a
segment of the Pan-American Highway which connects the cities of Cuenca and Azogues.
The tool consists of a combination of a slow-moving landslide inventory and rockfall
propagation analysis comprehensively depicting landslide potential over the analyzed
highway segment. Such products were derived using specifically implemented procedure
based on both field-based and PS-driven slow moving landslide inventory and reduced
complexity rockfall propagation modeling. The obtained inventory indicated the presence
of 141 landslides affecting or potentially influencing the highway segment. Rockfall
analysis indicates the presence of a number of critical sectors of the highway for which a
high propagation potential does exist. The implemented procedure, providing an overview
of the landslide potential of the study area, can be considered as an operative landslide
awareness system having the potential to increase safety of transport infrastructure and
to support resilience development in the area. The Andean region of Ecuador, where the
city of Cuenca is located, is prone to landslides due to its geological and geomorphological
peculiarities. Such proneness, in combination with the fast development of the urban areas,
has been causing increased physical damage and huge economic losses. In this context,
the knowledge of landslide potential is of great importance, especially if supported by
operational monitoring. The developed procedure, based on updatable PS data, is an easy
upgrade to account for this aspect, also providing support to natural hazards management
and cost-effective mitigation planning. In this perspective, the association of mapped
landslide data with predicted rockfall propagation zones represents a major advance.
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