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Abstract: In this article, a smart pedestrian navigation system is developed to be implemented in a
common smartphone. The main phases that characterize a pedestrian navigation system that is based
on dead reckoning are introduced. A suitable Phase-Locked Loop is designed and the algorithm to
estimate the direction of the user’s motion between one step and the next is developed. Finally, a
suitable multi-rate Kalman filter (KF) is considered to merge the information from the pedestrian dead
reckoning (PDR) navigation with the data provided by the global navigation satellite systems (GNSS).
The proposed GNSS/PDR navigation system is implemented in Simulink as a finite-state machine
and allows to define a trade-off between energy-saving and performance improvement in terms of
position accuracy. The presented pedestrian navigation system is independent of the body-worn
location of the smartphone and implements a compensation strategy of the systematic errors that are
committed on the step-length estimation and the determination of the motion direction. Moreover,
several tests are performed by walking in urban and suburban environments: the results show that
a suitable trade-off between energy-saving and position accuracy can be reached by switching the
GNSS receiver on and off.

Keywords: PDR; INS; GNSS; pedestrian navigation; sensor fusion

1. Introduction

Nowadays, thanks to the technological development and the mass diffusion of mobile
devices, there is an increasing interest in those applications that allow users to keep track
of their movements and provide location-based services. Thanks to the development
of micro electro-mechanical systems (MEMS) technology, mobile devices are equipped
with increasingly cheaper and smaller sensors. Positioning and navigation solutions are
generally provided by global navigation satellite systems (GNSS). These systems, together
with the help of mobile networks, allow to obtain a position solution with bounded errors
in a relatively short time, but its prolonged use leads to a rapid drain of the battery and
its performance can strongly decrease in those environments that do not present an open
sky visibility of the satellites. This is in contrast to the needs of users, whose interest
is to have both the positioning service also available in harsh environments such as the
urban one and a battery life that can cover the whole day. In addition to the GNSS
receiver, most portable devices (e.g., smartphones) include sensors such as accelerometer,
gyroscope and magnetometer. These additional sensors allow to estimate intensity and
orientation of the user’s motion without relying on external infrastructure. By exploiting
the computing resources of the processors and the low energy consumption of these sensors,
some manufacturers may also implement additional features in the devices such as fall
detection and step counting, providing useful information on the user’s quality of life [1].

In this work, after a review of the state of the art of the pedestrian dead reckoning
(PDR) navigation techniques, we propose an algorithm for a real time identification of the
user’s motion direction by exclusively exploiting the data coming from inertial sensors,
and therefore with low energy consumption. We will also show how to smartly merge this
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information with GNSS data in order to achieve a twofold objective: increasing the accuracy
of the position solution and saving energy at the same time by using the GNSS sensor
efficiently. With respect to the state of the art concerning the integration between GNSS and
inertial navigation systems [2–4], the present work proposes a real-time implementation of
an integrated GNSS/PDR framework which provides several advantages: firstly, a smart
trade-off between accuracy and energy consumption; then, the independence from the
body-worn location of the smartphone; finally, a compensation strategy of the systematic
errors that are committed on the step-length estimation and the determination of the
motion direction.

Figure 1 illustrates the block diagram that highlights the operation of the proposed system:

MARG
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Figure 1. Block diagram of the operating principle of the proposed GNSS/PDR navigation system.

The data coming from the magnetic, angular rate, gravity (MARG) sensor, which
is composed of a triaxial accelerometer, gyroscope and magnetometer, is processed by a
suitable Madgwick filter in order to obtain the orientation of the mobile device in a fixed
North-East-Down (NED) frame; then, the acceleration in NED frame is exploited to identify
the single steps, which are used as a trigger signal to drive an algorithm for the estimation
of the heading angle of the walk; finally, the data coming from the GNSS is integrated
with MEMS data in order to determine the user position. The algorithm for the heading
estimation is event-driven, in fact it is essential to identify every single step for determining
the direction of advancement of the user’s motion.

In Section 2 materials and methods used to obtain the proposed GNSS/PDR nav-
igation system are illustrated; in particular, the treatment of the methods has been di-
vided into the determination of the device orientation (Section 2.2.1), the step detection
(Section 2.2.2), the determination of the motion direction (Section 2.2.3), the step length
estimation (Section 2.2.5) and the GNSS/PDR integration (Section 2.2.6). Section 3 de-
scribes and discusses the results obtained; finally, Section 4 shows the conclusion of the
presented work.
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2. Materials and Methods

This section will describe the hardware and methods which are used to achieve the
set goals.

2.1. Materials

Mobile devices such as smartphones can differ on technical characteristics including
computational power, storage capacity, and available sensors. In this work, a Realme 5 Pro
model has been chosen as a mid-range smartphone in order to guarantee the functioning of
the implemented system on as many devices as possible. All main technical characteristics
of this device are shown in Table 1.

Table 1. Technical characteristics of the smartphone used to acquire the data.

Model Processor Chipset RAM ROM

Realme 5 Pro ProKyro 360 Snapdragon 712 4 GB 128 GB

The IMU used in this model of smartphone is the BMI160 [5] produced by Bosch. It
has been designed for low power, high precision 6-axis applications in mobile phones,
tablets, wearable devices, remote controls, game controllers, head-mounted devices and
toys. When accelerometer and gyroscope are in full operation mode, power consumption
is typically 925 µA, enabling always-on applications in battery driven devices. In this case
is a 6-DOF IMU that includes a triaxial accelerometer and gyroscope. Another 3 DOFs
are implemented by the triaxial magnetometer that is the AK09918 [6] composed by a
triaxial electronic compass IC with high sensitive Hall sensor technology. The Snapdragon
712 chipset of the Realme 5 Pro smartphone allows the access to the following satellite
constellations: GPS, GLONASS, BEIDOU, GALILEO, QZSS, and the SBAS. In particular, the
GPS, GLONASS, BEIDOU, and GALILEO constellations refer respectively to the American,
Russian, Chinese and European global navigation satellite systems; QZSS refers to a
regional navigation satellite system aiming to enhance GPS in the Asia-Oceania regions;
SBAS refers to the satellite-based augmentation systems aiming to improve the accuracy
and the reliability of the GNSS information [7].

An objective of the algorithm that integrates PDR and GNSS is to take rid of the
non-stop use of satellite data in order to achieve energy saving. Therefore, it is necessary to
choose an appropriate time interval between subsequent activations of the GNSS receiver.
In order to obtain comparable data, it was decided to acquire the GNSS data (latitude,
longitude, and accuracy associated to the position solution) on a continuous time basis
and to implement a control logic to use the data in the algorithm at regular predetermined
intervals with a predefined duty cycle. In this way, it was possible to run the GNSS/PDR
algorithm multiple times on the same data in order to define the best time interval between
subsequent activations of the GNSS receiver. It is necessary to consider that once the
satellite receiver is switched on, it will be necessary to wait for a certain time interval to
achieve the time to first fix (TTFF), which is a measure of the time required for a GNSS
navigation device to acquire the satellite signals, decoding the navigation data, and to
calculate a position solution. When smartphones are connected to the mobile network, the
TTFF can be either more than a minute or less than a second depending on the type of
assistance provided by the mobile network [8]. The system proposed for the integration
between GNSS and PDR is suitable for a real time implementation; therefore, it was
chosen to implement all the algorithms on Simulink visual programming of the Mathworks
development environment.

Figure 2 shows the Simulink diagram of the proposed GNSS/PDR system which
assumes the GNSS data available at the initial time of the walk. The data generated by
the accelerometer, gyroscope and magnetometer sensors are acquired at a sample rate of
100 Hz. This diagram illustrates the principal system blocks, from the data acquired by the
sensors to the information provided as output:
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1. latitude and Longitude computed by the PDR only;
2. latitude and Longitude computed by the GNSS/PDR integration;
3. step counted by PLL;
4. distance evaluated by the GNSS/PDR integration.

Figure 2. Simulink diagram of the proposed GNSS/PDR system.

Simulink has been chosen to test the developed algorithms and furthermore, the use of
Stateflow has allowed to create blocks that evolve with an event driven logic and therefore
are disconnected from the sampling time of the system scheme.

The KF developed for the GNSS/PDR integration considers a state in which the
estimated position refers to a North-East local reference frame and represents the distance
in meters from the starting point, i.e., the origin of the North-East plane itself. On the other
hand, the GNSS readings are originally expressed in latitude and longitude and do not
directly provide information consistent with those adopted in the definition of the state
variables. A routine, that given two consecutive GNSS readings provides their distance in
meters and the angle with respect to the North, is needed to determine the direction of the
motion occurred.

This conversion is carried out by applying the Haversine formula [9] and it has been im-
plemented in Simulink following the diagram in Figure 3, where the GNSS_detectedsignal
indicates the presence or absence of satellite data. An Android software application for
smartphone has been created to emulate the Simulink schemes through the Simulink
Support for Android devices.

PDR/GNSS Integration: Multi Rate Extended Kalman Filter Convert meters in Latitude and LongitudeConvert delta_lat & delta_lon in meters
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Figure 3. Simulink diagram of the GNSS/PDR integration.

The developed GNSS/PDR navigation system works with information coming from
the low-cost MEMS sensors mounted on smartphone and its implementation as a state
machine allows to execute the calculations necessary for the correct operation between one
step and another, creating a control logic with a not excessive computational cost able to be
managed by the processor of mobile devices.
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2.2. Methods

To develop the proposed pedestrian navigation system (PNS) the following steps
are needed:

• realizing an attitude and heading reference system (AHRS) that relies on the data of
the inertial sensors;

• identifying each step performed by the user as accurately as possible;
• estimating the step length;
• defining the algorithm for estimating the direction of motion;
• integrating the data from inertial sensors with the global navigation satellite system.

In the following sections, each of these points will be examined in depth in order to
provide a clear understanding of the used methods.

2.2.1. Sensor Fusion for Device Orientation Estimation

As it is known, each inertial and magnetic sensor measures a specific physical quantity,
but can also be used to derive other information such as the ones related to velocity,
orientation, position. Due to the errors that are always present in the measurement, the
sensor’s information has to be manipulated (e.g., direct integration of the accelerometer
data to estimate the velocity) and the cumulative error on the derived information grows
with time. A technique that is used to obtain a more accurate information from the one
which is obtained by sensors is the fusion. The aim of the sensor fusion technique for the
orientation estimation is to obtain a combined information and to define a stable AHRS.
The latter allows to represent the sensor data, originally expressed in the sensor body
frame, in a reference frame which permits to represent the sensor orientation on the Earth
surface, namely the North-East-Down (NED) frame for this work. The operating systems
of Android or iOS devices commonly provide information on the orientation as a function
of the Euler angles. In this paper, representing the orientation via unitary quaternion
was preferred to Euler angles in order to avoid the gimbal lock problem. When dealing
with Euler angles, the gimbal lock phenomenon occurs when one of the sensor axes, used
to estimate the angles, aligns with the gravity vector causing a loss of information; this
scenario can easily occur when the phone is in the pocket. As a result a Madgwick filter was
then implemented to merge the accelerometer, gyroscope and magnetometer data. This
filter, reported first time in 2010 by Sebastian O.H. Madgwick [10], represents an efficient
way to fuse data for estimating the orientation with respect to a reference fixed navigation
frame <E> using quaternion representation. It uses a gradient-descent algorithm to compute
the direction of the gyroscope measurement error as a quaternion derivative [11]. The
main idea behind the Madgwick filter is to evaluate the orientation from the angular
velocity of the gyroscope and correct the resulting bias by evaluating the orientation from
homogeneous fields, such as Earth magnetic and gravitational fields, and finally perform a
compensation of magnetic distortion.

It is possible to consider the quaternion representation for the rate of change of the
Earth frame relative to the sensor frame as

S
Eq̇t =

1
2

S
Eq̂t−1 ⊗S ωt, (1)

where the ˆ accent denotes a normalized vector of the unit length,
Sωt =

[
0 Sωt,x

Sωt,y
Sωt,z

]
is the quaternion representation of the angular rate el-

ements at time t from gyroscope expressed in [rad/s] referred to sensor frame, and the
symbol ⊗ represents the quaternion product that can be determined using the Hamilton
rule:

a⊗ b =
[
a1 a2 a3 a4

]
⊗
[
b1 b2 b3 b4

]
=


a1b1 − a2b2 − a3b3 − a4b4
a1b2 + a2b1 + a3b4 − a4b3
a1b3 − a2b4 + a3b1 + a4b2
a1b4 + a2b3 − a3b2 + a4b1

.
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The quaternion that expresses the orientation of the Earth frame relative to the sensor
frame considering only the gyroscope data can be calculated through direct integration
as follows:

S
Eqt =

1
2

S
Eq̂t−1 ⊗S ωtTs, (2)

where Ts is the sample time.
It is necessary to obtain the orientation from the accelerometer and the magnetometer

to compensate for the errors that are made in the integration of the gyro bias. The attitude
estimation from the accelerometer or magnetometer is done by using a gradient descent
algorithm to solve the following minimization problem. The orientation of the sensor
frame, S

Eq̂, is that which aligns a predefined reference direction of the field in the Earth’s
frame, Ed̂, with the measured direction of the field in the sensor frame Sŝ, using the rotation
operation

S
ER =

 2q2
1 − 1 + 2q2

2 2(q2q3 + q1q4) 2(q2q4 − q1q3)
2(q2q3 − q1q4) 2q2

1 − 1 + 2q2
3 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) 2q2
1 − 1 + 2q2

4

,

therefore, S
Eq̂, can be determined by solving

min
S
Eq̂ ∈ R4

f (S
Eq̂,E d̂,S ŝ), (3)

where f defines the objective function:

f (S
Eq̂,E d̂,S ŝ) =S

E q̂∗ ⊗E d̂⊗S
E q̂−S ŝ, (4)

S
Eq̂ =

[
q1 q2 q3 q4

]
; Ed̂ =

[
0 dx dy dz

]
; Sŝ =

[
0 sx sy sz

]
. (5)

Although there are many optimization algorithms in literature, the gradient descent is one
of the commonly implemented [12].

2.2.2. Step Detection

In order to perform an effective pedestrian dead reckoning algorithm, the design of
a procedure capable of determining the occurrence of each step performed by the user
becomes crucial. The step identification from the acquired inertial data can be achieved by
means of various techniques that are referred in the literature, including the identification
of peaks on the acceleration signal, the use of phase-locked loop (PLL) systems to build
a signal that is easier to analyze [13], or the use of wavelet transform to detect the step
boundaries over time [14,15]. All these systems are based on a preliminary gait analysis: in
fact the signals coming from the inertial sensors strongly depend on the area of body in
which the device is worn and its relative orientation between this part and the direction
of motion. The study done in Section 2.2.1 allows us not to worry about the orientation
as it is possible to bring the data from the sensor body frame to a reference fixed one, so
permitting to consider only the area of the body where the device is worn. In this work, the
device is considered worn in the pocket of the user who is assumed to perform a walking
activity or to remain stationary. Particular actions or movements such as jumping, sitting
down or standing up are not taken into consideration in this work.

A discrete Fourier transform (DFT) analysis has been performed off-line on the avail-
able data referred to the vertical acceleration in NED frame. The aim of this evaluation is
to indicate where the dominant frequencies associated to the step frequency can lie in the
frequency domain. The results show a main harmonic component at 1.8 Hz which is used
by the system in the real-time implementation to initialize the free running frequency of the
PLL. In addition to the main harmonic component, the vertical acceleration presents higher
frequency content for several reasons: the oscillatory motion of the pelvis, the vibration
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due to a device not rigidly attached to the body, and the noise. In order to highlight the
main harmonic component associated to the step frequency, the vertical acceleration in the
NED frame has been pre-processed through a low-pass filtering operation. A Chebyshev
low-pass infinite impulse response (IIR) filter with a cut-off frequency of 15 Hz has been
used. Since the group delay of the IIR filer is not constant, the latency introduced by the
filtering depends on the frequency of the input signal; for what concerns the input signal
considered in this work, the mean latency is about 0.4 s. The cut-off frequency of 15 Hz
has been chosen because the principal information content in the frequency domain of
the acquired vertical acceleration signal lies on the 0–15 Hz interval, as shown in Figure 4.
Therefore, the frequency content above 15 Hz has been considered as a noise signal.

(a) Vertical acceleration during a walking activity.

(b) Magnitude of the discrete Fourier Transform (DFT) of the vertical acceleration during a
walking activity.

Figure 4. Representation in the time and frequency domains of the vertical acceleration during a walking activity. Vertical
refers to the down direction of the NED frame.

The main harmonic component of the signal represents the step frequency and each
maximum acceleration peak identifies the step event. A suitable PLL has been developed
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in order to create a sinusoidal signal which is locked in phase to the vertical acceleration
signal with a free running frequency close to that considered valid for walking, i.e., equal
to 1.8 Hz.

Figure 5 compares the vertical acceleration in the NED frame and the sinusoidal
signal that is the output of the PLL. The latter simplifies the identification of the steps
occurred by coupling them with the relative maxima in a real-time implementation. In
order to avoid that the PLL locks onto signals that are not related to walking, it is useful to
implement a logic circuitry that automatically recognizes the carried out activity. Therefore,
the variance of the vertical acceleration in the NED frame has been considered to evaluate
the motion intensity of the user. In particular, the variance analysis has been performed
over a 4-s moving window and the threshold of 1.5 m2/s4 has been empirically determined
to distinguish the motion activity from the stationary case.

Figure 5. The vertical acceleration signal given to the PLL as input (orange line) and the signal
provided by the PLL as output (blue line).

2.2.3. Heading Estimation

The heading angle is defined as the angle between the North direction and the motion
direction of the person wearing the device. Estimating the motion direction is the most
critical part of a pedestrian inertial navigation system due to the complexity of the body
motion and the degrees of freedom of the human body. In fact, the walking motion, that
can theoretically change at every single step, is not predictable. There are several ways
to deal with this problem; for example, it is possible to fix the position of the inertial
sensors in a rigid way at chest level or in a belt in order to be able to have a preferential
direction of motion [14,15]. This drastically reduces the degrees of freedom of the system,
but represents a situation that cannot be reproduced in a common scenario, in fact a phone
is normally kept in a pocket or held in the hand during a walk or in an armband for running.
For this reason, a system that is independent of the choice of the device location on body
is needed. The considered method, which will be described below, exploits the fact that
the acceleration data reported in NED frame can be used to determine the direction of
motion. Considering the phone worn on the upper part of the leg, then the acceleration
values in the North and East directions are related to the direction of motion and can be
used to determine the heading angle. As reported in [13], by analyzing the accelerations
on the North and East axes in the NED frame (aN(t) and aE(t)) at each couples of steps, it
is possible to identify pseudo-ellipses, as shown in Figure 6.

Even if the shape of the double ellipse is not exactly reproduced at each pair of steps,
it is still possible to determine the direction of the motion quite clearly within a tip-to-tail
method, except in the case of irregular steps. This method is based on the direct use of
the filtered acceleration data. Despite the implementation of the filter, it is possible that
the signal is distorted by harmonics higher than that relating to the dynamics of the steps.
The idea behind the real-time implementation of this method is to find a direct formula
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that can provide the heading angle starting from the Fourier series decomposition of the
input planar acceleration signal. It is well known from theory that any periodic signal
can be decomposed into the sum of an infinite set of simple oscillating functions, namely
sines and cosines. Though the walking signal is not periodic, however, if the period of
the single step and consequently its frequency can be determined with some accuracy, it
is possible to consider a periodic extension of this signal on which applying the Fourier
series decomposition that is valid only in the considered step period. An accurate step
tracking system using a PLL to analyze acceleration data can relate the steps taken with
the stride characteristics, thereby providing a trigger signal for the forward direction
estimation algorithm.

Figure 6. Representation of filtered aE(t) and aN(t) expressed in NED frame on the plane during a
sequence of left and right steps

The Fourier series at each single step detect is defined as:

fk(t) =
α0,k

2
+

∞

∑
n=1

[
αn,k cos

(
2π
Tk

nt
)
+ βn,k sin

(
2π
Tk

nt
)]

, (6)

where the subscript k identifies the number of the step occurred, Tk is the period of the last
detected step that can be calculated as the time between the start of the step (tk−1) and its
end, that is also the start of the next step (tk):

Tk = tk − tk−1. (7)

α0,k, · · · , αn,k and β1,k, · · · , βn,k are the so called Fourier coefficients that are computed
as follows:

α0,k =
2
Tk

∫ Tk

0
fk(τ)dτ,

αn,k =
2
Tk

∫ Tk

0
fk(τ) cos

(
2π
Tk

nτ
)

dτ,

βn,k =
2
Tk

∫ Tk

0
fk(τ) sin

(
2π
Tk

nτ
)

dτ,

(8)
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where n is the number of harmonics considered for the approximation. With this method
the direction estimate takes place considering only the time interval of the last step and
not of the last two as for the previously described method. Let aNE(t) be the planar
acceleration vector

aNE(t) = aN(t)i + aE(t)j (9)

and considering the first harmonic of the corresponding Fourier series

a1
NE,k(t) = α1,k cos(ωkt) + β1,k sin(ωkt) , t ∈ (tk−1, tk) (10)

where
ωk =

2π

Tk
. (11)

It can be shown that Equation (10) represents an ellipse centered at the origin whose
principle axis is rotated by a certain angle. Indeed, it is possible to rewrite (10) as

a1
NE,k(t) =

(
αNiNED + αEj

)
cos(ωkt) +

(
βNi + βEj

)
sin(ωkt)

=
(
αN cos(ωkt) + βN sin(ωkt)

)
i +
(
αE cos(ωkt) + βE sin(ωkt)

)
j,

(12)

where the four values of integrals described in (8) become

αN = 2
Tk

∫ tk

tk−1

aN(τ) cos(ωkτ)dτ, αE = 2
Tk

∫ tk

tk−1

aE(τ) cos(ωkτ)dτ,

βN = 2
Tk

∫ tk

tk−1

aN(τ) sin(ωkτ)dτ, βE = 2
Tk

∫ tk

tk−1

aE(τ) sin(ωkτ)dτ.

(13)

Now the objective is to find a relationship between the four values of the integrals
and the inclination angle of the rotated ellipse that represents the direction of motion. This
problem can be solved under the following assumption (1st order approximation):{

aN(t) ≈ αN cos(ωkt) + βN sin(ωkt)
aE(t) ≈ αE cos(ωkt) + βE sin(ωkt)

(14)

Referring to Figure 7, the goal is to find the point V(aN(t∗), aE(t∗)), where
t∗ :

∥∥aNE(t∗)
∥∥ >

∥∥aNE(t)
∥∥ ∀t ∈ (tk−1, tk) . To this aim, the square of the 2-norm of

the planar acceleration can be approximated as∥∥aNE(t)
∥∥2

= a2
N(t) + a2

E(t) ≈α2
N cos2(ωkt) + 2αN βN cos(ωkt) sin(ωkt) + β2

N sin2(ωkt)+

+ α2
E cos2(ωkt) + 2αEβE cos(ωkt) sin(ωkt) + β2

E sin2(ωkt)

=
(
α2

N + α2
E
)

cos2(ωkt) + 2
(
αN βN + αEβE

)
cos(ωkt) sin(ωkt)+

+
(

β2
N + β2

E
)

sin2(ωkt) .

(15)

Finally, assuming

A = β2
N + β2

E − α2
N − α2

E

B = αN βN + αEβE

C = α2
N + α2

E +
1
2
(

β2
N + β2

E − α2
N − α2

E
) (16)

and exploiting common trigonometric formulas yields∥∥aNE(t)
∥∥2

= A cos(2ωkt) + B sin(2ωkt) + C . (17)
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In order to find the time t∗ corresponding to the maximal value of the planar accelera-
tion, it is necessary to set to zero the derivative with respect to time

d
∥∥aNE(t)

∥∥2

dt
= −2ωk A sin(2ωkt) + 2ωkB cos(2ωkt) = 0, (18)

which yields
tan(2ωkt∗) = B/A . (19)

By substituting the actual values of ωk, A, B it is possible to write t∗ as a function of
the four integrals

t∗h =
Tk
4π

atan
(

αN βN+αE βE
β2

N+β2
E−α2

N−α2
E

)
+ h

Tk
4

, h = 0, 1, 2, 3 (20)

where the correct solution is the first one providing a negative second order derivative

d2
∥∥aNE(t)

∥∥2

dt2

∣∣∣∣∣
t=t∗

= −4ω2
k [A cos(2ωkt∗) + B sin(2ωkt∗)] < 0 . (21)

Finally, considering the point V
(
ax(t∗), ay(t∗)

)
, the heading angle in the NED frame

results in
θ = atan2(aN(t∗), aE(t∗)) . (22)

By averaging two consecutive values of the heading angle, it is possible to obtain
a smoothed signal for which the occurring spikes or errors given by the pelvis rotation
during walking are reduced.

2.2.4. Summary of the Heading Estimation Algorithm

In summary, the algorithm for determining the heading angle in real time has the
following structure:

1. acquire the planar acceleration data in NED frame: aN(t), aE(t);
2. exploit an available step identification system, such as the one provided by the PLL,

that provides the time between each single step Tk;
3. for each step detected t∗k :

(a) compute the Fourier coefficients (αN,k, αE,k, βN,k, βE,k) from which it is possible
to calculate

Ak = β2
N,k + β2

E,k − α2
N,k − α2

E,k

Bk = αN,kβN,k + αE,kβE,k

(b) calculate t∗k :

t∗k =
Tk
4π

atan
(

Bk
Ak

)
(c) if t∗k < 0 update t∗k adding a quarter of period: t∗k = t∗k + Tk/4 (atan function will

give nearest solution);
(d) check that the second derivative of the acceleration module calculated in t∗k is

less than zero to be sure that refers to a maximum point; otherwise update t∗k
adding a quarter of period: t∗k = t∗k + Tk/4;

(e) compute the heading angle θk:

θk = atan2(aN(t∗k ), aE(t∗k ))

Remark 1. Notice that the values of the integrals (13), that correspond to the Fourier coefficients,
assume a valid meaning only at the end of each step, but nonetheless need the information relating
to the time taken to carry out the step to compute sine and cosine functions. For this reason, it
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was decided to provide the time elapsed on the last step to estimate the Fourier coefficients at the
current step. This approximation does not dramatically affect the heading angle estimation due to
the regularity of the step frequency.

Remark 2. This heading calculation does not take into account the difference between magnetic
north and true north (the direction along a meridian towards the geographic North Pole). This
difference is called magnetic declination and varies depending on the position on the Earth surface
and changes over time. By convention, declination is positive when magnetic north is east of
true north, and negative when it is to the west. The magnetic declination in a given area may
change slowly over time, possibly as little as 2–2.5 degrees every hundred years, so it could be
considered constant for this implementation. A good implementation requires an evaluation of the
declination angle when the application starts in order to achieve information about the place where
the smartphone is. A website like https://www.magnetic-declination.com (access date: December
2021) can provide this information, in Florence, Italy the declination is +3.20 degrees.

(a) Rotated ellipse.

(b) Planar acceleration.

Figure 7. Rotated ellipse and planar acceleration.

https://www.magnetic-declination.com
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2.2.5. Step Length Estimation

In the PDR navigation, the step length estimation presents a high number of variables:
in particular, the measurements of the inertial sensors are influenced by the location where
the device is worn and the stride length strongly depends on the physical characteristics
of the user and the type of motion that is performed. In literature, it is possible to find
mathematical models that relate the length of the steps with frequency and height of the
user [16].

The length of the k-th step Slk can therefore be expressed as a function of the frequency
fk of the step as follows:

Slk = a · fk − b (23)

where a and b are parameters that depend on the physical characteristics of the user.
Furthermore, it must be considered that during a walk some steps can be irregular and in
some situations it is necessary to avoid obstacles, stopping or changing direction. All these
elements increase the uncertainty on the estimation of the step length. For these reasons,
it seems reasonable to determine the step length as a mean of multiple step lengths. By
dividing the steps performed over the distance traveled between two successive readings
of position from the satellite navigation system, it is possible to obtain the average length
of the step. By means of the average step length value given by the method that uses the
satellite readings, it is possible to correct any offset of the mathematical model previously
described. To avoid that the estimation of the step length strongly depends on the physical
characteristics of the user, a strategy that dynamically modifies the parameters of the
model (23) can be implemented, or additionally can provide compensation of systematic
errors from the information of the satellite data [17].

2.2.6. GNSS/PDR Integration

By estimating the step length and the heading angle, it is possible to determine the
user’s trajectory by using pedestrian dead reckoning techniques, where the information of
step length (Slk) and heading angle (θk) is available each time a new step is detected [18,19].
Let xk and yk the position of the device in the reference system at k-th step detected, the
PDR technique expresses its evolution as{

xk+1 = xk + Slk cos θk
yk+1 = yk + Slk sin θk .

(24)

In this algorithm, it is evident that the estimation of the step length plays a fundamen-
tal role: small errors on this parameter, being added step by step, can lead to large errors in
the reconstruction of the path on the map. On the other hand, errors on the heading angle,
as expected, can lead to a deviation from the true path.

The PDR technique alone is not able to perform an absolute positioning of the device,
and therefore must necessarily be integrated with a satellite navigation system. A global
navigation satellite system (GNSS) can be used to integrate a PDR and correct errors that
accumulate over time, but nevertheless it causes a high energy consumption in mobile
devices and the accuracy of its readings are highly dependent on the operational context
as it is based on the use of an infrastructure, i.e., how many satellites are visible in the
constellation and the quality of the received signals. For these reasons, it is useful to
implement a filter that merges the data coming from the inertial sensors with the satellite
ones, as shown in detail in [17]. The proposed Kalman filter (KF) does not evolve at each
sampling time, but that is executed following a trigger event, which in this case is provided
by the procedure of the step detection. It is also right to underline the fact that the signals
coming from the PDR and GNSS are generally asynchronous, in fact the PDR processes
information at each step detected, while the GNSS data can usually update at 4 Hz as
maximum frequency and as mentioned will not always be available. With an extrapolation
technique it is possible associate last valid data from GNSS measurement with last step
occurred. In this application, a GNSS signal is constantly acquired and a signal that gives
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information about its validity is associated to. To correctly implement the KF, a signal that
triggers the failure of the GNSS is necessary. There are two different solutions to implement
the lost of signal and both refers to a multi-rate KF:

• covariance-varying approach: when no GNSS signals are available, it can be modeled
as a sensor with a high covariance matrix related on its measure, so by varying the
covariance the KF will not consider the readings in its update [20];

• size-varying approach: when no GNSS signals are available, it can be modeled as
a changing of the number sensor used for measurement and as consequence the
dimension of measurement equations and its covariance matrix will change [21].

A size-varying approach was chosen in order to implement two different strategies:

• best performance algorithm: the KF continuously uses the satellite data, when present,
by correcting the positioning errors deriving from the estimate that is made using
only inertial data;

• energy-saving algorithm: the KF uses the satellite data at regular time intervals in order
to allow the satellite receiver to be switched off.

Thus, the designed structure of the filter can be seen as a state machine that evolves
every time a new step is detected and has a different behavior depending on the presence
or not of the satellite data. Furthermore, between one restart and the subsequent one of
the GNSS, it is possible to implement a compensation strategy of the systematic errors that
are committed on the determination of the estimate of the step length and the heading
angle [17]. Figure 8 shows a block diagram of the operating principle of the described filter.

STARTING 
POINT

ENERGY 
SAVING

BEST 
PERFORMANCE

NEW STEP & GNSS OFF

NEW STEP & GNSS OFF

NEW STEP & GNSS ON

NEW STEP & GNSS OFF
NEW STEP  & GNSS ON

COMPENSATION 
OF SYSTEMATIC 

ERRORS

NEW STEP & GNSS OFF

NEW STEP & GNSS ON

Figure 8. Scheme of state machine for multi-rate Kalman filter with compensation of systematic errors.

3. Results

In this Section, the experimental results of the the proposed GNSS/PDR system are
described and discussed.

3.1. GNSS/PDR Integration

In this Section, the experimental results of the algorithm both in the best performance
and in the power saving modes will be shown. The position results that have been obtained
by using only inertial data, and therefore using the PDR method, will be compared with
those obtained from GNSS data and the reconstruction of the KF.

In all the figures in this paragraph, the blue line represents the path which is obtained
by INS using the DR technique; the orange line represents the interpolation of the GNSS
readings, which have been left continuously active in order to choose different GNSS
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update interval to be adopted in the energy saving routines; the green line represents the
path reconstructed by the KF with appropriate corrections of systematic errors in the case of
energy saving. The carried out tests have been performed by walking at an average pace in
an urban environment, so emulating a typical everyday situation. The urban environment
is in fact a typical scenario in which there may be disturbances on the Earth magnetic field
given by vehicles and buildings. Tall buildings can decrease the accuracy of the GNSS data
and a path that is not free from obstacles does not guarantee the stability of the direction of
motion and the regularity of the steps. These difficulties represent an excellent scenario on
which to test the developed algorithm.

3.1.1. Best Performance

In the best performance case, the GNSS signal is continuously detected and therefore
for each detected step the KF updates the state estimate by merging the inertial data
with the last GNSS reading. It is important to note that the GNSS chipset, in addition to
the position solution expressed in latitude and longitude values, provides a value that
represents the accuracy associated to the position and therefore the reliability of the data at
that instant of time. In this way, the KF gives more or less importance to the value read
from the GNSS.

Figure 9 shows the results for this case. It is possible to notice how the path that
is reconstructed only from the inertial data (blue line) deviates from the others due to
the accumulation of errors, as foreseen by the PDR method. The position results related
to GNSS data, on the other hand, is strongly influenced by the accuracy with which the
position solutions are determined and being an urban route it is not always sufficiently high.

Figure 9. Comparison between the reconstructions performed by the PDR data, the GNSS data and
the best performance fusion algorithm.

It is also possible to note that the signal reconstructed by the KF inherits the advantages
of both methods: the smoothness of the PDR navigation and the bounded position error
provided by the GNSS. In the area where the satellite signal has poor accuracy, the filter
properly weights the GNSS information without following the latitude and longitude
readings.

On the other hand Figure 10 shows the GNSS position accuracy along the test: the
average value is less than 50 m, but in some conditions the accuracy can rise up to 250 m,
making the relative latitude and longitude readings useless.
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Figure 10. Accuracy of the GNSS position solutions computed during a walk in an
urban environment.

3.1.2. Energy Saving

In the energy saving mode, a parameter related to the frequency with which the GNSS
data is queried has to be chosen. In fact, it is necessary to choose how often to turn on
the GNSS reading system to use this information, once it is considered valid. The longer
this interval, the greater the energy savings and the error introduced by the PDR [17]. It is
worth noting that in the power saving mode there is the functionality for the correction
of systematic errors. This correction is carried out when the GNSS signal is turned off
on the basis of the last information considered valid for the position; it is done in real
time and applied to subsequent data. In this way, the position estimated by the KF for
the subsequent data takes into account the errors previously occurred; these errors can be
corrected in the previous trajectory by carrying out a similar correction, but on the past
estimates.

In the following figures, the white circles highlight the corrections that have been
applied to the GNSS readings at pre-established time intervals. These circles are centered
in the corresponding GNSS reading and the range depends on the relative accuracy of that
reading. Therefore, the KF correction will be more evident where the radius of the circle
is smaller.

Figure 11 shows the results if a time interval between two consecutive GNSS readings
of 60 s is chosen. This time interval was chosen as a suitable trade-off between the energy
saving and the reconstruction quality of the trajectory.

In fact, by increasing the duration of the time interval between two successive readings
of the GNSS data, for example by bringing it to 180 s as shown in Figure 12, it is possible to
highlight the errors due to the fact that the path between two readings are compensated
with the information of corrections evaluated in the previous interval and not in the current
one. However, it is possible to use the proposed method as a real-time positioning system
and leave the task of reconstructing the path to another algorithm as proposed by [17].
It is important to highlight that the energy saving amount is totally dependent on the
smartphone model, the simulation setting and the test environment, which means these
values cannot be generalized for common systems. Nonetheless the impact of the energy
saving routine can be estimated on a relative basis taking into account the time needed for
a valid GNSS fix (in “hot start” condition). Indeed, once the GPS fixing has been performed,
this unit is switched off and the longer is the switch off interval, the higher the energy
saving. This consideration is based on referred results [17].
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Figure 11. Comparison between the reconstructions performed by the PDR navigation, the GNSS
data and the energy saving fusion algorithm with 60 s as interval between two consecutive GNSS
activations in an urban environment.

Figure 12. Comparison between the reconstructions performed by the PDR navigation, the GNSS
data and the energy saving fusion algorithm with 180 s as interval between two consecutive GNSS
activations in an urban environment.

Figure 13 highlights the behavior of the algorithm in a context where the satellite
signal present an accuracy less then 12 m. Also in this case the update interval between
one reading and the next of the satellite data has been set to 60 s and the readings result
reliable and therefore always useful for the correction of systematic errors.
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Figure 13. Comparison between the reconstructions performed by the PDR navigation, the GNSS
data and the energy saving fusion algorithm with 60 s as interval between two consecutive GNSS
activations in an open space environment.

4. Conclusions

This article provides an overview of the design and the development of a pedestrian
navigation systems using information from different sensors present in smartphones. In
particular, it has been highlighted the importance of an accurate technique to determine
the individual steps and how crucial a proper implementation of a PLL can be for this goal.
To determine the direction of motion at each detected step, an algorithm that evaluates
the second harmonic component of the planar acceleration has been developed. From the
knowledge of this signal, through analytical and geometric considerations, the direction
of motion was calculated using a closed-form mathematical solution. This innovative
approach allows to calculate the direction of motion in real time and to use this information
in a dead reckoning method for estimating the current position with respect to a North-East
local reference frame. It is important to underline that this system has been designed to
work with the mobile device in a pocket, being independent of its orientation during the
motion activity.

Moreover, a Kalman Filter for the integration of a pedestrian dead reckoning naviga-
tion system with a global navigation satellite system has been developed. A multi-rate filter
was developed according to the size varying approach as the satellite system information is
not always available. Finally, the algorithm provides the positioning values in real time by
updating the latitude and longitude angles in order to show the current estimated position
on the map. In order to validate the performance of the system, tests were carried out
both in an urban environment, where the accuracy of the GNSS is lost due to the passage
between tall buildings, and in an open environment where the visibility of the satellite is
clear. Where the GNSS accuracy is high, the best performance filter that continuously uses
the GNSS data has the best results, whereas in several situations where the GNSS signal is
particularly degraded, the energy saving filter with an appropriate update interval brings
some advantages.

Our current activity is aimed at estimating the saved energy amounts and the update
interval: to this aim different time intervals are taken into account by analyzing the battery
drain and the energy impact of the processor when processing the GNSS/PDR algorithm.
These results will be dealt with in future publications.
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The following abbreviations are used in this manuscript:

AHRS Attitude and Heading Reference System
DOF Degrees Of Freedom
DR Dead Reckoning
DFT Discrete Fourier Transformation
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
INS Inertial Navigation System
KF Kalman Filter
MARG Magnetic, Angular Rate, Gravity
NED North East Down
PLL Phase-Locked Loop
PDR Pedestrian Dead Reckoning
PNS Pedestrian Navigation System
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