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Abstract: Southeast Asia (SEA) is a region affected by landslide and wildfire; however, few studies
on susceptibility modeling for the two hazards together have been conducted for this region, and the
intersection and the uncertainty of the two hazards are rarely assessed. Thus, the intersection of land-
slide and wildfire susceptibility and the spatial uncertainty of the susceptibility maps were studied in
this paper. Reliable landslide and wildfire susceptibility maps are necessary for disaster management
and land use planning. This work used three advanced ensemble machine learning algorithms:
RF (Random Forest), GBDT (Gradient Boosting Decision Tree) and AdaBoost (Adaptive Boosting)
to assess the landslide and wildfire susceptibility for SEA. A geo-database was established with
2759 landslide locations, 1633 wildfire locations and 18 predictor variables in total. The performances
of the models were assessed using the overall classification accuracy (ACC), Precision, the area under
the ROC (receiver operating curve) (AUC) and confusion matrix values. The results showed RF
performs superior in both landslide (ACC = 0.81, Precision = 0.78 and AUC= 0.89) and wildfire
(ACC= 0.83, Precision = 0.83 and AUC = 0.91) susceptibility modeling, followed by GBDT and
AdaBoost. The overall superiority of RF over other models indicates that it is potentially an efficient
model for landslide and wildfire susceptibility mapping. The landslide and wildfire susceptibility
were obtained using the RF model. This paper also conducted an overlay analysis of the two hazards.
The uncertainty of the susceptibility was further assessed using the coefficient of variation (CV).
Additionally, the distance to roads is relatively important in both landslide and wildfire susceptibility,
which is the most important in landslides and the second most important in wildfires. The result of
this paper is useful for mastering the whole situation of hazard susceptibility and proves that RF is a
robust model in the hazard susceptibility assessment in SEA.
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1. Introduction

Southeast Asia, one of the most natural disaster-prone regions in the world, numerous
natural hazards such as floods, earthquakes and heatwaves happen here every year [1–4].
The landscape in mainland SEA is characterized by mountainous areas [5]. Landslide
is a main geological hazard in SEA, having damaging impacts on the safety of life and
property [6–8]. Additionally, wildfires are frequent in SEA, particularly in Indonesia, and
the forests of SEA are represented as increasingly at-risk to fire [9,10]. The extent and
severity of wildfire increased with the viability of the climate, and the fire susceptibility in
SEA increased [11–13]. Wildfires can cause various impacts, including a loss of biodiversity,
loss of assets and damage to natural resources and agriculture areas [14,15].

Hazard susceptibility maps are crucial for determining the most susceptible areas
where hazards are likely to occur, and multiple studies have implemented landslide and
wildfire susceptibility assessment [8,16–18]. Research about susceptibility modeling is
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mainly related to a single hazard. There are plenty of studies focusing on landslides and
wildfires separately. Besides, the most current hazard susceptibility studies for landslides
and wildfires of SEA were restricted in small regions on a small scale. For example, research
has been undertaken on landslide susceptibility assessments for Cameron, in the Highlands
area in Malaysia [19,20], in Central Vietnam [21,22] and the north part of Vietnam [23], in
the Kelantan River Basin and Peninsular Malaysia [24]. Ngoc Thach et al. [25] analyzed
the spatial pattern of fire risk of Thuan Chau in Vietnam, and Tehrany et al. [26] predicted
the forest fire susceptibility at the Lao Cai region of Vietnam. Prasertsri and Littidej [27]
analyzed the risk of wildfire-prone areas in Thailand. Miettinen et al. [13] assessed the
spatiotemporal distribution of vegetation fires in Peninsular Malaysia. Thoha et al. [28]
determined the spatial and temporal distributions of forest and land fires in North Sumatera
Province, Indonesia. Additionally, landslides and wildfires are often measured separately,
while two or more hazards usually cause more severe damage than a single one to human
lives, natural resources, the ecosystem and infrastructures.

Precipitation and temperature are expected to increase in SEA, and the increases in
rainfall are likely to increase the frequency of landslides in sloping zones, while warm
weather may raise the incidence of fire in the forest [29]. Besides, increasing levels of human
activities in the mountain forest areas are also likely to increase the incidence of landslides
and wildfires [27,29,30]. The soil reinforcement provided by trees can reduce the landslide
incidence [31–33]. In temperate and tropical Asia, the intensified risk of forest dieback and
wildfires are likely to heighten the landslides [29]. SEA is characterized by a high number
of mountain ranges and steepness of the landscape [34], where 2.1 million km2 of forests
are located [35]. In the mountain zones with steep landscapes and high vegetation covers,
landslides and wildfires are both prone to occurrence. Throughout Asia, landslides are often
triggered by intense storms and rainfall, while wildfires mostly occur in dry regions [29].
The wildfires can cause hillslope erosion and have an impact on sediment movement,
which may cause landslides or debris flow [36]. Di Napoli et al. [37] considered wildfire as
a new triggering factor of landlisde susceptibility and found out that the wildfire factor
contributes significantly to the final results, and the susceptible areas and the percentage
of high landslide susceptibility increased when considering the wildfire as an aditional
conditioning factor. It is worth studying the two hazards in conjunction to see whether
some zones in SEA are susceptible to both hazards.

A wide range of techniques has been developed for hazard susceptibility modeling
and mapping. In general, there are mainly four types of approach for assessing the hazard
susceptibility: opinion-driven models, physical-based models, statistical models and ma-
chine learning (ML) models [8,17,38]. Lately, machine learning has become the keystone
in solving the spatial modeling problem in the field of natural hazards [8,39]. Herein, the
ensemble machine learning algorithms, combining multiple individual classifiers together,
are demonstrated to have improved results [23,40,41], in which Boosting and Bagging are
two representative techniques of ensemble machine learning. Various studies have shown
that Random Forest (RF), Gradient Boosting Decision Tree (GBDT) and Adaptive Boost-
ing (AdaBoost) perform well in hazard susceptibility modeling and mapping [23,41–44].
AdaBoost is the most widely used Boosting algorithm involving an adaptive resampling
method with enhanced predictive ability [40,45]. GBDT is also a representative Boosting
algorithm, which is an iterative decision tree algorithm, and the results of all trees are
aggregated as the final result with high precision [40,46]. The GBDT model has often been
implemented for various hazard susceptibility mappings [47,48]. RF, based on Bagging
and random feature selection, is a popular machine learning method and is known to
provide high accuracy rates [17,49]. Several studies have successfully carried out studies on
landslides and wildfire susceptibility modeling and mapping using RF [8,50], GBDT [46,47]
and AdaBoost [26,43,51].

However, uncertainties in the susceptibility information can cause undesirable social
costs [52], while the spatial uncertainty of the susceptibility map yielded by the models
is rarely evaluated. It is crucial to quantifying the uncertainty for the reliability of the
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susceptibility map, so that the susceptibility map can provide reliable scientific information
that can support the identification of hazard-prone areas [52,53]. To overcome the above
limitations, landslides and wilfires were studied together for SEA based on machine learing
models, and the spatial uncertainty of the susceptibility maps was evaluated to ensure the
reliability of the model.

In this paper, three advanced ensemble machine learning techniques, namely RF,
GBDT and AdaBoost, were employed to construct the susceptibility models for landslides
and wildfires using the geological, topographical and meteorological conditioning factors
in SEA. The input datasets were randomly and repeatedly portioned into 70% training
set and 30% testing set. The models were compared using accuracy statistics, and the
most reliable and suitable model was chosen for generating susceptibility maps for SEA.
This work overlaid the two natural hazards together to find out the intersection between
them. Then, the uncertainty of the landslide and fire susceptibility maps were analyzed.
The main objectives of this paper are to develop a suitable model for landslide and wild-
fire susceptibility assessment and generate reliable landslide and wildfire susceptibility
maps and evaluate the uncertainty of the susceptibility map. The acquired results in this
paper could provide support for decision-makers and planners to make suitable future
development schemes.

2. Materials and Methods

The materials used in this paper mainly involve the conditioning factor and the hazard
inventories. Machine learning methods should be incorporated with the historical hazard
inventory and the dependent factors to develop a rational model for the susceptibility as-
sessment. Three advanced ensemble machine learning methods were employed (i.e., GBDT,
RF and AdaBoost).

2.1. Study Area

Southeast Asia is located on several plates and lies between the Indian and Pacific
Oceans, covering about 4.5 million km2 (Figure 1). SEA includes 11 countries: Brunei, Cam-
bodia, East Timor, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand
and Vietnam. Southeast Asia is one of the most disaster-prone areas in the world [54],
where earthquakes, volcano eruptions, tsunami and seasonal typhoons occur. The vast
majority of SEA falls within the warm, humid tropics with plentiful rainfall. The climates
in SEA are dominated by the tropical monsoon climate, tropical dry and wet monsoon
climates and tropical rainforest climate. SEA is 80% mountains and hills, and the region
has high temperatures and abundant rainfall most of the time [55,56].

As a consequence, landslides are prone to happening. Landslides, usually triggered
by heavy rains and seismic activities, are very common in SEA, where large number of
mountains and steep landscapes exist. Located in an active seismic area, deadly landslides
almost happen in Indonesia and the Philippines every year. The landslide disaster hap-
pening in SEA in 2006 was regarded as the deadliest one worldwide, which resulted in
1126 deaths [9].

Vegetation fires are a common phenomenon in many regions in the world, includ-
ing SEA [57]. Wildfires in SEA are destructive. They happen particularly frequently in
Indonesia (Sumatra and Borneo) [9]. The impact of wildfires is not exclusive to the regions
where fires happen. The ashes from fires can spread expansively to other places, causing
tremendous immediate and long-term effects. The 1997 Indonesian wildfire was one of the
worst forest fires in recorded history, engulfing over 12 million acres of Indonesia [9,58].
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Figure 1. The location of the study area and the distribution of (c) landslide and (d) wildfire points. (a) The location of
Southeast Asia on the globe. (b) Sovereign states in Southeast Asia.

2.2. Data Preparation

The quantitative assessment of landslide and wildfire susceptibility includes two as-
pects of data: landslide and wildfire occurrences and geo-environmental and antropogenic
predisposing factors.

2.2.1. Hazard Inventories

Disaster inventories, showing the locations of existing disasters, include landslide
and fire inventories. The MODIS Collection 6 fire archive was used in this paper for
wildfire susceptibility model construction [57,59]. MODIS hotspots have been adopted by
many researchers for susceptibility mapping [60,61]. The fire products were downloaded
from Fire Information for Resource Management System (FIRMS). This product provides
confidence levels of fire pixels, and we discarded all fires with confidence criteria less
than 100%. Specific to this research, we collected fire data from 2010 to 2019, and the total
number of fire points was 1633.

Landslide inventories were obtained from the Global Landslide Catalogue (GLC)
established by Kirschbaum [62]. The GLC was compiled from online disaster databases,
scientific reports and other sources available, mainly consisting of landslides triggered by
rainfall [63]. Two thousand seven hundred and fifty-nine landslide events within the study
area with a spatial accuracy of 1 km or better within SEA were selected.

Unbalanced numbers of positive and negative samples led to a bad performance of
the model [64]; thus, we randomly sampled nonhazard points in the disaster-free zones
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with the same number as the hazard points to ensure the reliability of the susceptibility
assessment. The whole hazard dataset, including the positive and negative samples (i.e., the
presence and absence of the landslide or fire), was divided into a training dataset and
testing dataset.

Before assessing the hazard susceptibility, the conditioning factors and disaster in-
ventories were prepared in the database. All the data used for extracting the conditioning
factors for landslides and wildfires, as well as the hazard inventories, are listed in Table 1.

Table 1. Summary of the data sources used in this paper.

No Dataset Source Reference

1 DEM SRTM Data (http://srtm.csi.cgiar.org/srtmdata/ accessed on 26
March 2021) [65]

2 Climate TerraClimate (http://www.climatologylab.org/terraclimate.html
accessed on 26 March 2021) [66]

3 Land coverage FROM-GLC 2017v1(http://data.ess.tsinghua.edu.cn/ accessed on
26 March 2021) [67]

4 Road OMS (https://www.openstreetmap.org/) Primary and motorway OpenStreetMap

5 Fault
GEM Global Active Faults

(https://github.com/GEMScienceTools/gem-global-active-faults
accessed on 26 March 2021)

[68]

6 River OSM (https://www.openstreetmap.org/ accessed on 26 March 2021) OpenStreetMap
7 Urban areas http://data.ess.tsinghua.edu.cn/ accessed on 26 March 2021 [69]

8 Lithology
Global Lithological Map

Database v1.0 (https://doi.pangaea.de/10.1594/PANGAEA.788537
accessed on 26 March 2021)

[70]

9 NDVI https://lpdaac.usgs.gov/products/mod13q1v006/ accessed on
26 March 2021 MODIS MOD13Q1

10 Landslide
https://maps.nccs.nasa.gov/arcgis/apps/MapAndAppGallery/

index.html?appid=574f26408683485799d02e857e5d9521 accessed on
26 March 2021

[71]

11 Fire location https://firms.modaps.eosdis.nasa.gov/ accessed on 26 March 2021 MODIS MCD14DL

2.2.2. Conditioning Factors

Conditioning factors are crucial for hazard susceptibility modeling and mapping. The
factors were selected considering the characteristics of SEA, and data availability referring
to the information collected from the literature [8,17,25,26,72]. In this paper, 18 conditioning
factors in total were chosen for the hazard susceptibility assessment—namely, elevation,
slope, aspect, plan curvature, profile curvature, TWI (Topographic Wetness Index), SPI
(Stream Power Index), NDVI (Normalized Difference Vegetation Index), annual mean
precipitation, annual mean maximum temperature, soil moisture, wind speed, lithology,
land use, distance to roads, distance to rivers, distance to faults and distance to urban
areas (Figure 2). The temperature, precipitation, windspeed and NDVI factors are the
annual mean values. The separate conditioning factors used for landslides and wildfires
are listed in Table 2. A database containing 18 factors and hazard inventories based on
the geographic information system (GIS) was generated. All thematic layers are projected
using coordinate system UTM zone 50N with a Datum of WGS 1984, and the spatial
resolution is 1 km×1 km. The factors have categorical (i.e., lithology and land use) and
continuous data. Some factors are pertinent to determining both hazards, and some of
these are relevant to one hazard (Table 2) and were, thus, only incorporated into the risk
models for which they were relevant. The relationship between hazard and nonhazard
with the conditioning factors is shown in Supplementary Figures S1 and S2.

http://srtm.csi.cgiar.org/srtmdata/
http://www.climatologylab.org/terraclimate.html
http://data.ess.tsinghua.edu.cn/
https://www.openstreetmap.org/
https://github.com/GEMScienceTools/gem-global-active-faults
https://www.openstreetmap.org/
http://data.ess.tsinghua.edu.cn/
https://doi.pangaea.de/10.1594/PANGAEA.788537
https://lpdaac.usgs.gov/products/mod13q1v006/
https://maps.nccs.nasa.gov/arcgis/apps/MapAndAppGallery/index.html?appid=574f26408683485799d02e857e5d9521
https://maps.nccs.nasa.gov/arcgis/apps/MapAndAppGallery/index.html?appid=574f26408683485799d02e857e5d9521
https://firms.modaps.eosdis.nasa.gov/
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Figure 2. Conditioning factors used in this paper: (a) elevation, (b) slope angle, (c) aspect, (d) plan curvature, (e) profile
curvature, (f) distance to urban areas, (g) distance to rivers, (h) distance to roads, (i) distance to faults, (j) SPI, (k) TWI, (l) soil
moisture, (m) wind speed, (n) mean annual precipitation, (o) NDVI, (p) mean annual maximum temperature, (q) lithology
and (r) land use. NOTE: In (q): su, Unconsolidated sediments; ss, Siliciclastic sedimentary rocks; py, Pyroclastics; sm, Mixed
sedimentary rocks; sc, Carbonate sedimentary rocks; ev, Evaporites; va, Acid volcanic rocks; vi, Intermediate volcanic rocks;
vb, Basic volcanic rocks; pa, Acid plutonic rocks; pi, Intermediate plutonic rocks; pb, Basic plutonic rocks; mt, Metamorphics;
wb, Water Bodies; ig, Ice and Glaciers and nd, No Data. In (r): (1) Cropland, (2) Forest, (3) Grassland, (4) Shrubland,
(5) Wetland, (6) Water, (7) Tundra, (8) Impervious surface, (9) Bareland and (10) Snow/Ice.

Table 2. Separate factors used for landslide and wildfire susceptibility modeling.

Factors Landslide Wildfire

Elevation
√ √

Slope
√ √

Aspect
√

-
Plan curvature

√
-

Profile curvature
√

-
Distance to urbans -

√

Distance to rivers
√ √

Distance to roads
√ √

Distance to faults
√

-
NDVI

√ √

Precipitation
√ √

Temperature -
√

Wind speed -
√

Soil moisture
√

-
Lithology

√
-

Land use
√

-
TWI

√ √

SPI
√

-
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2.2.3. Multicollinearity Test for the Conditioning Factors

Multicollinearity checking of conditioning factors is necessary for the studies of sus-
ceptibility mapping, since the multicollinearity may disturb the prediction and cause some
error in the results [73,74]. Multicollinearity happens when input datasets are highly cor-
related, which can cause erroneous modeling [17]. Variance Inflation Factors (VIF) and
Tolerance (TOL) were used to detect and quantify the multicollinearity [17,75]. VIF < 10 or
TOL > 0.1 denoted a problem of multicollinearity [76,77]. As a result, there were no multi-
collinearities among the factors selected for each hazard (Supplementary Tables S1 and S2).
The low VIF and high TOL values of the factors indicated that the conditioning factors for
each hazard were properly selected.

2.3. Methods

Three different ensemble machine learning methods—specifically, AdaBoost, GBDT
and RF—were adopted for our research. The scheme of the hazard susceptibility modeling
and mapping are presented in Figure 3, and the main procedures are described as follows.

(1) Firstly, we constructed a spatial database collecting the basic environmental data, as
well as the landslide and fire inventories.

(2) Secondly, we used the prepared data to extract conditioning factors from the environ-
mental data for landslide and wildfire susceptibility modeling separately. Then, a
multicollinearity test on those factors was performed using VIF and TOL.

(3) Thirdly, we randomly portioned the dataset into a training dataset and testing dataset.
The dataset was first shuffled and then split randomly into training (70%) and testing
(30%) data in Python.The target class value (i.e., hazard point) is 1 if the samples are
disaster-positive; otherwise, the class value is set to “0”. The ratio between training
and validation is 70% and 30% [8,64,78]. The models were run 30 times with different
hazard data combinations using AdaBoost, GBDT and RF, and, every time, the input
data were split into 70% for training and 30% for testing. After developing the models,
evaluation of the model accuracy and comparison between models was implemented,
using AUC, Precison, ACC and confusion matrix statistics.

(4) Next, the model predictive capability was compared, and the best-performed model
was used to generate the susceptibility maps for the two hazards. Then, we carried
out an overlay analysis to evaluate the susceptibility of the two hazards. Additionally,
we computed the CV to assess the uncertainty of the results. The susceptibility map
intersected with the uncertainty map based on a matrix-based method to assess the re-
liability of the best model. Additonally, the relative importance of every conditioning
factor for each hazard was obtained.

Machine learning methods should be incorporated with the historical hazard inven-
tory and geo-environmental factors to develop a rational model for the susceptibility
assessment. Three advanced ensemble machine learning methods were employed for
hazard susceptibility mapping, including AdaBoost, GBDT and RF. All the algorithms
were implemented based on Python language. Depictions of the three machine learning
methods are presented as follows.
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2.3.1. AdaBoost

AdaBoost was introduced by Freund and Schapire [79]. AdaBoost is the most popular
boosting approach, involving the application and an adaptive resampling technique and
having enhanced predictive capability, as it controls bias and variance [45,51]. It is an
iterative algorithm dealing with binary classification. The basic idea of AdaBoost is to train
several different weak classifiers for the training dataset and then combine these weak
classifiers to form a strong classifier. Weak classifiers with low error rates account for a
larger proportion of the final classifier. First, the weight values are assigned to instances in
the training dataset, and then, the weights are replaced during the iterations by reducing
the weights of correct classified samples and increasing the weights of wrong classified
samples in the last iteration [44]. When optimal weights have been assigned, the learning
process ends to obtain the best performance of the base classifier [44]. AdaBoost can
adaptively adjust the weak errors of the weak classifier and form a stronger final classifier
by combing the weak classifiers; the accuracy of the strong classifier is based on those
weak classifiers. This process can reduce the bias and variance and, thus, improve the
classification ability and have higher effectiveness [51]. Different from other methods, it
also increases the weight of the samples that are misclassified during training and then
learns again to continuously improve the accuracy. AdaBoost is sensitive to the outliers, so
that outliers may affect the accuracy of the final learner. In this paper, we set the maximum
number of iterations as 500 and the learning rate as 0.8, and we used the classification effect
of the sample set as the weight of the weak classifier.

2.3.2. Gradient Boosting Decision Tree

GDBT is an ensemble machine learning method combining multiple decision trees
based on the Boosting concept [46]. It continuously improves the prediction accuracy
through interactions. A new decision tree was established in the gradient direction of the
reducing residuals in each iteration [80]. The basic idea of GBDT is to build several weak
classifiers and finally combine them to form a strong classifier after multiple iterations.
Each iteration is to improve the previous results and reduce the residuals of the previous
model. The overall performance of GBDT becomes better, because the errors of the decision
trees are compensated by each other [48]. GBDT belongs to Boosting ensemble learning.
Compared with the AdaBoost algorithm, GBDT is improved by calculating the negative
gradients instead of adjusting the weights of the misclassified samples [81]. Different from
the AdaBoost algorithm, the weak classifiers of GBDT are dependent and connected [82].
The prediction results are finalized based on the sum of the weak classifiers. GDBT is one
of the best algorithms fitting the real distributions and has a strong generalization ability
and can be used for classification problems [81]. The maximum number of iterations was
set to 100, and the learning rate is 1 when taking the data into account.

2.3.3. Random Forest

RF [83] belongs to ensemble learning methods aggregating a bunch of CART decision
trees for classification and prediction. RF is the most common bagging model, combin-
ing bagging ensemble learning and the random subspace method, which is resistant to
overfitting [8]. In the classification problem, different subsamples of the datasets and
different subsamples of features are used to train several decision trees, and majority
voting defines the class [75]. Subsamples of the dataset are produced using the bootstrap
resampling method [64]. RF is one of the most frequently used machine learning algorithms
in multiclassification and prediction research [77]. The input data for RF do not need to
be scaled, transformed or modified, and RF can resist outliers in predictive variables and
automatically deal with missing values [8]. In the process of classification, RF can also get
the importance of every input factor by the Information Gain (IG), Gain Rate, Gini Index or
the chi-square test.



Remote Sens. 2021, 13, 1572 11 of 25

2.4. Factor Importance

The mean decrease Gini Index of RF was used to determine the relative importance of
the variables. The factor importance is of vital importance for identifying the contribution of
each factor and, hence, determining their role in the model [8]. The random forest technique
was utilized to evaluate the relative importance of all the conditioning factors [8,73].
Natural hazards are generally influenced by multiple conditioning factors. Therefore,
measuring the relative importance of the conditioning factors is crucial for understanding
the hazard risk patterns [84,85].

2.5. Model Performance and Accuracy Assessment

In this paper, hazard susceptibility modeling and mapping is a classification problem,
with binary outcomes of the presence and absence of hazards, meaning that measurements
assessing the model performance by evaluating the prediction results and accuracy are
important [17]. In the literature, the overall accuracy (ACC), precision and the area under
the ROC curve (AUC) are considered the main metrics by which to evaluate the overall
results [8,17,86]. In addition, the confusion matrix is also implemented as a further metric
to evaluate the model performances quantitatively and graphically.

In classification problems, each class is either positive (hazard) or negative (nonhaz-
ard). ACC is a statistical index of the model’s overall performance, which is defined as
the percentage of correctly classified samples (Equation (1)). Precision can be regarded
as a measure of exactness, which indicates the percentage of samples predicted as pos-
itive are exactly positive (Equation (2)). The AUC is a useful accuracy statistic for the
susceptibility analysis [8,87]. The 30% testing data that were not used previously in the
model establishment process were employed to evaluate the model capability. ACC depicts
the number of correctly classified samples of both hazard occurrence and nonoccurrence,
ranging from 0 to 1, and the larger the AUC values, the better the model performs. The
AUC can be interpreted as follows as reflecting the model performance: excellent (0.9–1),
very good (0.8–0.9), good (0.7–0.8), medium (0.6–0.7) and poor (0.5–0.6) [17,88]. In addition,
the contingency/four-fold plot summarizing the numbers of TP, TN, FP and FN is used to
graphically evaluate the model predictive ability [89,90], and the larger proportion of TP
and TN indicates a better model.

The mathematical Expression (1) for ACC and Expression (2) for Precision are:

ACC =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

where ACC is the overall accuracy, and Precision denotes the fraction of true landslide
instances among the samples classified as positive. TP (true positive) and TN (true negative)
are the number of hazard and nonhazard samples that are correctly classified, respectively.
Conversely, FP (false positive) and FN (false negative) are the hazard and nonhazard
samples that have been falsely classified, respectively.

3. Results

The results of this paper primarily include comparing the performances of the sus-
ceptibility models, generating susceptibility maps for landslides and wildfires, evaluating
the uncertainty of the susceptibility maps and analyzing the relative importance of the
conditioning factors for landslides and wildfires.

3.1. Evaluation of the Models

According to the accuracy measures in Table 3, the RF model had the best performance
in both the landslide and wildfire susceptibility assessments, followed by GBDT and
AdaBoost. RF has the highest ACC, Precision and AUC values (ACC = 0.81, Precision = 0.78
and AUC = 0.89 in landslides and ACC = 0.83, Precision = 0.83 and AUC = 0.91 in wildfires).



Remote Sens. 2021, 13, 1572 12 of 25

A higher AUC means a higher model accuracy. As can be seen from Table 3, the AUC
values of all three models are greater than 0.8, indicating that the three machine learning
models performed well in the landslide and wildfire susceptibility modeling. The three
accuracy measures have the same order of model performance. Compared with RF and
GBDT, AdaBoost has the lowest accuracy values in landslides (ACC 0.77, Precision 0.75 and
AUC 0.86) and wildfires (ACC 0.74, Precision 0.72 and AUC 0.81). In addition, AdaBoost
performed better in landslides than wildfires, while GBDT and RF are better in wildfires.
Overall, RF performed well in the landslide susceptibility assessment and performed
excellently in the wildfire susceptibility assessment.

Table 3. Evaluation matrix on the performances of the different models for the two hazards.

Hazards Models ACC Precision AUC

Landslide
AdaBoost 0.77 0.75 0.86

GBDT 0.78 0.76 0.87
RF 0.81 0.78 0.89

Fire
AdaBoost 0.74 0.72 0.81

GBDT 0.80 0.78 0.88
RF 0.83 0.83 0.91

The results demonstrated that RF exhibited the best performance among the three
ensemble machine learning methods for the two hazards, determining that the RF model is
more predictive than GBDT and AdaBoost in landslide and wildfire susceptibility mod-
eling and mapping. The results of the contingency plot of the confusion matrix statistics
confirmed that RF is the best model among the three machine learning models (Figure 4).
RF performed better in wildfires than in landslides. The gap in the performances between
landslides and wildfires may be induced by the difference in data quality. The RF model
exhibited good generalization capability. In addition, Figure 4 shows the specific percent-
ages of TN, TP, FN and FP, giving a more detailed accuracy evaluation. FP refers to the
nonhazard locations that are wrongly predicted as the hazard, while FN is the hazard
locations that are wrongly predicted as nonhazard. TP and TN are the samples that are
correctly predicted. In Figure 4, the TN and TP account for large portions in all the models
in landslides and wildfires, while the mispredicted samples (FP and FN) in landslides and
wildfires account for smaller parts. RF have the least FN and FP, demonstrating the high
accuracy of the RF model.
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3.2. Susceptibility Maps

After obtaining the best model for the three hazards, the best performed RF model
was applied to produce the susceptibility of the three hazards (Figure 5). The Natural
Breaks classification method was employed to categorize the susceptibility map into five
groups, including very low, low, moderate, high and very high [8,17,77]. The intervals
of very low, low, moderate, high and very high for landslide susceptibility were 0–0.13,
0.14–0.28, 0.29–0.43, 0.44–0.62 and 0.63–1, respectively and, for wildfires, the intervals were
0–0.17, 0.18–0.31, 0.32–0.47, 0.48–0.67 and 0.68–1.
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Figure 5. Susceptibility map using the RF model: (a) landslides and (b) wildfires.

The susceptibility maps show a fairly good spatial distribution of the high susceptible
areas. Most of the hazard points are within the areas with very high susceptibility, indi-
cating the reliability of the susceptibility maps. The landslide susceptibility is high in the
Philippines, the west of Myanmar, the middle of Vietnam and Lao and the southwestern
parts of Indonesia near the Indian Ocean. Wildfires need dry environmental conditions.
The wildfires in the Philippines are relatively low. The wildfires in Myanmar are relatively
severe and are also serious in the northern area of Lao. Cambodia also has high wildfire
susceptibility. Additionally, the wildfire susceptibilities in Sumatra and Borneo of Indonesia
are relatively high.

As previously reported, the susceptibility maps were divided into five classes. Here,
we carried out an aggregation to make the intersection map clear and distinguishable—
namely, the low class includes low and very low, while the high contains high and very high.
Subsequently, an intersection operation between the landslide and wildfire susceptibility
maps was performed. A multihazard susceptible map (Figure 6) combing landslides
and wildfires was derived by the interaction between the three integrating classes of the
susceptibility of landslides and wildfires. The resulting maps showed the classification
scheme of low, moderate and high susceptible areas between landslides and wildfires.
The majority of the regions have low susceptibility in both landsides and wildfires. The
Philippines is highly susceptible to landslides but not very susceptible to wildfires. The
western part of Myanmar showed a high susceptibility to both landslides and wildfires.
Landslide susceptibility is high in the Philippines, the middle of Vietnam and the southern
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costal of Indonesia, while the wildfire susceptibility is low. Those regions in the middle and
east parts of Indonesia and northwestern Cambodia show a high susceptibility to wildfires
but a low susceptibility to landslides. The west of Myanmar is highly susceptible to both
wildfires and landslides. From the bar chart, which summarizes the areas of different
combination classes, it can be seen that the areas with low susceptibility in both hazards
account for the majority, followed by areas with high landslide susceptibility and low
wildfire susceptibility, and areas where both of the hazard susceptibilities are high make
up the least proportion, confirming the statistical analyses on the maps.
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east Asia.

3.3. Uncertainty of the RF Model

To assess the uncertainty of the susceptibility maps generated by the RF, the coefficient
of variation (CV) was computed. The CV is a measure of uncertainty of the model [52,53]. In
this work, the uncertainty map interacted with the susceptibility to delineate the uncertainty
within each susceptibility class. In this way, the reliability of the RF model was assessed.
The uncertainty is high when the CV exhibits high scores, while the lower the score, the
better are the results of the model. The CV values were subdivided into five classes using
the Natural Breaks method, and the first two classes were considered as low uncertainties
while the last two were classified as high uncertainties, while the third class was a medium
uncertainty. As can be seen from Figure 7, most of the region showed low uncertainty
in the susceptibility map. Areas with high uncertainty were only identified where the
landslide susceptibility was low. Most of the landslide points (about 93.95%) fell into the
class with low uncertainty and high susceptibility, confirming how the RF model correctly
identified the potential landslide areas with a low uncertainty level. In addition, none of
the landslides fell into the high susceptibility class with high uncertainty. Only 1.27% of
the landslides fell into the low susceptibility class (with low and medium uncertainty).
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Few regions show high uncertainty and those regions with high uncertainty were mainly
distributed in the low landslide susceptibility category.
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Figure 7. Uncertainty map intersecting the landslide susceptibility with the CV.

Only pixels characterized by low wildfire susceptibility showed high variability
(Figure 8). Areas with high wildfire susceptibility and medium or high uncertainty were
hard to recognize. The majority of the fire points fell into the highly wildfire-susceptible
class with low uncertainty (91.06%), demonstrating the reliability of the wildfire suscepti-
bility map obtained by the RF model. The fire points that fell into the low susceptibility
classes with medium and high uncertainty were about 0.24%. About 4.72% of the fire
points fell into the high susceptibility class with medium uncertainty. Only 1.90% of the fire
points were in the high susceptibility class with high uncertainty. It was hard to recognize
areas with high wildfire susceptibility presenting medium and high uncertainty. Most of
the highly susceptible areas showed a low uncertainty level.
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Figure 8. Uncertainty map intersecting the wildfire susceptibility with the CV.

The graphs presented in Figure 9 confirmed the uncertainty maps. It was shown in
Figure 9a that the largest areas were those with low uncertainty for landslides. Therefore,
highly landslide-susceptible areas have low values of uncertainty. As can be seen from
the graph in Figure 9b, most of the areas showed low uncertainty, confirming how the RF
model correctly identified the potential wildfire areas. It can be observed from Figure 9b
that the majority of the zones were those with low uncertainty. Low wildfire susceptibility
with medium and high uncertainty also accounted for a large portion.
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In general, the uncertainty maps gave more powerful support to evaluate the landslide-
and wildfire-susceptible regions of SEA, along with the susceptibility maps. Figure 9
represents the areas for each combination class. Landslide and wildfire uncertainty maps
have similar characteristics. The low uncertainty level was the majority in both landslides
and wildfires, while there were more pixels with high uncertainty in the low susceptibility
class of wildfires. In landslides, the low susceptibility with low uncertainty accounted
for the most, while, in wildfires, the low susceptibility with medium uncertainty was
the largest. Although landslides and wildfires both have good reliability in the highly
susceptible areas, the landslide susceptibility map was more reliable than that of wildfires
in the low susceptibility class.

3.4. Factor Contribution Analysis

The relative importance of each conditioning factor for the susceptibility modeling
was obtained using RF. The results revealed that the distance to roads, distance to faults
and precipitation are the three most powerful factors to predict landslide risks (Figure 10a),
while the SPI and land use seemed to have the least importance for landslide susceptibility
modeling. Earthquakes and rainfall are frequent in SEA; it is reasonable that the distance
to faults and precipitation are important. Earthquakes will make faults rupture; combined
with the impact of precipitation, landslides are prone to occurring. For wildfire susceptibil-
ity modeling, it is mostly determined by the distance to urban areas, distance to roads and
slopes, while the TWI and elevation are the least important factors (Figure 10b).
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Comparing the two hazards, it can be found that the distance to roads has great
importance for both the landslide and wildfire susceptibility assessments. Additionally,
the distance to rivers, precipitation and slope also have great contributions to both hazards.
However, elevation and the TWI are of medium importance for landslides, while these two
factors have the least importance in wildfires.

4. Discussion

Landlide and wildfire susceptibility mapping is a hot topic. It is critical in the predic-
tion and reduction of future landslide and wildfire occurences. The primary purpose of
the present study was to produce satisfactory hazard susceptibility maps using ensemble
machine learning approaches for SEA. In this discussion section, the factor contribution of
the two hazards, the model comparision and the sampling methods for nonhazard samples
are mainly discussed.

4.1. Contribution of Driving Factors

The analysis in this work showed that the distance to roads, distance to faults and
precipitation were the most effective factors in determining the landslide potential in SEA.
The relative importance of the conditioning factors to landslide modeling was dependent
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on the characteristics of the study area [91]. The landslide inventory data consisted of
rainfall-induced data, so precipitation played a relatively important role in landslide
susceptibility modeling. There were various external triggers for landslide occurrences,
such as heavy rains, earthquakes, volcanoes, deforestations, road constructions and other
natural or human-made processes [8,30,92,93]. Landslides are generally measured as a
natural occurrence, but studies have shown that most landslides are frequently initiated by
anthropological activities [29,30,94].

There are a lot of natural factors governing fire occurrences, such as fuel type, topog-
raphy, vegetation, climate and drought [13,57,95]. Besides the natural triggering, most
of the fires in SEA are initiated by humans [27,57]. As we can observe from the relative
importance (Figure 10), the distance to roads plays a big role in both landslides and wild-
fires. What is more, the distance to urban areas is the most important for wildfire. The two
factors are related to human activities that have a direct relationship with susceptibility
(Figures S1 and S2), which may indicate that the human activity impacts the occurrence of
landslides and wildfires.

Vast regions in SEA are undergoing a transformation process due to human inter-
ference [12], and these changes may create a hazard-prone environment. Anthropogenic
factors are crucial for landslide and wildfire occurrences.

4.2. Comparison between the Ensemble Machine Learning Methods

The applied approaches, RF, GDBT and AdaBoost, are the prevailing ensemble ma-
chine learning algorithms in the field of data mining [17,30,96]. The results showed that the
RF model outperformed the other two models in both landslide and wildfire susceptibility
modeling, and the exceptional potential of the RF model has been supported by other
related research [8,49,90]. AdaBoost, GBDT and RF are all tree-based algorithms that collect
several single classifiers to improve their accuracy. The differences between RF and the
other two models mainly exist in the particular framework and procedure [77]. RF is based
on the Bagging idea, while GBDT and AdaBoost are of the Boosting family [35]. This can
indicate that the Bagging strategy may be more suitable for landslide and wildfire suscepti-
bility modeling in SEA. In general, RF can produce more accurate results in landslides and
wildfires for SEA. The RF algorithm is believed to be the most suitable ensemble machine
learning model when dealing with classification issues [77].

Besides, RF demonstrates robust and accurate performances on complicated data when
there are noisy variables [75]. The RF model can provide high accuracy rates concerning
outliers in predictors. The randomness of RF is reflected in two aspects: one is the random
selection of training samples, and the other is the random selection of the split attribute at
each node [17]. Considering the model performance and efficiency, RF is suitable for the
susceptibility assessment in SEA.

4.3. Comparison of Different Sampling Strategies

Two techniques have been applied to generate nonhazard data as negative samples
in the literature [64]: (1) the Buffer-controlled sampling (BCS) method and (2) the target
space exteriorization sampling (TSES) method. BSC is a widely used method for sampling
absent data for the hazard susceptibility [97,98]. In BCS, the negative samples are randomly
generated in the buffer zone, which is a certain distance away from the presence of the
disaster. In this work, we devised four strategies according to the BCS method and the
two-buffer method proposed by [99] for sampling the negative samples (Table 4).

Table 4. Nonhazard sampling strategies.

Strategy Description

I Buffer 5–10 km
II Buffer 10–15 km
III Buffer 15–20 km
IV The whole region minus the 5-km buffer
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The two-buffer method, as depicted by Zhu et al. [99]. The inner buffer around a
hazard location serves as a round polygon simulating the area where the hazard happens,
and the outer buffer surrounding the hazard points was created to sample the nonhazard
points. Random points were sampled from between the inner and outer buffers as a
nonhazard observation.

The ACC, Precision and AUC were used to evaluate the model performance using
the proposed sampling methods. As we can see (Table 5), strategy IV always has the best
accuracy in whichever model for both landslides and wildfires. Using different buffer
distances to generate negative samples has a different influence on the conditions of
different models and hazard types. Nowicki Jessee et al. [100] tested a range of buffer radii,
and the results showed that their model is not sensitive to the buffer radii, and the values
do not significantly influence the model. However, we had different results. This may be
because of the model difference and the difference in the extent of the study area.

Table 5. Model performance using different nonhazard sampling strategies.

Hazard Strategy RF GBDT AdaBoost
ACC Precision AUC ACC Precision AUC ACC Precision AUC

Landslide

I 0.69 0.71 0.72 0.67 0.68 0.71 0.67 0.66 0.7
II 0.70 0.70 0.75 0.69 0.68 0.73 0.67 0.65 0.72
III 0.73 0.72 0.8 0.71 0.70 0.78 0.68 0.65 0.75
IV 0.78 0.76 0.87 0.77 0.75 0.86 0.76 0.74 0.85

Wildfire

I 0.66 0.60 0.84 0.65 0.64 0.69 0.64 0.64 0.67
II 0.71 0.70 0.78 0.68 0.67 0.73 0.61 0.61 0.66
III 0.76 0.79 0.82 0.70 0.70 0.77 0.63 0.63 0.66
IV 0.84 0.83 0.9 0.81 0.79 0.89 0.74 0.73 0.82

4.4. Limitations and Future Works

The present paper also encountered some limitations. In this work, the ensemble
machine learning methods were implemented 30 times (Please see Figures S3–S8 for the
ROC plots), using different combinations of training and testing sets each time. The final
susceptibility maps from the RF model were the average of the results. The reliability was
assessed intersecting the susceptibility map with the uncertainty obtained by the CV. This
paper evaluated the uncertainty of the RF model using CV maps. Most of the regions have
low uncertainty for both landslides and wildfires (Figure 9), and all the highly susceptible
regions have low uncertainty. However, there are still a few lowly susceptible areas with
high uncertainty, especially for wildfires. It is worth more effort on the reduction of the
uncertainty of those areas. In addition, the CV values could not consider uncertainties
from the conditioning factors [53].

SEA’s weather is tropical, which is mostly hot and humid with high temperatures and
high annual precipitation amounts [55,56]. Intense precipitation could cause landslides,
and high temperatures could provide a dry environment for fire occurrences. SEA has
often been affected by weather-related natural disasters [55]. Since the climate change
can intensify the extreme weather, weather-related hazards may be more frequent in the
future, and the variability of the climate will pose a great challenge for susceptibility
modeling. It is essential to know the spatial distribution of susceptible areas for disaster
prevention. Climate changes should be considered when assessing the regional suscepti-
bility of landslides and wildfires. In addition, wildfires are influenced by the vetegtation
types and vegetation phenology that are dominated by the seasons [101]. The vegetation
types should be considered in assessing the wildfire susceptibility in future works. The
model for wildfire susceptibility in different seasons performed differently [101]. Thus, the
seasonality of the wildfire should also be considered in future works when assessing the
wildfire susceptibility. Futrthermore, wildfires play an unfavorable role in the landslide
susceptibility assessment, which can increase the predisposition towards the territory
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instability [37]. Future works focusing on the deeper relationship between landslides and
wildfires should be done.

5. Conclusions

This paper developed landslide and wildfire susceptibility models for SEA using three
well-accepted ensemble learning methods (AdaBoost, GBDT and RF).

(1) This research compared the model performance using various measures and found
out that RF is the best model in both landslide and wildfire susceptibility modeling
and mapping. Then, the separate susceptibility maps for landslides and wildfires
were generated using the best-performed RF model, in which the majority of actual
hazard points fell within the very highly susceptible areas.

(2) The resulting maps of each hazard were overlaid to develop the intersection map, and
the regions that were highly susceptible to both landslides and wildfires accounted
for a small portion.

(3) The CV was used to evaluate the uncertainty of landslide and wildfire susceptibility
spatial distribution. In general, the uncertainty was low, and there was no high-level
uncertainty in the highly susceptible areas in either landslides or wildfires.

(4) Through the factor importance analysis, it was found that the distance to roads
and distance to faults were, relatively, the two most important factors for landslide
susceptibility. For wildfires, the distance to urban areas was the most important,
followed by the distance to roads and slope.

This study foucsed on the uncertainty of the susceptibility map, while the uncertainty
of the conditioning factors was not considered. The model performance needs to be
improved to obtain higher accuracy and lower uncertainty in the future. Additionally, the
deeper relationship between landslides and wildfires should be studied in future works.
The landslide and wildfire susceptibility with high reliability provided an understanding
of the two hazards for SEA, which, therefore, may help to raise an awareness of the highly
susceptible zones. Susceptibility maps can help in identifying regions where landslides and
wildfires are susceptible, and the results can be useful for land use planning and disaster
prevention and mitigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13081572/s1, Figure S1: The relationship between the conditioning factors and landslides.
Figure S2: The relationship between the conditioning factors and wildfires. Figure S3: ROC curves
for landslide susceptibility using AdaBoost. Figure S4: ROC curves for wildfire susceptibility using
AdaBoost. Figure S5: ROC curves for landslide susceptibility using GBDT. Figure S6: ROC curves
for wildfire susceptibility using GBDT. Figure S7: ROC curves for landslide susceptibility using RF.
Figure S8: ROC curves for wildfire susceptibility using RF. Table S1: Multicollinearity analysis of the
landslide conditioning factors. Table S2: Multicollinearity analysis of the wildfire conditioning factors.
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