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Abstract: On 8 August 2017, a surface wave magnitude (Ms) 7.0 earthquake occurred at the buried
faults extending to the north of the Huya fault. Based on the coseismic deformation field obtained
from interferometric synthetic aperture radar (InSAR) data and a series of finite fault model tests,
we propose a brand-new two-fault model composed of a main fault and a secondary fault as the
optimal model for the Jiuzhaigou earthquake, in which the secondary fault is at a wide obtuse angle to
the northern end of the main fault plane. Results show that the dislocation distribution is dominated
by sinistral slip, with a significant shallow slip deficit. The main fault consists of two asperities
bounded by an aftershock gap, which may represent a barrier. In addition, most aftershocks are
located in stress shadows and appear a complementary pattern with the coseismic high-slip regions.
We propose that the aftershocks are attributable to the background tectonic stress, which may be
related to the velocity-strengthening zones.

Keywords: Jiuzhaigou earthquake; fault geometry parameters; coseismic slip distribution; InSAR

1. Introduction

On 8 August 2017, a surface wave magnitude (Ms) 7.0 earthquake occurred in Ji-
uzhaigou County, Aba Prefecture, Sichuan Province, China, with its epicenter at 103.82◦E,
33.20◦N, and a focal depth of about 20 km (Institute of Geophysics, China Earthquake
Administration, CEA-IGP). As of 13 August 2017, the earthquake had caused 25 deaths
and severe damage to both the Jiuzhaigou scenic area and more than 70,000 structures [1].
The Jiuzhaigou earthquake occurred near the northeastern boundary of the Bayan Har
block, indicating that the Bayan Har block is still active [2]. Because the southeasterly
movement of the Bayan Har block is blocked by the North China block and the South China
block, there are many broom-like branches on the eastern end of the East Kunlun fault,
which intersect with the Minjiang fault and the Huya fault, resulting in a complex seismic-
tectonic environment in this region [3]. The NWW-trending Tazang fault, the northern
segment of the NNW-trending Huya fault, and other nearby branches accommodate most
of the sinistral strike-slip activity of the East Kunlun fault. The nearly NS-trending Min-
jiang fault and the southern segment of the Huya fault that are transverse compressional
structures absorb the sinistral strike-slip motion of the remaining part of the East Kunlun
fault, which causes the Minshan uplift on the eastern margin of the Tibetan Plateau [4,5].

The complicated and intense tectonic activities of these faults make the eastern margin
of the Bayan Har block one of the most seismically active regions in China, with many
strong earthquakes having occurred throughout its history. Examples include the 1654
Tianshui earthquake (Ms = 8), the 1879 Wudu earthquake (Ms = 7), the 1933 Diexi earth-
quake (Ms = 7.5), the 1976 Songpan earthquakes (Ms = 7.2, 6.7, and 7.2), the 2008 Wenchuan
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earthquake (Ms = 8), and the 2013 Lushan earthquake (Ms = 7) (Figure 1). The shorter
duration, continuous earthquakes, and smaller strain of release compared to previous
phases of earthquake clustering show that the Bayan Har block is experiencing a peak in
seismic activity [4]. Therefore, further study of its seismogenic environment is urgently
needed. The 2017 Jiuzhaigou earthquake provides a great opportunity to understand the
tectonic loading mechanisms in this region. Different research institutions have issued
a series of reports on the focal mechanisms of the Jiuzhaigou earthquake. All of them
have shown that this earthquake was a sinistral strike-slip event with a high dip angle
and a moment magnitude (Mw) of 6.5, but there are significant discrepancies in the fault
geometry and focal depths (Table 1).
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Figure 1. Tectonic setting and seismicity around the 2017 Jiuzhaigou earthquake. (a) Tectonic setting of the eastern margin
of the Tibetan Plateau. The solid blue and purple lines indicate the primary and secondary block boundaries, respectively.
The color-coded circles represent historical earthquakes (Ms ≥ 5) from the Data Sharing Infrastructure of National
Earthquake Data Center (NEDC) (http://data.earthquake.cn, accessed on 14 April 2021). The black beach balls show the
focal mechanisms of the historical earthquakes (Ms ≥ 6.5) in this region from the Global Centroid Moment Tensor, Harvard
University Global Moment Tensor Solution (GCMT). The red beach ball represents the focal mechanism of the Jiuzhaigou
earthquake from the Institute of Geophysics, China Earthquake Administration (CEA-IGP) (http://www.cea-igp.ac.cn/en/,
accessed on 14 April 2021). The inset shows the large-scale tectonic environment. The red rectangle is the region shown in
(b). Note: QT—Qiangtang block; BH—Bayan Har block; QL—Qilian block; SC—South China; NC—North China; TB—Tibet;
TR—Tarim Basin. (b) Fault geometry and aftershocks of the Jiuzhaigou earthquake. The blue dots are the relocated
aftershocks within a month from Fang et al. [6], and the red rectangle is the projection of our optimal fault model on the
surface. The gray, black, red, and purple beach balls show the focal mechanisms determined by the GCMT, United States
Geological Survey (USGS) (https://www.usgs.gov/, accessed on 14 April 2021), CEA-IGP, and Institute of Earthquake
Forecasting, China Earthquake Administration (CEA-IEF) (http://www.ief.ac.cn/, accessed on 14 April 2021), respectively.

Table 1. Focal mechanisms of the 2017 Jiuzhaigou earthquake determined by different institutions.

Nodal Plane I Nodal Plane II
Magnitude (Mw) Depth (km)

Strike, Dip, Rake Strike, Dip, Rake

GCMT 242◦, 77◦, −168◦ 150◦, 78◦, −13◦ 6.5 14.9
USGS 246◦, 57◦, −173◦ 153◦, 84◦, −33◦ 6.5 13.5

CEA-IGP 328◦, 48◦, −11◦ 65◦, 82◦, 137◦ 6.5 20.0
CEA-IEF 59◦, 77◦, 164◦ 152◦, 75◦, 13◦ 6.5 5.0

http://data.earthquake.cn
http://www.cea-igp.ac.cn/en/
https://www.usgs.gov/
http://www.ief.ac.cn/
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No significant coseismic surface rupture was observed for the Jiuzhaigou earthquake,
making it challenging to determine the seismogenic fault [3,5]. Therefore, surface defor-
mation as a direct response to the earthquake provides critical information for studying
the seismogenic fault and rupture model. As one of the important means for obtaining
surface deformation, interferometric synthetic aperture radar (InSAR) has the advantages
of a wide geographical span, high precision, and high spatial resolution [7]. It is widely
used to decipher earthquake cycle processes, including the interseismic locking [8], co-
seismic rupture [9,10], and postseismic afterslip and viscoelastic relaxation [11]. Recently,
InSAR has been applied to monitor induced earthquakes, which is helpful to scientifically
guide industrial production [12,13]. After the Jiuzhaigou earthquake, many studies on
surface deformation and seismotectonics have been carried out using InSAR technology.
Shan et al. [14] used Sentinel-1A data to acquire the coseismic surface deformation fields
and inverted the rupture model. Hong et al. [15] derived the dislocation distribution from
InSAR and Global Positioning System (GPS) data. Zhao et al. [16] retrieved the coseis-
mic deformation field from Sentinel-1A InSAR data. Although a lot of research has been
performed on the seismogenic fault of the Jiuzhaigou earthquake, a unified knowledge
has not been achieved. From previous studies, we know that different one-fault models
have a wide range of dips (50◦–84◦) and a small range of strikes (152◦–155◦) [1,5,9,14–20].
The two-fault models using the aftershock gap as the boundary have a small difference
in fault geometry on the southern fault (strike: 145◦–148◦, dip: 84◦–88◦), but a significant
difference on the northern fault (strike: 151◦–171◦, dip: 77◦–88◦) [2,21,22]. Sun et al. [10]
proposed a more complex three-fault model to resolve the crustal deformation, including
a fault branch forming an obtuse angle with the main subvertical fault at the northern
end [23,24]. Thus, it is necessary to further discuss the seismogenic fault and rupture
model of the Jiuzhaigou earthquake. Accurate coseismic slip distribution could provide
a reasonable driving source for the postseismic viscoelastic relaxation analysis, Coulomb
stress change assessment, and ground motion simulation. Moreover, it is of great practical
significance for improving our knowledge of the background tectonics of the source region
and scientifically guiding earthquake relief efforts.

In this study, four finite fault models are tested, and a brand-new two-fault model
composed of a main fault and a secondary fault is finally determined as the optimal model
of the 2017 Jiuzhaigou earthquake, elucidating a complex fault system. In addition, we
further discuss the possible reasons for the aftershock distribution and the occurrence of
the aftershock gap.

2. Data and Methods
2.1. Data

We derived the coseismic deformation field in the line-of-sight direction based on the
Sentinel-1 synthetic aperture radar (SAR) images following the strategies of Ji et al. [3].
Interferometric processing was carried out using the GAMMA software. Two images,
including a master image (20170730) and a slave image (20170811), from the ascending
Path128 were used to obtain the interferogram based on the two-pass InSAR method [25].
The shuttle radar topography mission (SRTM) digital elevation model (DEM) with 30 m
resolution was used to remove the topographic phase. In order to suppress the noise, the
interferogram was multi-looked by a factor of 8 in range and 2 in azimuth and filtered
twice using the weighted power spectrum algorithm with windows of 128 × 128 and then
32 × 32 pixels [26]. The minimum cost flow algorithm was used to phase unwrapping.
The residual orbital phase in the interferogram was removed by a nonlinear least-squares
adjustment [27]. To minimize the atmospheric signal caused by the layered atmosphere,
the atmospheric delay model was established based on the existing digital elevation model
and removed from the interferogram [27].
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2.2. Methods

According to the Okada elastic dislocation theory [28], there is a linear relationship
between the coseismic surface displacement and the fault dislocation distribution. Ideally,
we would directly use the least-squares method to invert the fault dislocation distribution.
However, due to practical limitations, to describe the fault more objectively, we need
to discretize it into many meshes. Moreover, the distribution of the surface observation
is usually heterogeneous, and the Green function matrix is often rank-deficient or ill-
conditional. Generally, additional constraints are needed to ensure the stability of the
inversion, and a dislocation smoothing constraint is usually used:

F(s) =
∣∣∣|Gs− d|

∣∣∣2 + α2
∣∣∣|Lτ|

∣∣∣2 → min,

where G, s, and d represent the Green function, the slip vector of each sub-fault, and the
displacement vector, respectively, and ||Gs− d||2 is the variance between the observations
and predictions. The second term is the smoothing constraint, where L represents the
finite difference approximation of the Laplacian operator multiplied by a weighting factor
proportional to the slip amplitude, and τ is the shear stress drop that is linearly related to
the slip distribution. The parameter α is the smoothing factor, which controls the trade-off
between the model roughness and misfit. Generally, the “inflection point” is taken as the
optimal value. We used the steepest descent method (SDM) [29–32] to estimate the slip
model of the Jiuzhaigou earthquake. Compared with other inversion methods, the SDM
has the advantage of providing stable inversion results with high efficiency. The Green
function used for the inversion was based on the Crust1.0 layered model [33].

3. Model Tests and Results

We first constructed a one-fault model (Figure 2a) to retrieve the surface deformation.
To obtain a high-resolution finite fault slip model, we divided the entire fault into 247 rect-
angular sub-faults with a grid of 2 km× 2 km. As shown in Figure S1, we choose an optimal
smoothing factor of 0.1 based on the trade-off curve. The optimal strike and dip are 154◦ and
51◦, respectively, which is similar to the results of Shan et al. [14] (strike = 153◦, dip = 50◦).
The one-fault model reproduces most of the observations, but it cannot decipher the surface
deformation on the southeastern end of the fault satisfactorily (Table 2, Figure 3c). The slip
distribution is mainly dominated by sinistral strike slips, with some thrust components on
the southern segment and small normal components on the northern segment (Figure 4a).
Unfortunately, this model has a significant shallow slip on the southern end of the fault,
which is not consistent with the fact that there was no surface rupture.

Table 2. Parameters of finite fault models.

Faults Strike Dip Average Error
(m)

Maximum
Residual (m)

Moment Magnitude
(Mw)

One-fault Main fault 154◦ 51◦ 0.0211 −0.0900 6.4

Two-fault
Northern fault 154◦ 66◦

0.0203 −0.0684 6.4Southern fault 147◦ 74◦

Three-fault
Northern fault 156◦ 77◦

0.0198 −0.0602 6.4Southern fault 147◦ 82◦

Secondary fault 204◦ 80◦

New two-fault
Main fault 151◦ 77◦

0.0188 −0.0487 6.5Secondary fault 196◦ 77◦
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Figure 2. Projections of the four finite fault models on the surface, including the (a) one-fault model,
(b) two-fault model (a northern fault and a southern fault), (c) three-fault model, and (d) brand-new
two-fault model (a main fault and a secondary fault). Other symbols are the same as Figure 1b.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 14 
 

 

80°) (Figure S3), improving the data fit in the southwestern region compared to the two-

fault model (Table 2, Figure 3h). Figure 4c shows the slip distribution, whose high-slip 

zone is located at a depth of 2–10 km on the main fault, with a peak slip of 1.30 m. The slip 

of the northern fault is composed of sinistral strike-slip and normal motion, while the 

southern fault is almost exclusively composed of sinistral strike-slip motion. We conclude 

that the average slip of the northern fault is larger than that of the southern fault, and that 

the secondary fault extends to the northeast of the main fault, which is consistent with the 

large number of aftershocks that occurred in this region. 

Table 2. Parameters of finite fault models. 

 Faults Strike Dip 
Average Error 

(m) 

Maximum Resid-

ual (m) 

Moment Magni-

tude (𝐌𝐰) 

One-fault Main fault 154° 51° 0.0211 −0.0900 6.4 

Two-fault 
Northern fault 154° 66° 

0.0203 −0.0684 6.4 
Southern fault 147° 74° 

Three-fault 

Northern fault 156° 77° 

0.0198 −0.0602 6.4 Southern fault 147° 82° 

Secondary fault 204° 80° 

New two-fault 
Main fault 151° 77° 

0.0188 −0.0487 6.5 
Secondary fault 196° 77° 

 

Figure 3. Comparison between interferometric synthetic aperture radar (InSAR) observations and predictions from the 

three test models. (a,d,g) Coseismic line-of-sight (LOS) deformation. Simulated LOS deformation from the (b) one-fault 

model, (e) two-fault model, and (h) three-fault model. (c,f,i) Residuals. Red star represents the epicenter of the 2017 Jiu-

zhaigou earthquake from the CEA-IGP. 

Figure 3. Comparison between interferometric synthetic aperture radar (InSAR) observations and
predictions from the three test models. (a,d,g) Coseismic line-of-sight (LOS) deformation. Simulated
LOS deformation from the (b) one-fault model, (e) two-fault model, and (h) three-fault model. (c,f,i)
Residuals. Red star represents the epicenter of the 2017 Jiuzhaigou earthquake from the CEA-IGP.
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In addition, given that the depth of the aftershocks is different in the north and the
south and that there is a seismic gap [6], we also constructed a two-fault model similar to the
previous studies (Figure 2b, [2,3,19,21,22,34]). The trade-off curve is shown in Figure S2a,
and we set the smoothing factor as 0.15. Results demonstrate that the optimal model is
composed of a northern fault (strike = 154◦, dip = 66◦) and a southern fault (strike = 147◦,
dip = 74◦) (Figure S2). Our preferred strikes are similar to the model of Zheng et al. [2], and
the optimal dip in the north is slightly smaller than that in the south [3,6,21,34]. Figure 3f
shows that the two-fault model further improves the fit of the data (Table 2). It has a similar
slip pattern to the results of joint inversion by Zheng et al. [2], whose average slip on
the northern fault is larger than that on the southern fault, with a peak slip of around
0.9 m. The differences are that our results have a partial normal slip component on the
northern fault, a smaller slip on the aftershock gap, and no significant slip near the surface
(Figure 4b). This is consistent with the fact that the Jiuzhaigou earthquake did not result in
surface rupture.

Based on the coseismic deformation field and the aftershock distribution, Sun et al. [10]
proposed a fault branch at the northern end of the main fault plane at an obtuse an-
gle. The geological survey also illustrates that there is indeed a secondary fault in this
area [35]. Therefore, we introduced a similar secondary fault to construct a three-fault
model (Figure 2c). During the inversion, we applied the same smoothing factor as the two-
fault model. The optimal three-fault model is composed of a northern fault (strike = 156◦,
dip = 77◦), a southern fault (strike = 145◦, dip = 82◦), and a secondary fault (strike = 204◦,
dip = 80◦) (Figure S3), improving the data fit in the southwestern region compared to the
two-fault model (Table 2, Figure 3h). Figure 4c shows the slip distribution, whose high-slip
zone is located at a depth of 2–10 km on the main fault, with a peak slip of 1.30 m. The slip
of the northern fault is composed of sinistral strike-slip and normal motion, while the
southern fault is almost exclusively composed of sinistral strike-slip motion. We conclude
that the average slip of the northern fault is larger than that of the southern fault, and that
the secondary fault extends to the northeast of the main fault, which is consistent with the
large number of aftershocks that occurred in this region.
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Given that the fault geometry of the southern fault is similar to that of the northern
fault in the optimal three-fault model, we proposed a simpler two-fault model including a
main fault and a secondary fault that is at an obtuse angle to the northern end of the main
fault (Figure 2d). The trade-off curve shows that the optimal smoothing factor is consistent
with the three-fault model. Figure 5 illustrates that the optimal strikes of the main fault
(Seg1) and the secondary fault (Seg2) are 151◦ and 196◦, respectively, and that their dips
are both 77◦. Interestingly, this brand-new two-fault model has the best fit among the four
models (Table 2). The southeastern source region, which is poorly recovered by the other
models, is well constrained by this model (Figure 6). Results show that the released seismic
moment is around 6.3× 1018 N·m, equivalent to an Mw 6.5 event, consistent with the
results of several different institutions (Table 1). Most of the coseismic slip on the main fault
occurred around two shallow asperities, which are separated by a seismic gap with few
aftershocks. The rupture is dominated by sinistral slip, accompanied by a small number of
normal components. The high-slip regions are distributed between 2–8 km with a peak slip
of 1.51 m, consistent with no surface rupture (Figure 7c). In addition, most aftershocks are
concentrated under the high-slip patches and appear a complementary pattern with the
coseismic slip. Interestingly, the slip on the secondary fault is also mainly concentrated in
two patches, but it is separated by an aftershock swarm. They extend up to 11 km, with a
peak slip of 0.85 m, coinciding with the depth of aftershocks (Figures 2d and 7b). Therefore,
we propose that this two-fault model is our preferred model for the Jiuzhaigou earthquake.
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aftershocks. The slip distribution with arrows delineating the average rake of each sub-fault is
color-coded. Other symbols are the same as Figure 1b.

4. Discussion
4.1. Uncertainty Test

In order to verify the effectiveness of our preferred model, we applied the bootstrap
method to estimate the uncertainty. Bootstrapping is a statistical estimation method.
It randomly resamples from the original data to create multiple samples. That is, m groups of
data are randomly selected from n groups of original data for inversion, and B results could
be obtained by repeating the experiment B times, which allows the standard deviations
to be inferred [36]. Therefore, the standard deviation obtained by the bootstrap method
not only contains the influence of the original observation error, but also reflects the
error caused by different data distribution. It is widely used in the estimation of model
uncertainty [36,37].

To ensure reliable results, the value of B was set to 100 [38], and corresponding
resampling datasets were created in the case. These datasets were used for inversions with
the same model space. Figure 8 shows the estimated uncertainties based on the bootstrap
method, and the maximum standard deviation is less than 0.22 m. Although the standard
deviation mainly concentrates in the southern part of the main fault, it is small relative
to the peak slip of asperity. Besides, the standard deviation in the aftershock gap is very
low, indicating there is indeed a slip deficit in this region. Overall, the uncertainty of
our optimal two-fault model is very low, revealing the dislocation distribution is reliable
and stable.
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4.2. Fault Geometry and Properties

In our optimal model, the secondary fault is at a large obtuse angle to the main
fault, termed backward branching. Similar phenomena were also observed in the 1992
Landers earthquake [39] and the 1999 Hector Mine earthquake [40]. The mechanism of
this backward branching is the rupture stopping or slowing down on the main fault plane,
which causes the rupture to jump to a nearby fault [39]. This phenomenon can also be
accommodated by a significant shallow slip deficit [40]. Apparently, no significant surface
rupture was observed in the Jiuzhaigou earthquake. There is a small slip zone at the south
of the junction between the backward branching and the main fault, which may have been
caused by a rigid block stopping or slowing down the rupture on the main fault. Moreover,
the 1992 Landers earthquake and the 1999 Hector Mine earthquake both occurred within a
complex fault system. The Jiuzhaigou earthquake appears to be a similar case, whose main
seismogenic fault is the hidden faults with no obvious surface trace [10] or afterslip [41],
indicating a young fault [10,41]. This less mature fault system is characterized by weak
fault planes and more complex rupture processes.

4.3. Aftershock Distribution

Based on the distribution of relocated aftershocks, there is an aftershock gap of around
5 km, which may be caused by one or multiple of the following three factors: (1) The
coseismic slip was large and the stress release was sufficient; (2) The strikes of the faults
changed at this turning point; (3) There were unbroken asperities [6]. From the InSAR
surface deformation (Figure 3), we find that there are few surface deformations in the
aftershock gap with the indication of no significant coseismic slip below, which is also
verified by our preferred slip model. We thus rule out the first possibility. During our finite
fault tests, the three-fault model suggests that the geometry parameters of the northern
fault are similar to those of the southern fault, precluding the second possibility. In addition,
Li et al. [41] stated that no early afterslip is observed following the Jiuzhaigou earthquake,
indicating the accumulated strain is unlikely to be released by postseismic deformation in
the gap. Therefore, we argue that unbroken asperities hindered the coseismic rupturing,
resulting in this small seismic gap.

Figure 7 illustrates that most aftershocks occurred in the down-dip regions of the
coseismic high-slip asperities, presenting a complementary pattern. Generally, it can be
interpreted as (1) direct triggering from coseismic stress change [42], or (2) aftershocks
that are driven by afterslip in the velocity-strengthening zone [30,43]. Therefore, we first
used the numerical code PSGRN/PSCMP [44] following the strategies of Guo et al. [45]
to estimate the static Coulomb stress changes caused by the coseismic slip. Since the
Jiuzhaigou earthquake is a strike-slip event, we set the effective friction coefficient to
0.4 [24,45–47]. We used the optimal slip model as the driving source. The receiver fault
was set to our preferred fault model. Results show that most aftershocks occurred in the
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Coulomb stress shadows (Figure S4). Therefore, we propose that the aftershock distribution
may be related to aseismic afterslip, indicating the velocity-strengthening region. Further
research is needed here. Helmstetter and Shaw [48] suggested that the aftershocks may be
related to the tectonic stress on the fault, which could explain the inconsistency between
the mechanisms of the aftershocks and that of the mainshock. Therefore, we calculated
the static Coulomb stress changes on the optimally oriented failure planes for the 2017
Jiuzhaigou earthquake under the tectonic background stress field. In this study, we set
the maximum principal stress, middle principal stress, and minimum principal stress to
−104 kPa, −103 kPa, and 0 kPa, respectively, based on previous studies [23,24]. Although
the tectonic stresses may have large uncertainties, it does not prevent us from analyzing
them rationally. Figure 9 reveals the static Coulomb stress changes at different depths
and the distribution of the aftershocks within 5 km, from which we find that most of the
aftershocks occurred in the region where the Coulomb stress increased. Therefore, the
aftershocks of the Jiuzhaigou earthquake may have been controlled by the background
tectonic stress field.
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5. Conclusions

In this study, we tested four different finite fault models based on the InSAR data,
and determined that the seismogenic fault of the 2017 Mw 6.5 Jiuzhaigou earthquake was
a brand-new two-fault model. The high-slip regions in the main fault are distributed
between 2–8 km, with a peak slip of 1.51 m. There are two asperities that are perfectly
demarcated by the aftershock gap, which may indicate a barrier. The secondary fault is
at a large obtuse angle to the main fault, whose slip extends to 11 km, with a peak slip
at 0.85 m. The main fault of the Jiuzhaigou earthquake is the NW-trending hidden fault
of the Huya fault, which is one of the branches of the East Kunlun fault. There were a
few aftershocks at both ends of the main fault where the Coulomb stress increased, which
deserve our particular attention.
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.3390/rs13081573/s1, Figure S1—Search results of the one-fault model; Figure S2—Search results of
the two-fault model; Figure S3—Search results of the three-fault model; Figure S4—Static Coulomb
stress changes caused by the Jiuzhaigou earthquake at different depths and the distribution of the
aftershocks within 5 km.
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