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Abstract: The evaporation duct is a weather phenomenon that often occurs in marine environments
and affects the operation of shipborne radar. The most important evaluation parameter is the
evaporation duct height (EDH). Forecasting the EDH and adjusting the working parameters and
modes of the radar system in advance can greatly improve radar performance. Traditionally, short-
term forecast methods have been used to estimate the EDH, which are characterized by low time
resolution and poor forecast accuracy. In this study, a novel approach for EDH nowcasting is
proposed based on the deep learning network and EDH data measured in the Yellow Sea, China. The
factors that affect nowcasting were analyzed. The time resolution and forecast time were 5 min and
0–2 h, respectively. The results show that our proposed method has a higher forecast accuracy than
traditional time series forecasting methods and confirm its feasibility and effectiveness.

Keywords: evaporation duct height; nowcasting; deep learning; Yellow Sea

1. Introduction

Evaporation ducts are atmospheric layers that form due to large-scale evaporation of
seawater and are the most common type of duct in the air-sea boundary layer [1]. According
to statistics, the probability of evaporation duct occurrence in the waters surrounding China
is 85% [2,3]. An evaporation duct can change the propagation path and energy distribution
of electromagnetic waves, which affects the system in microwave frequency band, such as
radar systems, communication systems, etc. As shown in Figure 1, the main effects are as
follows:

1. Radar wave propagates with less propagation loss in an evaporation duct environ-
ment, which can lead to over-the-horizon detection such that more distant targets can
be detected;

2. Radar wave is bound by the evaporation duct layer, which leads to the formation of a
blind area for radar detection.

Therefore, before the radar system is operated, the radar detection performance and
detection area must be optimized to utilize beneficial effects, such as over-the-horizon
detection, and avoid adverse effects, such as the detection of blind areas, to enhance the
radar system performance. To predict the detection performance of a radar, it is necessary
to first obtain evaporation duct height (EDH) data and process it with a radio wave
propagation algorithm to calculate the radio wave propagation loss in different regions.
Obtaining accurate evaporation duct forecasts is thus an important task.
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At present, evaporation duct forecast data are mainly based on mesoscale numerical
weather forecast models, such as the Weather Research and Forecasting model, which
produce short-term forecasts. These methods mainly use global background data as their
data sources, with a time resolution of 3 h, horizontal resolution of 0.25◦ × 0.25◦, and
forecast duration of 72–120 h. Limited by the temporal and spatial resolution of the
background data, the temporal and the horizontal resolutions of the evaporation duct
short-term forecast product are 1 h and 30 km × 30 km, respectively. These spatiotemporal
resolutions cannot accurately reflect the short-term non-stationary change of the EDH and
do not meet the needs of radar performance evaluation. Nowcasting duration is generally
0–2 h and the temporal resolution is at the minute-level or smaller; thus, it can better reflect
the short-term change of the EDH, leading to a more accurate evaluation of the radar
detection performance. Although the short-term forecasting and nowcasting of the EDH
belong to the same category, the utilized models, methods, and data are different. Several
studies have investigated short-term forecasting of the EDH and established numerous
methods and models; however, there is a lack of research on nowcasting the EDH as well
as on effective methods and models.
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Although there is no mature nowcast model, several time series forecast methods can
be used for nowcasting the EDH. In the 1980s, two types of methods were used for time
series forecasting:

1. Linear statistical methods;
2. Nonlinear time series models such as the bilinear model [4] and autoregressive

conditional heteroskedastic model [5].

Linear statistical methods yield better results for stable time series, but the results for
unstable time series are poor [6,7]. Because the EDH is non-stationary, linear statistical
methods are not suitable for its forecast. However, the decision tree, support vector
machine (SVM), and nearest neighbor regression models that were developed [8,9], have
poor forecast accuracy which needs to be further improved [10]. Deep learning was
proposed by Hinton et al. [11] and can be used to solve nonlinear forecast problems. Deep
learning has been applied to evaporation duct inversion, evaporation duct diagnosis, sea
clutter time series prediction, and other fields, and have achieved good results. Guo
et al. [12,13] realized the inversion of an evaporation duct using a deep learning network,
which had a higher inversion accuracy than traditional methods. Zhu et al. [14] established
an evaporation duct model using a deep learning network, which has a higher accuracy
than the traditional Paulus-Jeske (P–J) model. Zhao et al. [15] used a long short-term
memory (LSTM) model for long-distance sea clutter prediction. Based on previous research
results, an approach to nowcast the EDH is proposed in this study.

The essence of deep learning is to use a large number of continuous EDH data to
establish a deep learning network model with multiple hidden layers to learn the nonlin-
ear mapping relationship between the measured and future EDH and improve forecast
accuracy by optimizing the model parameters. The research results of this paper indicate
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that the EDH nowcasting model based on deep learning has better forecast accuracy than
traditional methods.

The content of this paper is arranged as follows: the calculation method of the EDH
and its variation characteristics are introduced in Section 2.1. The selection of the deep
learning network is described in Section 2.2. The modeling method used for nowcasting
the EDH based on the LSTM network is discussed in Section 2.3. In Section 3, the results
of a comparative experiment are described, which show that the forecast accuracy of
the proposed model is higher than that of traditional methods. In Section 4, different
parameters affecting forecast performance are discussed. The conclusions are presented in
Section 5.

2. Materials and Methods
2.1. Evaporation Duct Height Data
2.1.1. Calculation of the Evaporation Duct Height

Models that can be used to determine the evaporation duct mainly include the P–J
model, Musson-Genon-Gauthier-Bruth model, and Babin models [16]. The P–J model is
one of the most widely used models and has been integrated into the Integrated Reflection
Effect Dissemination System [17]. The P–J model uses the air temperature, relative humidity,
wind speed, atmospheric pressure, and sea surface temperature at a certain height from
the sea surface as input parameters, introduces the potential refractive index as a similar
parameter, and assumes that it satisfies the similarity theory [1]. The potential refractive
index Np is calculated using the following Equation:

∂Np

∂z
=

Np × ϕ( z
L )

kz
, (1)

Np =
77.6

θ
× (p +

4810× ep

θ
), (2)

where z, L, k, p, θ, and ep are the height, the MoniObukhov length, the von Karmen’s
constant, the atmospheric pressure, potential temperature, and water vapor pressure,
respectively, and Np is the characteristic scale parameter of the pseudo-refractive index.
The relationship between the potential refractive index and atmospheric refractive index
satisfies the following condition [1]:

∂Np

∂z
≈ ∂N

∂z
+ 0.032, (3)

where N is the scaling parameter of potential refractivity. The evaporation duct appears
when ∂Np

∂z < −0.125 [1]. The height corresponding to a vertical gradient of the potential re-
fractive index that is equal to the critical value (−0.125) for the formation of an atmospheric
duct is the EDH.

2.1.2. EDH Data Acquisition

From 2017 to 2019, an EDH data acquisition test was carried out in the Yellow Sea
by the China Research Institute of Radiowave Propagation. The sensors used for the
test included temperature, humidity, atmospheric pressure, wind speed, and sea surface
temperature sensors. The sensor parameters are shown in Table 1.

The above-mentioned sensors were installed on the top of the buoy, ~10 m away from
the sea. The geographical location of the buoy and position of the sensor are shown in
Figure 2.

Once the temperature, humidity, atmospheric pressure, wind speed, and sea surface
temperature are obtained, the EDH can be calculated. If the wind speed is less than
0.01 knot, the EDH is set to zero. If not, the following four steps are taken [18].

• Step 1: calculate the bulk Richardson’s number
• Step 2: From the Richardson’s number, determine the Monin-Obukhov length
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• Step 3: A potential refractivity difference between the air and the sea surface is
determined from

• Step 4: The stability conditions are examined to determine which form the EDH
equation will take

Table 1. Sensor parameters.

Sensor Range Accuracy Resolution

Temperature −35–60 °C ±0.2 °C 0.1 °C
Relative humidity 0–100% ±5% 0.1%

Pressure 600–1100 hPa ±1 hPa 0.1 hPa
Wind speed 0–60 m/s ±2% 0.01 m/s

Sea surface temperature −15–50 °C ±0.3 °C 0.1 °C
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2.1.3. Variation of the EDH

EDH data from 18:00 LST on 13 September to 18:00 LST on 15 September 2017 were
selected for the analysis of the EDH variation. The daily variation of the EDH is shown in
Figure 3.
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Figure 3 shows that the height of the evaporation duct regularly changes during the
selected time period. At night (from 13 September 18:00 to 14 September 6:00, from 14
September 18:00 to 15 September 6:00), the EDH is low, with a minimum of ~5 m; in the
daytime (from 14 September 6:00 to 14 September 18:00, from 15 September 6:00 to 15
September 18:00), the EDH is higher, reaching up to 20 m. However, this change is not
always constant and sometimes opposite to the change shown in the graph. It is certain that
the EDH regularly changes, which is mainly controlled by the climate at the observation
site. Based on this regular change, the EDH can be forecasted.

The variation of the EDH, from 19:30 LST on 5 September to 21:30 LST on 5 September
2017, is shown in Figure 4.
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Figure 4 shows that the average EDH is ~11 m (red line). The minimum and maximum
EDH are ~9.5 and ~13 m, respectively, and the variation range is ~3.5 m. The short-term
variation of the EDH is mainly caused by the change of hydrometeorological parame-
ters, systematic error of the sensor, and measurement error. Due to the non-stationary
characteristics of the EDH, it is difficult to nowcast the EDH.

2.2. Deep Learning Network Selection

The nowcasting of the EDH is based on the data of the previous period and can be
expressed by the following equation [19]:

y(t) = H(x(t), h(t− 1)), (4)

where x(t) is the EDH measured at the current time, h(t− 1) is the historical characteristic
EDH, y(t) is the result of nowcasting, and H is the nonlinear network model. Based on
the choice of an appropriate deep learning network, the continuous time variation and
non-stationary characteristics of the EDH can be determined.

With the continuous development of deep learning technology, a variety of deep
learning networks have been established in recent years. At present, deep neural networks
(DNNs), recurrent neural networks (RNNs), and convolutional neural networks (CNNs)
are commonly used. The RNN is one of the most effective networks for time series data
processing. By introducing a cyclic structure, it can realize time series data analysis and
prediction. However, the learning process of the RNN is characterized by gradient vanish-
ing and explosion phenomena, which cannot evaluate long-term nonlinear relationships.
To solve this problem, several researchers have proposed the use of an LSTM model. The
LSTM, which is a special type of RNN, was proposed by Hochreiter et al. [20]. On the basis
of a RNN, LSTM adds three gates—the input, output, and forget gates—based on which
the gradient disappearance or gradient explosion of the RNN can be overcome. Therefore,
the LSTM is suitable for the classification, processing, and prediction of time series. It
is one of the most advanced architectures that can be used for the deep learning of time
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series [21,22]. Thus, the LSTM was selected to nowcast the EDH in this study. The structure
of the LSTM memory unit is shown in Figure 5.
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In the LSTM, xi is the EDH input at time t and hi is calculated with the following
equations [23]:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi) (5)

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi) (6)

ot = σ(Woxxt + Wohht−1 + Wocct−1 + bo) (7)

ct = f 0
t ct−1 + i0t ϕ(Wcxxt + Wchht−1 + bc) (8)

ht = o0
t ϕ(ct), (9)

where it, ft, ot, and ct are the outputs of the input gate, forget gate, memory cell, and output
gate, respectively; σ is a sigmoid function; and g and h are the activation functions from
input to output of the memory cells, usually hyperbolic tangent functions tanh.

The EDH nowcasting framework based on the LSTM network is shown in Figure 6.
The framework comprises three layers: input, hidden, and output layers. The input layer
is the time series of the EDH, which is constructed by the measured EDH data; the hidden
layer is composed of the LSTM layer and Dense layer; and the output layer is the EDH
nowcasting result.
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2.3. EDH Nowcast Model Based on the LSTM Network

The EDH nowcast model based on the LSTM network is shown in Figure 7. First, a
large amount of measured EDH data were used to build a training data set. Second, the
nowcast model was established using the LSTM network, and the parameters were set.
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2.3.1. Training Data Construction

The training data are the EDH data measured in Qingdao, Shandong, China, from
July 2017 to March 2019, with a time resolution of 1 min and total number of samples of
~800,000. To reduce the influence of systematic and random errors and meet the format
requirements for input data of the LSTM network, the original data must be processed.
The processing flowchart is shown in Figure 8.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 15 
 

 

2.3. EDH Nowcast Model Based on the LSTM Network 
The EDH nowcast model based on the LSTM network is shown in Figure 7. First, a 

large amount of measured EDH data were used to build a training data set. Second, the 
nowcast model was established using the LSTM network, and the parameters were set. 

 
Figure 7. EDH nowcast model. 

2.3.1. Training Data Construction 
The training data are the EDH data measured in Qingdao, Shandong, China, from 

July 2017 to March 2019, with a time resolution of 1 min and total number of samples of 
~800,000. To reduce the influence of systematic and random errors and meet the format 
requirements for input data of the LSTM network, the original data must be processed. 
The processing flowchart is shown in Figure 8. 

 
Figure 8. EDH data processing flow-chart. 

The EDH data processing comprises three steps: 
• Step 1: Moving average 

The real-time monitoring of the EDH data strongly fluctuates and cannot accurately 
reflect the real situation. Therefore, it is necessary to smooth the measured data. In this 
study, the moving average method was used for the monitoring data. After the data were 
averaged, the time resolution of the EDH data was 5 min and the total amount of samples 
was ~160,000. 

Figure 8. EDH data processing flow-chart.



Remote Sens. 2021, 13, 1577 8 of 15

The EDH data processing comprises three steps:

• Step 1: Moving average

The real-time monitoring of the EDH data strongly fluctuates and cannot accurately
reflect the real situation. Therefore, it is necessary to smooth the measured data. In this
study, the moving average method was used for the monitoring data. After the data were
averaged, the time resolution of the EDH data was 5 min and the total amount of samples
was ~160,000.

• Step 2: Data division

After averaging, the EDH data were divided into training and test sets, accounting for
80% and 20% of the total data, respectively.

• Step 3: Data normalization

Data normalization was used to linearly transform the original data without affecting
the data distribution or relationship between the data such that the resulting value is
mapped between [0,1] or [−1,1]. Data normalization can accelerate the speed of the
gradient descent; thus, the optimal solution can be identified and the prediction accuracy
might be improved. In this paper, the training and test set data were mapped between [0,1].

2.3.2. Model Parameters

Model parameters, such as the optimization method, dropout rate, number of input
and output layer nodes, number of hidden layers, number of hidden layer neurons, activa-
tion function, and loss function, play a vital role in the model performance. Some of the
parameters were set when the model was built; the remaining parameters were first set to
initial values and then optimized based on further analysis of the model performance. For
the specific analysis, please see Section 4. The determined parameters are as follows:

1. Number of epochs: The problem solved in this paper is similar to that in Zhao et al. [15]
and the number of inputs is similar. Therefore, the number of epochs was set to 200,
referring to the number used in Zhao et al. [15].

2. Number of hidden layers: In this study, three hidden layers [12] were used including
two LSTM layers and one fully connected layer (Dense).

3. Number of neurons in the output layer: In this study, the future EDH is predicted;
therefore, the number of neurons in the output layer is 1.

4. Activation function: In the neural network, a functional relationship exists between
the output of the upper node and input of the lower node. This function is called the
activation function. Common activation functions are the Sigmoid, tanh, Rectified
Linear Unit (ReLu), and linear functions. For the EDH nowcasting of this study, the
ReLu and linear functions were used as activation functions [24].

5. Loss function: The loss function guides the network parameter learning by calculating
the error between the predicted and real samples such that the model reaches a
convergence state. In this study, we used the mean_squared_error function, which
can be expressed as follows:

loss =

n
∑

i=1
(pred(i)− y(i))2

n
, (10)

where pred(i) represents the nowcasting result of the EDH, y(i) represents the ex-
pected value of the EDH sample, and n is the number of EDH time series selected for
the training.
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3. Results
Test Results and Analysis

To verify the superiority of the model proposed in this paper, the EDH nowcasting
results were compared. In this paper, two representative time series data forecasting
methods were selected: SVM and artificial neural network (ANN).

The SVM is an important data mining algorithm. It is a binary classification algorithm
that supports linear and nonlinear classification [25]. It has been rapidly developed since
the 1990s leading to the derivation of a series of improved and extended algorithms [26,27].
The EDH time series is defined as follows:

HS = {Hi}N
i=1, (11)

where N is the length of the time series of the EDH. Support vector regression can be
expressed as follows:

f (x) = wTφ(x) + b, (12)

where φ is the input feature that maps the input vector x to the high-dimensional space
and w b are the model parameters to be estimated from the EDH.

The ANN, based on the principles of NNs in biology, is a mathematical model that
simulates the processing of complex information by the nervous system of the human brain.
Three ANN layers were used in this study and the ReLU and linear functions were utilized
as activation functions for the hidden and output layers, respectively. EDH nowcasting can
be expressed as follows:

f (x) = wT
0 (ReLU(wT

1 x + b1)) + b0, (13)

where x is the time series of the EDH; wT
1 and wT

0 are the weight matrix of the hidden and
output layers, respectively; and b0 and b1 are the offsets of the hidden and output layers,
respectively.

In this study, the mean absolute percentage error (MAPE), mean absolute error (MAE),
and root mean square error (RMSE) were used to evaluate the accuracy of the forecast
results. The formula of MAPE, MAE, and RMSE are as follows:

MAPE =
n

∑
i=1

∣∣∣∣∣ ĥi − hi
hi

∣∣∣∣∣× 100%
n

(14)

MAE =
1
n
×

n

∑
i=1

∣∣∣ĥi − hi

∣∣∣ (15)

RMSE =

√
1
n
×

n

∑
i=1

(ĥi − hi)
2
, (16)

where ĥi is the nowcast result, hi is the true value of the EDH, and n is the total number of
samples.

Figure 9 shows that the nowcast results of the three methods match the true EDH
when the forecast duration is 30 min and the error is small; when the forecast duration is 60
or 120 min, the nowcast result error significantly increases. Among the three nowcasting
methods, the LSTM yields the best nowcast results, which may be due to the fact that the
LSTM uses more information about the EDH in the model building process.

To quantitatively describe the advantages of this method, ~38,000 sets of EDH data
were used for the prediction and the RMSE, MAE, and MAPE of the LSTM, ANN, and
SVM methods were calculated. The results are compared in Table 2.

Table 2 shows that the RMSE, MAE, and MAPE derived from the proposed model are
smaller than those of the other two models. At a forecast time of 30 min, the advantage of
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the model proposed in this study is the most notable and the MAPE is better than that of
the other two models (~3% smaller).
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Figure 9. Comparison of the nowcasted evaporation duct heights. (a) 30-min forecast; (b) 60-min forecast; (c) 120-min forecast.

Table 2. Comparison of nowcast results based on different models.

Forecast
Duration

LSTM SVM ANN

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

30 1.28 0.81 10.41 1.37 0.95 13.16 1.61 1.02 13.72
60 1.89 1.18 14.88 1.92 1.28 17.08 2.16 1.38 17.43

120 2.68 1.74 21.90 2.84 1.85 23.31 2.85 1.87 23.19

Table 2 and Figure 9 show that the proposed model has a higher accuracy and better
applicability than the SVM and ANN methods with respect to the nowcasting of the EDH.
The results also indicate the advantages of the use of the LSTM network for the time
series prediction.

4. Effects of the Parameters on Nowcasting Accuracy
4.1. Effect of the Input Vector Dimension on Nowcasting Accuracy

The input vector dimension refers to the amount of EDH data received by input layer
neurons. If the amount of input EDH data is small, the change of the EDH cannot be
determined; if the amount of input EDH data is large, the data farther away from the
forecast time point may affect the nowcasting results, resulting in a lower nowcasting effect.
EDH nowcasting accuracy changes with the input vector dimension, as shown in Figure 10.
When the input vector dimension is small, the root mean squared error (RMSE) is large. As
the dimension increases, the RMSE decreases; it is the smallest when the dimension is 12.
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4.2. Effect of the Dropout Rate on Nowcasting Accuracy

The dropout method was proposed by Hinton [10] and is one of the main methods
used to prevent the overfitting of deep neural network models. During overfitting, the
model obtains a small loss function for the training data and a large loss function for the
test data. In the dropout method, the model randomly “drops” hidden layer neurons with
the probability p during training, preventing the model from relying too heavily on local
features and leading to a more generalized model. The interval of probability p is [0,1]. We
selected p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 and analyzed the effect of the probability
p on the model. Under different p-values, the loss function changes with the number of
epochs, as shown in Figure 11.

Figure 11 shows that the training set error continues to decrease for p > 0.2. The
validation set error first decreases and then increases, indicating that the model is overfitting
and the model generalization ability is poor. When p = 0.2, the model training set and test
set errors change relatively smoothly, no overfitting occurs, and the difference between the
training set and test set errors is small.

The change in EDH nowcasting accuracy depending on different p-values used to
build a 1 h nowcasting model is shown in Figure 12. When p = 0.2, nowcasting accuracy
is highest.
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Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 15 
 

 

 
(b) 

Figure 11. Training error variations under different p−values depending on the number of epochs. 
(a) Variation of the training set error depending on the number of epochs (b) Variation of the test 
set error depending on the number of epochs. 

Figure 11 shows that the training set error continues to decrease for p > 0.2. The vali-
dation set error first decreases and then increases, indicating that the model is overfitting 
and the model generalization ability is poor. When p = 0.2, the model training set and test 
set errors change relatively smoothly, no overfitting occurs, and the difference between 
the training set and test set errors is small. 

The change in EDH nowcasting accuracy depending on different p-values used to 
build a 1 h nowcasting model is shown in Figure 12. When p = 0.2, nowcasting accuracy is 
highest. 

 
Figure 12. Nowcasting accuracy including p-values. 

4.3. Influence of the Number of Hidden Layer Neurons on Nowcasting Accuracy 
The number of neurons affects nowcasting accuracy and training time. A small num-

ber of hidden layer neurons will lead to an insufficient network performance; a large num-
ber of neurons leads to a good network performance but will increase network training 
time. In this study, the value range of the LSTM layer in the hidden layer is 64, 128, 256, 
and 512, and the numbers of fully connected layers are 16 and 64, a total of 8 combinations. 
The effect of different combinations on the model performance is shown in Figure 13. 

0 50 100 150 200
Number of  Epochs

2

3

4

5

6

7 10-3

p=0.1
p=0.2
p=0.3
p=0.4

p=0.5
p=0.6
p=0.7
p=0.8

R
M

SE
 (m

)

Figure 12. Nowcasting accuracy including p-values.

4.3. Influence of the Number of Hidden Layer Neurons on Nowcasting Accuracy

The number of neurons affects nowcasting accuracy and training time. A small
number of hidden layer neurons will lead to an insufficient network performance; a large
number of neurons leads to a good network performance but will increase network training
time. In this study, the value range of the LSTM layer in the hidden layer is 64, 128, 256,
and 512, and the numbers of fully connected layers are 16 and 64, a total of 8 combinations.
The effect of different combinations on the model performance is shown in Figure 13.

Figure 13 shows that the error of the test set first decreases and then increases when
the number of neurons in the LSTM layer is 64, indicating that the model is overfitting.
The training set error, test set error, and time consumption corresponding to a number of
neurons above 64 are shown in Figure 14.
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Figure 13. Variation of the training error of different neuron combinations depending on the number
of epochs. (a) Variation of the training set error depending on the number of epochs (b) Variation of
the test set error depending on the number of epochs.

Figure 14 shows that the difference in nowcasting accuracy under different neuron
combinations is small when the number of neurons in the LSTM layer is greater than 64,
indicating that an increase in the number of neurons does not significantly improve the
nowcasting accuracy of the model but leads to an increased training time. Considering the
nowcasting accuracy of the model and time consumption of the training, a combination of
128, 128, and 64 neurons were used for the model in this study.

In later research, more EDH data could be used for model training, and more parame-
ter combination schemes should be compared and analyzed. The method described in this
paper can be applied to the nowcasting of hydrometeorological parameters.
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5. Conclusions

In this study, a nowcasting model for the EDH is proposed. Based on this model, the
EDH parameters can be obtained 0–2 h in advance, providing environmental information to
maximize the operational power of radar. First, an EDH nowcasting model was established
based on the LSTM network. Second, the effects of different hyperparameters on the
performance of the model were analyzed and a set of optimized parameters was identified.
Finally, the proposed model was compared with traditional methods. The results of the
comparison indicate that the model proposed in this study has better nowcasting accuracy.
In future research, more data can be used for the model training to further optimize the
model parameters and improve nowcasting accuracy.
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