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Abstract: Chaparral shrublands are the dominant wildland vegetation type in Southern California
and the most extensive ecosystem in the state. Disturbance by wildfire and climate change have
created a dynamic landscape in which biomass mapping is key in tracking the ability of chaparral
shrublands to sequester carbon. Despite this importance, most national and regional scale estimates
do not account for shrubland biomass. Employing plot data from several sources, we built a random
forest model to predict aboveground live biomass in Southern California using remote sensing data
(Landsat Normalized Difference Vegetation Index (NDVI)) and a suite of geophysical variables.
By substituting the NDVI and precipitation predictors for any given year, we were able to apply
the model to each year from 2000 to 2019. Using a total of 980 field plots, our model had a k-fold
cross-validation R2 of 0.51 and an RMSE of 3.9. Validation by vegetation type ranged from R2 = 0.17
(RMSE = 9.7) for Sierran mixed-conifer to R2 = 0.91 (RMSE = 2.3) for sagebrush. Our estimates
showed an improvement in accuracy over two other biomass estimates that included shrublands,
with an R2 = 0.82 (RMSE = 4.7) compared to R2 = 0.068 (RMSE = 6.7) for a global biomass estimate
and R2 = 0.29 (RMSE = 5.9) for a regional biomass estimate. Given the importance of accurate biomass
estimates for resource managers, we calculated the mean year 2010 shrubland biomasses for the four
national forests that ranged from 3.5 kg/m2 (Los Padres) to 2.3 kg/m2 (Angeles and Cleveland).
Finally, we compared our estimates to field-measured biomasses from the literature summarized by
shrubland vegetation type and age class. Our model provides a transparent and repeatable method
to generate biomass measurements in any year, thereby providing data to track biomass recovery
after management actions or disturbances such as fire.

Keywords: biomass; carbon sequestration; chaparral; NDVI; fire frequency; Mediterranean-type
climate regions; national forests

1. Introduction

Evergreen sclerophyllous shrubland covers 9% of the state of California, half of which
is located in the Mediterranean-type climate ecosystems of Southern California, notably
in the chaparral shrublands in the Transverse and Peninsular range foothills [1]. Large
topographic and precipitation gradients have resulted in tremendous regional species rich-
ness. While the rich plant diversity of these chaparral shrublands contribute to California’s
Floristic Province status as a biodiversity hotspot, they also provide habitat for nearly
400 species of vertebrate fauna and provide multiple ecosystem services [2,3]. One of these
services, albeit not widely recognized compared to forest landscapes, is the contribution
shrublands make to climate mitigation through carbon storage and sustained carbon se-
questration. Studies show old-growth chaparral shrublands to be a significant sink for
carbon and, consequently, an important component of the global carbon budget [4,5].
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The productivity of shrubland vegetation, and associated biomass and carbon storage,
is related to environmental factors including distance to the coast, elevation, aspect, and
the climatic water deficit. These environmental factors are reflected in plant communities
with different species compositions. Dry, south-facing slopes (or rocky areas with shallow
soils) are dominated by chamise chaparral (Adenostoma fasciculatum); less xeric, north-
facing slopes (or areas with deeper soils) host mixed chaparral with a variety of species
including ceanothus (Ceanothus spp.), manzanita (Arctostaphylos spp.), and scrub oak
(Quercus berberidifolia); coastal areas are dominated by a single often locally endemic species
of Ceanothus or Arctostaphylos [1,6]. Understanding patterns of shrubland productivity
is important for resource managers given the relationship between productivity (and
available fuels) and susceptibility of shrublands to large fires [7].

Disturbances, such as wildfire, are a major ecological factor in Southern California,
with major fire years burning hundreds of thousands of hectares, causing extensive damage
to homes and property, the loss of human lives, and millions of dollars spent in fire
suppression costs [8–10]. This has been particularly poignant in recent decades, as Southern
California has experienced several multi-year droughts, including the 2012–2017 drought
which resulted in significant mortality in mature chaparral stands [11], consequently
increasing future fire risk. During a wildfire, the combustion of living vegetation and dead
fuel result in an initial release of large amounts of carbon [12,13]. Where the fire return
interval of shrublands approximates the historic fire return interval (average 55 years for
low-elevation shrubland) [8,14,15], shrub cover recovers after 10–14 years, while biomass
keeps accumulating [16,17]. However, in many areas, the fire return interval has decreased,
often in conjunction with an increase in non-native plant species, drought, and nitrogen
deposition [18–20]. Under these conditions, post-fire biomass recovery can be impeded
and, in some cases, may result in type conversion from native shrubland to non-native
grassland [20].

Despite recognition of the importance of chaparral shrublands in ecosystem carbon
budgets, there are few published methods for assessing the biomass of this vegetation
type at the landscape scale and even fewer that can consistently be applied before and
after disturbances such as wildfire. Regional and national biomass estimates often focus
on forested lands only [21,22] where the amount of biomass in shrublands is considered
negligible compared to forests at these spatial scales. However, given that chaparral
shrublands cover nearly 3 million hectares (ha) in the state of California, their role in carbon
sequestration should not be underestimated [23]. Mature chaparral shrublands capture
and store substantial amounts of carbon aboveground while many resprouting species of
chaparral are characterized by deep roots with large belowground carbon stores [24,25].

At the national scale, the foremost program for mapping biomass and combustible
material (fuel) on wildlands is LANDFIRE, a cooperative program between the US Depart-
ment of the Interior and the US Department of Agriculture Forest Service (USFS). However,
often, these fuel mapping products are difficult to crosswalk into meaningful biomass
estimates, as they focus on dead rather than live vegetation to inform fire behavior models.

Alternatively, at a finer scale, a few studies have assessed pre- and post-fire biomass in
shrublands [26], although most have focused on a spatially and temporally limited number
of plots, and the results are often not applicable beyond the immediate extent of the study.
Studies at fine spatial scales can be dominated by site variability that obscures the detection
of temporal trends or they have been undertaken at temporal scales and are unable to
account for the influence of previous fire history and frequency.

This data gap is particularly important for land management agencies like the USFS
that manage large areas of shrubland; for example, the four national forests in Southern
California contain an average of 66% shrubland. Estimating the amount of biomass (and
associated carbon storage) on federal lands and the effects of wildfire and management
activities (e.g., fuel reduction) are critical components of resource management. Moreover,
in instances when native shrubland fails to reestablish after fire it can alter the future risk
and severity of fires [27], underscoring the importance of a readily available method for
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assessing biomass in planning activities. Timely estimates using a transparent, repeatable
methodology of the impacts of wildfire on carbon storage can contribute to environmental
damage assessments, while understanding how biomass recovers to pre-fire levels is
important for managers given the connection between restoring vegetation cover and
providing critical ecosystem services such as sediment erosion regulation [28].

Remote sensing has been shown to provide spatially explicit estimates of biomass in
Mediterranean-type climate regions, over a variety of spatial and temporal scales [29]. The
Landsat program (4, 5, 7, and 8) (www.landsat.usgs.gov/, accessed on 20 August 2019), in
particular, offers a deep temporal stack (nearly 40 years) of images collected on average ev-
ery 16 days, and at a 30 m spatial resolution, it is well-suited for monitoring heterogeneous
shrublands at the landscape scale [30,31]. Spectral vegetation indices have been shown to
be sensitive for detecting changes in shrubland vegetation and biomass. The Normalized
Difference Vegetation Index (NDVI) was successfully used to estimate coastal shrubland
biomass [32], dwarf shrub biomass [33], and to predict biomass using models that combine
NDVI and precipitation data [34] in the Mediterranean Basin. Storey et al. (2016) found
that NDVI and the normalized burn ratio (NBR) provided statistically significant indica-
tions of post-fire recovery two to three decades post-fire in Southern California. In other
studies, the Enhanced Vegetation Index (EVI) has successfully assessed vegetation recovery
post-fire on Mount Carmel, Israel [35], and in Southern California [26].

In this study, we developed a method to map biomass annually using vegetation
indices derived from Landsat TM/ETM+/OLI instrument data (onboard Landsat 5, 7, and 8,
respectively) and precipitation data specific to the year, resulting in a stack of biomass raster
layers for the years 2000–2019. Specifically, we (1) created a random forest model using
vegetation indices, environmental variables, and field data to estimate aboveground live
biomass (AGLBM); (2) compared these data with existing global and regional (statewide)
spatial biomass estimates for four national forests; (3), compared our biomass data to values
compiled in the literature from field measurements by shrub type and age class.

2. Materials and Methods
2.1. Study Area

Our study area totaled 3,515,805 ha (8,687,731 acres), defined by all HUC12 (USGS
Hydrological Unit Code) watersheds that intersected with USFS National Forests in South-
ern California (Angeles, Cleveland, Los Padres, and San Bernardino, hereafter ANF, CNF,
LPNF, and SBNF, respectively) (Figure 1). The Mediterranean-type climate in the study
area is characterized by warm dry summer months and mild wet winters with most of the
annual precipitation occurring in the winter and spring. Elevation in the study area ranges
from 133 to 2231 m. Shrublands accounted for over half (54%) of the natural vegetation
in the study area, followed by conifer and hardwood forest (<20%) in higher elevation
areas. Wildfires are a common disturbance [9,14] with an estimated 5580 ha per year of the
study area burned (estimated from Reference [36]). Although we focused on the AGLBM
of chaparral shrublands, we estimated biomass for all wildland vegetation types in the
study area.

2.2. Environmental Data Layers

We assembled environmental data layers considered useful for predicting biomass
based on input from USFS resource managers, ecologists, and studies in the literature
(e.g., [37]). Given our objective to develop a model that can be applied to different years
based on that years’ Landsat NDVI reflectance and precipitation, we divided our predictive
variables into two categories: time-dependent and static.

www.landsat.usgs.gov/
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opment and grass/forb production, while the long-term average precipitation regulates 
more persistent woody biomass development [43]. For analysis purposes, we established 
the year as 1 September to 31 August to coincide with the end of the primary growing 
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Annual and biennial precipitation data were obtained from ClimateNA v5.10 soft-
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Figure 1. Location of the Southern California study area with California Wildlife Habitat Relation-
ships (CWHRs, [38]) shrubland types shown in grey. The Station (2009) and Pechanga (2000) fire
perimeters are highlighted.

Static predictors included geophysical features of the landscape: aspect, slope, el-
evation, flow accumulation, partitioning around medoids (PAM), [39], solar radiation,
geomorphons, and soils (all at 30 m resolution, see Table 1). We also included the 30 year
average of several climatic variables: annual precipitation, climatic water deficit, ground-
water recharge, water runoff, and actual evapotranspiration as calculated by the Basin
Characterization Model [40].

Time-dependent predictors are specific to the target biomass year being analyzed and
included the annual (previous year) and biennial (previous 2 years) total precipitation
and NDVI data from Landsat imagery (2000–2019, see Section 2.3). Considering the
great importance of precipitation in biomass development post-disturbance [41,42], we
selected short-term precipitation predictors (annual and biennial) that mediate shrub
leaf development and grass/forb production, while the long-term average precipitation
regulates more persistent woody biomass development [43]. For analysis purposes, we
established the year as 1 September to 31 August to coincide with the end of the primary
growing season and before September and October—a period of historically of extreme
wildfires [44].
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Table 1. Description of the predictor variables extracted from GIS raster layers. PRISM is the Parameter–Elevation
Regressions on Independent Slopes Model [45] and BCM is the Basin Characterization Model [40]. NDVI is the Normalized
Differential Vegetation Index, and SSURGO is the Soil Survey (https://websoilsurvey.sc.egov.usda.gov/, accessed on 23
October 2018).

Predictor Short Name Predictor Name Description Source

aet Actual evapotranspiration,
average 1980–2010 Units = mm/year Flint et al. (2017).

aspN Aspect “Northness” Sin(aspect) USGS National Elevation Dataset 1/3rd
arc-second resolution.

aspE Aspect “Eastness” Cosin(aspect) USGS National Elevation Dataset 1/3rd
arc-second resolution.

cwd Climatic water deficit,
average 1980–2010 Units = mm/year

http://climate.calcommons.org/variable/
climatic-water-deficit, accessed on 17 March

2021.

dem Digital elevation model Elevation in m above sea
level

USGS National Elevation Dataset, 1/3rd
arc-second resolution.

facc Flow accumulation Sum of pixels “uphill”
from a pixel

Derived from USGS National Elevation
Dataset 1/3rd arc-second resolution.

geomorph Geomorphons Physiographic landscape
facets

https:
//doi.org/10.1016/j.geomorph.2012.11.005,

accessed on 17 March 2021.

PAM Partitioning around
medioids

347 different landscape
classes Kaufman and Rousseuw (1987).

ppt_1yr Annual precipitation Downscaled 4 km PRISM
data, units = mm

ClimateNA tool (Haman (2014)). PRISM—
http://www.prism.oregonstate.edu/,

accessed on 17 March 2021.

ppt_2yr Biennial precipitation Downscaled 4 km PRISM
data, units = mm

ClimateNA tool (Haman (2014)). PRISM:
http://www.prism.oregonstate.edu/,

accessed on 17 March 2021.

ppt_avg Precipitation, average,
1980–2000

Downscaled from PRISM
via BCM, units = mm

PRISM:
http://climate.calcommons.org/bcm,

accessed on 17 March 2021.

rch Groundwater recharge,
average 1980–2010 Units mm/year Basin Characterization Model

(Flint et al. (2017)).

run Water runoff, average
1980–2010 Units mm/year Basin Characterization Model

(Flint et al. (2017)).

soils Major soil component String acronym,
categorical

SSURGO
http://websoilsurvey.nrcs.usda.gov/,

accessed on 17 March 2021.

solrad Solar radiation Watt-hours/m2 year

Annual solar irradiation derived using
GRASS 7 r.sun model https://grass.osgeo.

org/grass78/manuals/r.sun.html, accessed
on 17 March 2021.

slope Topographic slope Units = degrees Derived from USGS digital elevation model
raster layer.

NDVI
Bilinear interpolated
NDVI value at plot

location

See text for details on data
acquisition and processing

USGS Landsat surface reflectance imagery:
https://www.usgs.gov/land-resources/nli/

landsat/landsat-surface-reflectance,
accessed on 17 March 2021.

Annual and biennial precipitation data were obtained from ClimateNA v5.10 soft-
ware, which compiles precipitation data from the Parameter-Elevation Regressions on
Independent Slopes Model (PRISM) [45]. Using the ClimateNA software, we downscaled
the monthly PRISM precipitation data from 4 km to 500 m; ClimateNA employs a bilinear
interpolation and local elevation adjustment to reduce the scale of gridded climate data [46].
The monthly precipitation raster files were summed for the annual and biennial periods
for each year from 2000 to 2019. We prepared all of the environmental data layers so that

https://websoilsurvey.sc.egov.usda.gov/
http://climate.calcommons.org/variable/climatic-water-deficit
http://climate.calcommons.org/variable/climatic-water-deficit
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1016/j.geomorph.2012.11.005
http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
http://climate.calcommons.org/bcm
http://websoilsurvey.nrcs.usda.gov/
https://grass.osgeo.org/grass78/manuals/r.sun.html
https://grass.osgeo.org/grass78/manuals/r.sun.html
https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-reflectance
https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-reflectance
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the pixel size (30 m) and projection matched using R version 3.6.0 with the raster package
version 3.0.12 and ArcGIS Pro version 2.5 software.

2.3. Landsat TM Data and Vegetation Indices

We obtained Landsat 5, 7, and 8 surface reflectance (http://landsat.usgs.gov/CDR_
LSR.php, accessed on 15 November 2018) maximum value composite images for July
and August for each year from 2000 to 2019 from the Google Earth Engine data catalog
(https://earthengine.google.com/datasets/, accessed on 14 December 2018) using the
JavaScript Application Programming Interface (API) [47]. This code extracted the maximum
value for each of the bands and calculated the Normalized Difference Vegetation Index
(NDVI) using the following formula:

(nir − red)/(nir + red), (1)

where nir = near-infrared band (OLI band 5, TM/ETM+ band 4), red = red band (OLI
band 4, TM/ETM+ band 3), and blue = blue band (OLI band 2, TM/ETM+ band 1). For
the period 2000–2011, we used Landsat 5 TM and Landsat 7 ETM+ data. Landsat 5 TM
data have pixel drops/errors, so to reduce the effect of these, we masked and replaced
them with Landsat 7 pixels from the same year. In July/Aug 2012, Landsat 8 was not yet
operational, and Landsat 5 had stopped collecting data, so for this year, we used Landsat 7.
Landsat 7 ETM+ data have artifacts related to the scan line correction failure that occurred
in 2008; thus, we limited the use of these data to 2012. For 2013–2019, we used Landsat 8
OLI data.

The revisit period for both Landsat 5, 7, and 8 is 16 days, so at most there would be
two scenes available for any given month. The maximum NDVI value pixel was extracted
from the collection of all NDVI pixels from all available scenes from July and August of
each year. This raster product is called the maximum value composite (MVC).

Shrublands in Southern California are influenced by precipitation-driven flushes of
herbaceous/grass vegetation, particularly in the winter and spring months [48]. Since
our objective was to estimate woody shrub biomass, we minimized the effects of these
ephemeral pulses of herbaceous vegetation using July–August MVCs when the herbaceous
layer was largely senesced. Assuming that we had, at a minimum, 3 scenes for each
compositing period, we were reasonably assured of cloud-free pixels throughout the study
area for any given year. A July–August NDVI MVC was created for each year 2002–2019.

2.4. Plot Data for Biomass Estimates
2.4.1. USFS Forest Inventory and Analysis Data

We used 668 plots from the USFS Forest Inventory and Analysis (FIA) program,
which is a network of inventory and monitoring plots across the conterminous US. These
plots represent a sample of forested lands across all ownerships that provide consistent,
scientifically reliable forest inventory data. Visit dates for our plots were distributed
between the years 2001, 2002, 2004, 2008, 2010, and 2012. All FIA plots used in this study
were located on USFS administered lands.

An FIA plot consists of four circular subplots (radius 7.32 m) with three of the subplots
arranged at angles of 360◦, 120◦, and 240◦ and 36.6 m from the center subplot. In total,
the four subplots sample 673 m2 and can intersect with four to eight 30 m Landsat pixels
(depending on the plot center location relative to the pixel grid) [49].

In the FIA data collection procedure, the crown diameter and height of all individual
shrubs were recorded on the four subplots within each plot. Using these measurements,
we applied species-specific allometric equations [50,51] to calculate the AGLBM of shrub
species where possible, otherwise we used a generalized shrub–herb biomass equation [52]:

B = H × C × BD (2)

http://landsat.usgs.gov/CDR_LSR.php
http://landsat.usgs.gov/CDR_LSR.php
https://earthengine.google.com/datasets/
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where B is biomass (kg/m2), H is height (m), C is percent cover/100, and BD is the bulk
density (kg/m3) constant of 0.8 for grass and herbaceous plants and 1.8 for shrubs. Biomass
was calculated for shrub and herbaceous species with ≥3% cover in the subplot.

To estimate the biomass of trees, we first defined classes using diameter at breast
height (dbh) measured 1.37 m above ground level: “trees”, ≥12.7 cm dbh; “saplings”,
2.54–12.7 cm dbh; “seedlings”, <2.54 cm dbh. We applied regional models that estimate live
tree AGLBM using the component ratio method; inputs included dbh, height, and species.
The AGLBM biomass estimates did not include tree foliage such as needles and leaves.
We calculated sapling AGLBM using a modified biomass equation from Reference [53]
with an adjustment factor based on sapling dbh [54]. For sapling woodland tree species
with multiple stems close to the ground (e.g., Quercus gambelii and Cercocarpus ledifolius),
diameter was measured at the root collar [55]. Seedling (<2.54 cm dbh) biomass was not
recorded and shrub data were not collected on plots visited after 2010 in the FIA plots.
After calculating the biomass for each individual shrub and tree (≥12.7 cm) species, we
compiled the total AGLBM density (kg/m2) for the plot in each of the three categories: tree,
shrub, and herbaceous.

2.4.2. LANDFIRE Reference Database

The LANDFIRE plot data (LANDFIRE Reference Database (LFRDB)) were collected
from a variety of sources to generate and validate the LANDFIRE products, including
vegetation, fuel, and fire frequency, that can be used as inputs into fire behavior models
(https://www.landfire.gov/, accessed on 13 June 2019). We downloaded approximately
6000 LFRDB records for the Southern California study area collected between 2000 and
2005. Of these 6000 plots, 276 contained the vegetation data (i.e., cover and height) required
to calculate biomass and were in our study area. These data were collected in 2005, using
the FIREMON protocol (https://www.fs.fed.us/rm/pubs/rmrs_gtr164.pdf, accessed on
6 July 2019), which consists of a series of variable radius and shape subplots all with the
same macroplot center. Individual shrub and plant data were not recorded, instead the
average cover and height of live vegetation in two height classes (<1.83 m and >1.83 m)
were estimated. We estimated AGLBM using the general equation [52] for both height
classes. Herbaceous cover and height were also present in LFRDB, so we calculated these
as a separate category, again using the generalized biomass equation. The LFRDB plots in
the study area had no data on trees, so we assumed that they were not present. To avoid
underestimating AGLBM in plots with trees, we confirmed their absence by examining plot
locations with the high-resolution imagery contained in Google Earth desktop software
(GE) and eliminated any that appeared to have trees. The AGLBM was summed in the
three categories (<1.83 m, >1.83 m, and herbaceous) to provide total AGLBM in each plot
(kg/m2).

2.4.3. Additional Field Plot Data

We obtained data from two research projects to integrate with the FIA and LFRDB
plots [41,56]. Vourlitis (2012) sampled biomass on the same plots quarterly (2004–2016)
using non-destructive dimensional analysis as part of a study on the effects of added
nitrogen on chaparral productivity. The experimental design used four 10 m × 10 m plots
as the untreated control; we used the biomass sampled on these control plots during the
summer quarter (July–August–September) for the years 2004–2016. Uyeda et al.’s (2016)
study tested growth ring analysis as a proxy for post-fire biomass recovery in chaparral.
This study developed species-specific regression equations from a sample of harvested
shrubs; these equations related stem basal area to biomass. These equations were then
used to estimate biomass on twenty-four 16 m2 plots on the USFS San Dimas Experimental
Forest. All stem measurements were conducted in the fall of 2013. In cases where the plots
fell in the same Landsat pixel, these plots were averaged, resulting in the elimination of
three plots.

https://www.landfire.gov/
https://www.fs.fed.us/rm/pubs/rmrs_gtr164.pdf
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Finally, we sampled five plots in June 2019 within the Powerhouse fire which burned
in 2013 using a 30 m × 0.5 m belt-transect to collect vegetation height and cover for shrub
species. Grass and forb cover were estimated using the point–line intercept method from
points sampled every 30 cm along the transect. We used the same allometric equations
described above to estimate AGLBM; for species with no allometric equation, we applied
the general equation [52].

Our gross number of plots before filtering was 959: 668 FIA, 276 LFRDB, 10 from
Vourlitis (2012), and 5 from the Powerhouse fire data collection campaign. Uyeda et al.’s
(2016) data were set aside for validation purposes, because their methods estimated field
biomass without the use of allometric or general equations and so provided an opportu-
nity for validation independent of estimates determined with these equations. Filtering
criteria included removing any FIA plots with zero biomass (e.g., where plots contain
only herbaceous cover or several species that individually do not comprise the 3% cover
threshold). The FIA plot visits after 2010 did not collect any data on shrubs, forbs, or
grasses so these plots were reviewed in GE with historical high-resolution images. If plots
were determined to be tree-dominant by ocular estimation, they were retained so we could
calculate biomass, otherwise they were removed from the plot database. Our logic here
was that if the plots were tree dominant, then the lack of any biomass data for shrubs
and forbs would be negligible. We filtered the data for outliers using the 1.5 quartile rule
where plots with AGLBM values that were lower than Q1 − 1.5 (Q3 − Q1) and higher
than Q3 − 1.5 (Q3 − Q1) (Q1 = the first quartile of the data distribution, and Q3 = the third
quartile of the data distribution) were removed from the plot data (1.5 × interquartile range
rule, [57]). Further screening was undertaken of suspect plots identified in scatterplots of
AGLBM versus the predictor variables and reviewed in Google Earth, which reduced the
final number of plots used in the model to 766.

2.4.4. Assigning Predictor Values to Plots

The predictor spatial data were 30 m in resolution, but because of uncertainty in the
plot location, the continuous predictor variables (i.e., aet, aspN, aspE, cwd, dem, facc,
ppt_1yr, ppt_2yr, ppt_avg, rch, run, solrad, slope, NDVI, see Table 1) were extracted using
bilinear interpolation, while the remaining categorical variables (i.e., geomorph, PAM,
soils) were extracted with no interpolation. Predictor values were assigned to each plot
with a python script that used the ArcGIS Python API tool “Multi-values to points” to
extract the values from the predictor raster layers.

We assigned NDVI and annual/biennial precipitation values to the plots based on the
calendar year of the field visit. To confirm there had been no change in plot cover since
they were measured, we reviewed wildfire perimeter polygons from the CalFire FRAP
website (https://frap.fire.ca.gov/frap-projects/fire-perimeters/, accessed on 21 March
2020) for each plot. Plots that experienced a disturbance after the field visit were analyzed
in Google Earth to assess if substantial vegetation changes had occurred before the NDVI
data were acquired, if yes, then the plots were omitted.

Finally, we randomly split our dataset into training (614 plots) and validation (152 plots),
excluding the validation plots in building the biomass model (Table 2).

Table 2. Counts of plots used by data source (see text for data source descriptions) for model training
and validation. FIA, USFS Forest Inventory and Analysis; LFRDB, LANDFIRE Reference Database.

Plot Data Source Training Validation Total

FIA 401 96 497
LFRDB 204 50 254

Vourlitis et al. 5 5 10
Powerhouse fire 4 1 5

Total 614 152 766

https://frap.fire.ca.gov/frap-projects/fire-perimeters/
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Reserving an independent set of validation data enabled us to analyze errors by
vegetation class and to compare our model results to AGLBM estimates from other sources
using the same dataset.

2.5. Estimating AGLBM with Random Forest

To build a predictive regression model to estimate AGLBM from the FIA, LFRDB, and
other field data, we used random forest (RF, randomForest package version 4.6.14 in R
software), an ensemble machine learning algorithm. RF builds a “forest” of decision trees;
each tree is built using a random selection of predictors and samples from the training
data. Random forest has two parameters that are used to optimize the computed regression
model—mTry, the number of predictors used in each regression tree and Ntree, and the
number of regression trees grown. During the training stage, RF withholds a random
sample of 1/3 of the plots (out-of-bag samples or OOB) for cross-validation, while the
remaining two-thirds are used to build the regression tree [58]. We repetitively ran RF with
different combinations of mTry and Ntree to maximize accuracy (high percent variance
explained, low OOB RMSE).

By randomly shuffling the values of a predictor variable while preserving the values
of all other variables during OOB validation, the relative importance of the variable in the
model is calculated. The importance is expressed as the percent increase in mean standard
error if the variable is excluded from the model. This is called variable importance. Random
forest is relatively insensitive to multicollinearity issues arising from the inclusion of
highly correlated variables [58]; nevertheless, we built a correlation matrix of the predictor
variables during our data exploration.

After creating the optimized model, we wrote an R script [59] that ingested the
predictor layers (Table 1), including the time-dependent NDVI and precipitation layers
matched to the target year, to build a continuous AGLBM surface raster for each target year
from 2000–2019. Before running the script, we masked out urban, water, and agriculture
land cover from the predictor layers using the California Wildlife Habitat Relations (CWHR)
“WHR Type” classification [38]. Hereafter, we refer to our AGLBM estimates as the WETAC-
UCD estimates. Following inspection of the WETAC-UCD raster layers, we determined
that the predicted biomass of perennial grassland and desert scrub CWHR classes [38] was
higher than field based estimates [60,61] by approximately 2 orders of magnitude, so we
reduced AGLBM values for these classes by 99% and 90%, respectively. All estimates of
biomass are provided in kg/m2.

We assessed the accuracy of the final RF model in several ways. First, each of the OOB
samples (one-third of the plots) was run through the RF tree to report the variance and
associated mean of squared residuals and mean standard error (MSE). This was done as a
part of the RF process. Second, using the 20% validation data (168 plots) we reserved prior
to running the RF model, we conducted a k-fold cross-validation of the model predictions.
This method splits validation data into k subsets, reserves one subset and runs the model
with the remaining k-1 subsets, and calculates the average prediction error rate. Next, we
generated linear regression models of actual versus predicted AGLBM by cross-referencing
the validation data with the CWHR vegetation class to create linear models for each
vegetation class that constituted 1% or more of the USFS lands in the study area. To
overcome the insufficient number of plots in some classes, we also compared modeled and
actual estimates for aggregated groups (all shrub, all needle-leaf, and all hardwood) and
finally all CWHR classes. Finally, we created linear regressions with the Uyeda et al. (2016)
data, which used field-based biomass measurements rather than allometric equations, to
test for bias in the methods used to calculate AGLBM from the FIA and LFRDB data.

2.6. Comparison of WETAC-UCD Estimates with Other Global and Statewide Biomass Datasets

To view our AGLBM estimates in a broader context and to provide useful information
for resource managers, we compared our 2010 WETAC-UCD data to two contemporary
spatial biomass estimates for the four southern USFS national forests: the Global Har-



Remote Sens. 2021, 13, 1581 10 of 24

monized Carbon Density Data for the year 2010 (GHCD at 300 m resolution) [60], and
the statewide California Air Resources Board (ARB at 30 m resolution) carbon stocks for
2010 [61,62]. We converted the raster biomass data from these projects to kg/m2 of biomass
(rather than carbon) to compare with our WETAC-UCD AGLBM estimates. In addition,
the GHCD data were resampled from the original 300 m pixel size to 30 m to match the
resolution of the WETAC-UCD data.

We compared our estimates to the GHCD and ARB biomass estimates in two ways:
(1) We isolated pixels by creating three different groups and created corresponding raster
masks from the CWHR vegetation data to permit comparison: shrubland (mixed cha-
parral, chamise-redshank chaparral, coastal scrub, montane chaparral, and sagebrush);
non-shrubland (montane hardwood, pinyon-juniper, Sierran mixed-conifer, coastal oak
woodland, montane chaparral Jeffery pine, annual grassland, and eastside pine); finally,
all vegetation pixels (both shrub and non-shrub types listed above). Next, we calculated
mean biomass in these three categories for each of the three estimates for each national
forest in the study area. We tested for differences between the AGLBM means for shrub
types, non- shrub types, and all CWHR vegetation types that were 1% or more of the USFS
lands in the study area for each national forest using the two-sample t-test. (2) We extracted
the 2010 biomass values from each of the three sources for all validation plots visited in
2010 and built linear models to examine the relationship between the field and modeled
biomass estimates.

2.7. Comparison of WETAC-UCD Estimates with Field Estimated Biomass

In addition to comparisons made with the remote sensing-based datasets described
above, we also wanted to compare the WETAC-UCD AGLBM estimates to field estimates
published in the literature. To do this we cross-referenced our estimates with biomass
estimates compiled by Bohlman et al. (2018) [17], hereafter referred to as Bohlman, based
on a literature review of 37 research studies spanning 72 years in California shrublands.
The review summarizes field studies by three CWHR shrubland classes—mixed chaparral,
chamise-redshank chaparral, and coastal sage scrub—and age class (i.e, time since fire
disturbance). Using stand age and CWHR vegetation type, Bohlman calculated the average
biomass increment (kg/m2/year) by age class. The age class breaks varied by vegetation
type (reflecting the available data): mixed chaparral, 1–10 y, 11–20 y, and 21–30 y; chamise
chaparral, 1–10 y, 11–30 y, and >30 y; coastal scrub, 1–10 y and >10 y. To compare, we
generated data for the three shrubland types and two age classes (1–10 years, 11–20 years)
from within the perimeters of the Station fire (2009) located on the Angeles National Forest
and the Pechanga fire (2000) on the Cleveland National Forest. Note, no comparison can be
made with Bohlman’s 21–30+ age class, because the oldest fire analyzed (Pechanga) was
only 20 years post-fire.

We focused on biomass data from the Station and Pechanga fires as they had at least
10 years of post-fire recovery, contained adequate amounts of all three vegetation classes,
were not substantially impacted by multiple fires during 1980–2019, and both burned
at the same time of year (late July–August). Fire history data were obtained from the
Fire Return Interval Database (FRID) compiled annually by the USDA Forest Service [15]
and fire perimeter data from the CalFire FRAP website (https://frap.fire.ca.gov/frap-
projects/fire-perimeters/, accessed on 21 March 2020). A series of spatial raster masks
were developed for each CWHR type, first to mask pixels within these fires that only
burned once in 1980–2020 and, second, to identify pixels that burned at a high intensity
(using data from the USDA Forest Service Rapid Assessment of Vegetation Condition after
Wildfire (RAVG) program [63]). Masks were applied to each of the annual AGLBM raster
layers and statistics calculated, producing a table of 2000–2019 AGLBM for both fires.

We also focused on biomass estimates from “normal” precipitation years by excluding
abnormally dry and wet years to avoid any bias related to precipitation from our recovery
estimates. Abnormally wet and dry years were determined using the Palmer Drought
Severity Index (PDSI) [64]. The PDSI is determined on a 2.5 degree by 2.5 degree grid

https://frap.fire.ca.gov/frap-projects/fire-perimeters/
https://frap.fire.ca.gov/frap-projects/fire-perimeters/
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and compiled monthly for the National Climate Data Center’s US Climate Division (https:
//www.ncdc.noaa.gov/monitoring-references/maps/us-climate-divisions.php accessed
on 18 April 2020). The range of these data is 10 (very wet) to –10 (very dry). We used PDSI
data from the South Coast Drainage division boundary which corresponded closely with
our study area boundary. Monthly South Coast Division PDSI values were assembled in
a data table for the years 1995–2020. We defined a drought year as containing 4 or more
consecutive months with a PDSI of less than –3 (severe or extreme) in the growing season
(November to May) and a wet year as 4 or more consecutive months with a PDSI of 2 or
greater (moderately moist to very moist) in the same period (Appendix A).

3. Results
3.1. Estimating AGLBM with Random Forest
3.1.1. Plot Data

Out of a 152 variable pairs, eight were highly correlated (R2 > 0.50). Six of these pairs
were hydrological or precipitation variables and the remaining two were solrad–aspE and
cwd–aet (see Table 1). Given the low number of highly correlated variables and the ability
of RF to handle multicollinearity issues without bias, we opted for retaining all predictors.

Using the biomass calculations from the species-specific and general equations, the
627 plots used in the RF model (hereafter referred to as the RF plots) ranged in total
AGLBM from 0.02 to over 46 kg/m2. All RF plots over 16 kg/m2 AGLBM were in forested
CWHR types including pinyon-juniper, montane hardwood, and coastal oak woodland.
The allocation of RF plots by CWHR types (accounting for >5% of the study area) included:
270 plots in mixed chaparral (32% of the study area), 62 in pinyon-juniper (3% of the study
area), 48 in chamise-redshank chaparral (6% of the study area), 45 in montane hardwood
(3% of study area), 32 in coastal scrub (8% of the study area), and 35 in coastal oak woodland
(5% of the study area).

3.1.2. RF Model

Our final RF model (mTry = 8, Ntree = 1000) explained 49% of the variance in the OOB
samples, with an accompanying RMSE of 4.0. The k-fold cross validation R2 was 0.51 and
had an RMSE of 3.9. The NDVI was definitively the most important variable in our model
(Figure 2)—over twice that of the next ranking variable. A second tier of variables included
cwd and DEM, followed by solar radiation and annual and biennial precipitation. Together
they would account for an increase in MSE of 46% if removed from the model.
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3.2. Validation by CWHR Vegetation Class

The statistics for the linear regression models of the validation plots for each CWHR
class ranged from R2 = 0.51 (Pinyon-Juniper, RMSE = 1.5) to 0.23 (Mixed chaparral,
RMSE = 2.4) (Table 3). Many of the CWHR classes contained less than 10 validation plots
and their regression models were not significant at the 5% level. Table 3 presents the re-
gression metrics for all vegetation types that comprised 5% or more of Forest Service lands
in the study area. Aggregating the CWHR types into shrub, needle-leaf, and hardwood
super-classes revealed that shrub types had a weak to moderate significant relationship
with the field validation plots (R2 = 0.30, RMSE = 2.3 (138% of mean)), while the needle-leaf
and hardwood types were moderate to strong (R2 = 0.53, RMSE = 3.9 (83% of mean) and
R2 = 0.49, RMSE = 7 (89 % of mean), respectively). The model that included all CWHR
types was also moderate to strong (R2 = 0.54, RMSE = 3.8 (112% of mean)), like the k-fold
cross-validation values from the RF model.

Table 3. Linear regression model statistics (WETAC-UCD estimates versus field estimates) for the validation plots by
California Wildlife Habitat Relationships (CWHR) type [38]. Only those CWHR types that were 5% or greater of the USFS
lands in the study area were included.

CWHR Type % Area * R2 RMSE Slope Intercept p-Value N

Mixed Chaparral 53 0.23 2.4 0.25 2 <0.001 77
Chamise-redshank Chaparral 8.2 0.23 0.96 0.22 1.3 0.35 6

Montane Hardwood 7.8 0.24 4 0.33 3.7 0.045 17
Pinyon-Juniper 5.9 0.51 1.5 0.65 1.2 <0.001 30

All shrub 1 7 0.3 2.3 0.29 1.9 <0.001 88
All needle-leaf 2 12 0.53 3.9 0.47 1.9 <0.001 43
All hardwood 3 11 0.49 7 0.35 3.9 0.0002 25

All CWHR types 100 0.54 3.8 0.43 2.0 <0.001 170
1 Mixed chaparral, chamise-redshank chaparral, coastal scrub, montane chaparral, and sagebrush CWHR types. 2 Pinyon-juniper, Sierran
mixed-conifer, Jefferey Pine, and eastside pine CWHR types. 3 Montane hardwood and coastal oak woodland, CWHR types. * Percentage
of the USDA Forest Service lands in the study area.

3.3. Comparison of WETAC-UCD Estimates with Other Global and Statewide Biomass Datasets

To evaluate our WETAC-UCD data with global and statewide biomass estimates
and provide useful information for resource managers, we compared the GHCD (global)
and ARB (California) biomass estimates for the four Southern Californian national forests
for 2010. These national forests (NFs) have distinct geographies, vegetation types, and fire
histories that are evident in their respective biomass estimates (Table 4). The LPNF is the most
northerly of the national forests and contains coastal forests, resulting in more productive
vegetation types. Consequently, it has the highest mean WETAC-UCD AGLBM in all three
vegetation categories (shrub only, non-shrub only, and all vegetation types). The drier, most
southerly forest, CNF, had the lowest mean WETAC-UCD AGLBM for all three classes.

On each NF (by shrub, non-shrub, and all vegetation classes), the GHCD AGLBM
(with one exception) and ARB estimates (except for the LPNF) were consistently higher
than the WETAC-UCD estimates.

Mean delta values between the WETAC-UCD estimates and the ARB estimates for
all four NFs were comparable: 0.25 kg/m2 for shrub vegetation and 0.45 kg/m2 for non-
shrub vegetation. In contrast the GHCD–WETAC-UCD delta values were much higher
(2.3 kg/m2) for shrub vegetation than non-shrub (0.78 kg/m2).

Linear models using the 22 validation plots sampled in the year 2010 for the WETAC-
UCD, ARB, and ORNL-UCD estimates indicate the WETAC-UCD data best predicted the
field AGLBM estimates (R2 = 0.82, RMSE = 4.7 kg/m2) (Figure 3), followed by the ARB
model (R2 = 0.29, RMSE = 5.9 kg/m2). Mean biomass values for these plots were not
significantly different for all three estimates at the 1% level. The model for the GHCD and
WETAC-UCD data was not significant at the 5% level (p-value = 0.33). RMSE values for all



Remote Sens. 2021, 13, 1581 13 of 24

three models were high (6.7–4.7 kg/m2) compared to the mean biomass values presented
in Table 3.
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Table 4. Mean total aboveground live biomass (AGLBM) estimates for the year 2010 for the four national forests in the
study area using the methods developed in this paper (WETAC-UCD), the California Air Resources Board (ARB) [61],
and the University of Wisconsin-Madison (GHCD) [60]. Mean biomass values (kg/m2) for each forest were calculated
from the 30 m resolution raster layers developed using each of the three methods. The corresponding standard deviation
values are in parentheses. Two-sample t-tests for differences in means were conducted between the ARB and the GHCD
AGLBM means and the WETAC-UCD means. Mean biomass was calculated for three CWHR vegetation classes: shrub
only (mixed chaparral, chamise-redshank chaparral, and coastal scrub), non-shrub (all types, excluding mixed chaparral,
chamise-redshank chaparral, and coastal scrub), and all CWHR vegetation types.

Aboveground Live Biomass
(kg/m2)

SHRUB ONLY

Aboveground Live Biomass
(kg/m2)

NON-SHRUB ONLY

Aboveground Live Biomass
(kg/m2)

ALL VEGETATION TYPES
National

Forest
WETAC
-UCD ARB GHCD WETAC

-UCD ARB GHCD WETAC
-UCD ARB GHCD

Los
Padres 3.5 (3.2) 3.1 (3.5) ** 6.3 (4.9) ** 5.8 (5.2) 5.5 (7.0) ** 7.5 (5.9) ** 4.2 (4.1) 3.9 (5.0) ** 6.7 (5.2) **

San
Bernardino 3.0 (2.3) 3.1 (3.2) ** 4.0 (3.0) ** 4.7 (2.9) 4.8 (5.1) ** 3.9 (3.8) ** 3.9 (2.8) 4.0 (4.5) ** 4.0 (3.4) **
Cleveland 2.3 (1.6) 3.1 (2.8) ** 4.6 (2.8) ** 4.6 (3.6) 6.0 (5.4) ** 5.8 (3.3) ** 2.5 (2.1) 3.5 (3.4) ** 4.8 (2.9) **
Angeles 2.3 (1.8) 2.8 (2.9) ** 5.2 (4.2) ** 4.8 (3.2) 5.4 (4.8) ** 5.8 (4.8) ** 3.0 (2.6) 3.6 (3.8) ** 5.4 (4.4) **

** Mean is significantly (p < 0.05) different than the WETAC-UCD mean value.

Finally, we compared maps of the WETAC-UCD (30 m), GHCD (300 m), and ARB
(30 m) data for 2010 using a mixed-chaparral-dominated area on the ANF that contained
part of the Station fire (September 2009) (Figure 4). Two things were notable: First, the
WETAC-UCD data showed more discrimination in AGLBM values of vegetation associated
with landscape features than the coarser scale GHCD data. Second, the WETAC-UCD did
not reflect the Station fire footprint as prominently as the other two sources of data, i.e.,
there were no pixels with the very low levels of biomass (Figure 4c). The effects of the
Station fire on AGLBM were not prominent in our data because nearly a year of regrowth
had occurred in the image (Figure 4c) given the timeframe used in our methods. Many
shrub species have resprouting post-fire life histories and so can resprout vigorously with
rapid growth post-fire, consequently, there can be considerable biomass within one-year
post-fire. Our approach utilized data from July–August (2010) to capitalize on capturing
AGLBM of shrubs versus herbaceous vegetation, compared to the unknown month of
calculation for the GHCD (Figure 4a) and the ARB (Figure 4b) images.
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Figure 4. Subset images of the AGLBM estimates (2010) for a location on the Angeles NF approximately 35 km north
of Los Angeles. The center coordinates of the image are −117.950, 34.269 decimal degrees. The area to the left (west) of
the black boundary line is within the Station fire (2009). The images are AGLBM estimates from (a) the University of
Wisconsin-Madison (GHCD) at 300 m resolution [60], (b) California Air Resources Board (ARB) at 30 m resolution [61],
and (c) the WETAC-UCD estimates from this study (30 m resolution). The 2012 false color infrared image from the USDA
National Aerial Imagery Program is provided for reference (d).

3.4. Comparison of WETAC-UCD Estimates with Field Measured Biomass

Compared to Bohlman, our estimates were consistently higher for all shrub types and
age classes (Table 5). Bohlman’s average annual biomass increment estimates were higher
for all shrub vegetation age classes, with the exception of the 11–20 year chamise chaparral
class where no data from the literature review were available. Early post-fire recovery
(1–10 years) was higher for the WETAC-UCD estimates, but for the 11+ year age classes,
AGLBM values for the two estimates were much closer.
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Table 5. Aboveground live biomass (AGLBM) and mean annual biomass increment (growth) values estimated by the
WETAC-UCD model for the three CWHR vegetation types and two age classes presented in Bohlman [17]. WETAC-UCD
values were extracted from the Station (2009) and Pechanga (2000) fires. Bohlman [17] summarized AGLBM and increment
data from a literature search of 37 studies spanning 72 years.

Community Type
(CDF-FRAP (FVEG))

Bohlman AGLBM
(kg/m2)

WETAC-UCD
AGLBM
(kg/m2)

Bohlman Annual
Biomass Increment

(kg/m2/yr)

WETAC-UCD Biomass
Annual Increment

(kg/m2/yr)

Mixed chaparral
Age 1–10 y 1.0 b 2.1 0.20 b 0.13
Age 11–20 y 2.9 b 3.0 0.85 b 0.29

Chamise chaparral
Age 1–10 y 0.67 1.7 0.11 b 0.086
Age 11–30 y 1.9 2.3 - 0.18

Coastal Sage Scrub
Age 1–10 y 0.41 b 1.5 0.31 b 0.075
Age >10 y 1.0 b 2.1 0.31 b 0.18

b Values based on two or fewer studies.

4. Discussion

In this study, we present a repeatable and transparent biomass model that is a sub-
stantial improvement in accuracy over two other estimates that include shrublands at
both statewide and global scales (Figure 3). In addition, by adjusting the time-dependent
predictors in our model, it can be applied consistently across different years, yielding a
temporal stack of biomass estimates that can be used to assess recovery after disturbance.
Our estimates by age class and vegetation type are generally consistent with field estimates
from the literature [17] (Table 5), particularly among the older (>10 years) age classes.

The foundation of this work has been the inclusion of shrub measurements into FIA
plot re-visits for 2001–2010 on the four Southern California NFs, which provided essential
data. However, there are two potential issues with the plot data that we used. First, accurate
plot locations are essential so that the correct raster values can be associated with the plot
measurements. However, little information was available on the methodology or accuracy
of the FIA or LFRDB plot geolocations, which raises questions as to whether the value of the
pixel at plot center correctly represents the plot. Second, given that making in situ biomass
measurements is time-consuming and costly, typically involving destructive sampling
of vegetation, separation of components (i.e., stems, leaves, roots), followed by drying
and weighing of these separate materials [66], we used allometric equations to estimate
biomass from the FIA and LFRDB plots. Both the allometric equations and especially
the general equation undoubtedly are sources of error in estimating the true quantity
of biomass at the plot level. We used species-specific allometric equations for 14 shrub
species and two genera from two studies [50,51]; for the remaining shrub species with no
published allometric equation, we used a general equation (described in Section 2). This
equation uses a generic bulk density constant for all shrubs and is a general approximation
that is probably relatively low for many species [67–69]. Biomass estimates using the
general equation have a moderate to strong relationship with allometric equation estimates
(Appendix B), but further work is necessary to examine the accuracy of these estimates
to in situ data on chaparral shrub species. In addition, the bulk density constant used for
forbs and grasses has also been shown to yield underestimates of grass biomass [70].

To maintain consistency, we used the same suite of allometric equations on the Power-
house plots as the FIA data; the LFRDB data used the general equation and Uyeda et al.
(2016) used AGLBM calculation methods that did not use these equations. Many of the
equations used were developed outside of Southern California. Further work is needed
to develop and refine allometric models and bulk density constants for chaparral species.
Finally, the FIA methods did not specify recording tree seedlings or any shrub or forb with
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<3% cover; presumably, if seedlings were present in significant number or if there were
several species present with less than 3% cover, this could also result in an underestimation
of plot biomass.

The NDVI is a proven spectral index in assessing vegetation in Mediterranean-type
shrublands [32,42,48,71]. In our RF model, it ranks highest in variable importance (Figure 2).
This is an important consideration as NDVI, along with annual and biennial precipitation
are the time-dependent predictors—the factors that are defining the year-to-year changes
in biomass. Chaparral landscapes in Southern California are subject to highly variable pre-
cipitation, and AGLBM varies accordingly. This is also reflected in the variable importance
of our model; annual and biennial precipitation (ppt_1yr and ppt_2yr, respectively) are
the 5th and 6th most important variables in the model. The importance of climatic water
deficit in our model confirms the findings from other studies in California’s shrublands [72]
and shows that the availability of soil moisture and not just precipitation is a critical factor
in the production in drought-prone chaparral communities. Short-term fluctuations in
precipitation probably influence AGLBM through corresponding fluctuations in leaf area
and herbaceous/grass production, while soil moisture is an indication of a site’s ability to
support perennial woody vegetation.

There was consistency in the validation statistics for the model (k-fold cross validation
R2 = 0.51, OOB RMSE = 4.0) and from the validation plot metrics (R2 = 0.54, RMSE = 3.8
for all CWHR types), suggesting that our model is capable of making good predictions for
observations not used to build the model.

Although our focus was on improving AGLBM estimates for chaparral shrublands,
we did include all wildland vegetation types in this study. Breaking down our AGLBM
estimates by CWHR class allowed us to explore errors or inaccuracy that might be asso-
ciated with vegetation type, although for many of the classes there were few validation
plots. The high RMSE values we report for the shrubland CWHR classes are an indication
of the spatial heterogeneity in shrubland ecosystems and the difficulty inherent in building
a model that captures this diversity accurately at the landscape scale [73]. Furthermore,
within a single CWHR vegetation class there may be a wide range of species assemblages
and structure types. Ideally, we would have enough field plots for modeling and validation
of vegetation classes at a much finer spatial scale. Our model underestimated AGLBM of
the validation plots (slope values < 1) for all the CWHR types that were 5% or more of
the study area (Table 3). This underestimation is probably increased if we consider the
application of the general allometric equation used to calculate AGLBM for most shrub
species in the FIA plots and in all the LFRDB plots, which are likely underestimating
quantitative field measurements of biomass.

4.1. Comparison of WETAC-UCD Estimates with Other Global and Statewide Biomass Datasets

Since the majority of AGLBM for the continental US is contained in forests and
woodlands, it is not surprising that most national and global scale biomass estimates
do not address shrublands (see References [21,22]). In these datasets, the total carbon
present as well as sequestration capability of chaparral shrublands is low compared to
forests. However, this is changing as regions and countries that contain substantial areas of
Mediterranean-type shrublands and woodlands are assessing carbon stocks to fulfill agree-
ments under the Kyoto Protocol and the REDD+ (Reducing Emissions from Deforestation
and Forest Degradation) project.

We compared our estimates to two previous efforts that also mapped AGLBM for
shrublands in Southern California. The goal of the ARB project was to consistently map
carbon stocks across California. They assigned AGLBM to LANDFIRE vegetation existing
vegetation types (EVT), cover (EVC), and when available existing height classes [62]. This
approach, known as “stratify and multiply”, tends to obscure the wide range of AGLBM
variability within a vegetation class, which can be observed in Figure 4, and also is subject
to inaccuracies in the vegetation classification [62,74]. In our case, the ARB aggregation
of AGLBM by LANDFIRE classes resulted in their estimates by forest to be higher than
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ours (Table 4). Second, the GHCD project goal was to develop a global biomass dataset
that captured the uncertainty surrounding both the above and below ground biomass
estimates [60]. In developing their datasets, they leveraged the GlobBiomass project [75]
for forested areas. Estimates for shrublands and savannahs were developed for Africa
using synthetic aperture radar (SAR) [76]. These shrubland/savannah estimates were
subsequently applied globally.

We made the comparison between the ARB, GHCD and WETAC-UCD to show that
scale matters—compiling statewide and global estimates at the local scale of National
Forests obscures the spatio-temporal heterogeneity that is intrinsic to chaparral shrublands
(Figure 4). Additionally, it highlights the inaccuracy of shrubland biomass data in these
broader scale efforts. However, it is interesting that the means of predicted AGLBM for
the 22 validation plots were not significantly different for all three estimates (ARB, GHCD,
and WETAC-UCD), suggesting that these estimation methods produce similar values
when aggregated, but this does not hold true at the National Forest level. Note, however,
that the ARB and GHCD studies place cautionary notes in regard to their shrubland
estimates; stating that carbon in shrublands is poorly quantified [61] and that the estimates
for shrublands in Spawn and Gibbs (2020) [60] outside of Africa and the arctic used
GlobBiomass [75] and did not explicitly estimate shrubland biomass.

Further considerations when reviewing estimates of AGLBM at the NF level is the fire
history of each NF which should be reflected in the 2010 AGBLM estimates (presented in
Table 4). The LPNF had the highest area burned (41%) between 2005 and 2010. Based solely
on this fire history, we would assume that AGLBM would be lower on the LPNF because
a greater percentage of the area was in an earlier post-fire successional stage, but that is
not the case, meaning that other factors such as greater productivity in more northerly
latitudes, location in the coast range, and shrub species with different life histories (e.g.,
resprouting versus seeding) are involved. However, the effect of fire is evident between
the ANF and SBNF; WETAC-UCD AGLBM is lower for the ANF (31% burned) than the
SBNF (8% burned).

4.2. Comparison of WETAC-UCD Estimates with Field Estimates

Although most of the AGLBM age class/vegetation type means reported by Bohlman
are represented by two or fewer studies, our results are nevertheless comparable (Table 5).
The 1–10 year age classes exhibited the biggest differences; one explanation for this is
that most post-fire recovery in chaparral communities takes place during this period. Our
estimates are the mean of all pixels 1–10 years post-fire (from the Station and Pechanga
fires), so there is probably a higher frequency of high AGLBM values than in the Bohlman
studies, which are based on temporally and spatially limited field plots. For all vegetation
classes except coastal sage scrub, our AGLBM values for years 11–20 were much closer
(0.1–0.4 kg/m2 difference) to the values presented in Bohlman. The established vegetation
characteristic of these older age classes is more resistant to short-term climatic fluctuations,
i.e., AGLBM tends to be more stable compared to the 1–10 year age class where the
AGLBM is more sensitive to climatic variation. Future research into post-fire recovery by
community type using the WETAC-UCD AGLBM data stack could examine spatial and
temporal variations in AGLBM by age class; this may provide further evidence of this
trend. Another possible explanation is that our estimates did not include wet or drought
years. Over half (60%) of the studies reviewed in Bohlman were conducted in the 1970s
and 1980s and no information is provided on which studies occurred in drought or wet
years. Assuming that droughts were more prevalent than wet years, we can surmise that
the Bohlman’s estimates are relatively low because some were sampled in drought years.
Prolonged ecological drought can result in substantial mortality in chaparral shrub species,
suppressing AGLBM [11].

Despite the sources of error described above, we have confidence in our AGLBM
estimates because of the strong relationship (R2 = 0.69, RMSE = 1.02) they had with
the field measurements of AGLBM conducted by Uyeda et al. (2016). This suggests
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our estimates are better at characterizing AGLBM than the validation statistics (Table 3)
indicate, and that there is error in the allometric and general equations used for most
of our plot data. Uyeda et al. (2016) used stem growth rings to estimate basal area and
biomass [41]. Although limited in geographic scope, the Uyeda et al. (2016) plots were
in the mixed chaparral vegetation type which comprised over 50% of our study area.
Generating additional species specific allometric equations and refining the bulk density
constants used in the general equations would be a valuable contribution for future biomass
mapping efforts.

The advantages of adding active remote sensing data (e.g., lidar, radar) to optical data
sources is well documented [77–80]; these data provide vegetation structure that is difficult
to extract from optical data alone. Future shrubland mapping efforts should investigate
synthetic aperture radar (SAR) and spaceborne lidar (ICESat-2 ATLAS) data in combination
with optical data [77,81,82].

5. Conclusions

Mediterranean-type shrublands and woodlands, already noted for their globally im-
portant biodiversity [83], are increasingly being recognized for their importance regionally
and globally in carbon sequestration [4,29], net primary productivity [29,84,85], and water
quantity and quality [86]. Carbon sequestration rates may be comparable to those esti-
mated for temperate old-growth forests [4]. Vegetation biomass is an essential part of the
landscape assessment process for these services and the ability of chaparral shrublands to
deliver these services is not consistent across spatio-temporal gradients due to the envi-
ronmental differences (e.g., slope, aspect, and elevation) and disturbance from fire. The
USFS mandate to monitor ecosystem services and the impacts on those services due to the
fire has led to the development of tools such as SoCal EcoServe, a web-based application
that delivers spatial and tabular data on pre- and post-fire ecosystem services in Southern
California [87]. The AGLBM data developed in this study are incorporated in the SoCal
EcoServe tool.

In this study, we created a transparent and repeatable model that can be used to
estimate AGLBM on shrubland dominated landscapes that can be consistently applied
annually across the Landsat period of record. This is timely given that the USDA Forest
Service is now required to monitor and report on carbon stocks; every National Forest
System unit is required to report annually on their efforts to incorporate carbon information
in land management plans, projects, decisions, and communications [88]. A principal goal
of the WETAC-UCD methodology was to develop an approach that could be applied to
different years to assess future inquiries into post-fire recovery of biomass and vegetation
type conversion. We accomplished this by using the NDVI and precipitation data specific
to the year of the AGLBM assessment. Consequently, it overcomes one of the major
limitations of most landscape scale biomass estimates: that they are limited to a single
point in time. This is especially important considering the disturbance frequency of
chaparral communities.

Given that chaparral shrublands are difficult environments for field work—mature
stands are nearly impenetrable, and in Southern California, access is difficult and costly. The
AGLBM data we present here are a substantial improvement over the existing statewide
and global estimates for shrubland dominated landscapes. As such, they present a valuable
step forward in accurately accounting for the role these under-studied communities play
in carbon budgets and ecosystem services.
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in 2020. 
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Figure A1. Palmer Drought Severity Index (PDSI) monthly values for 1995–2020 for the South
Coast Drainage US Climate Division in Southern California. Anomalous years (wet or drought) are
indicated by the horizontal lines in the upper and lower areas of the graph. Drought years were
defined as containing 4 or more consecutive months with a PDSI of less than −3 (severe or extreme)
in the growing season (November to May) and a wet year as having 4 or more consecutive months
with a PDSI of 2 or greater (moderately moist to very moist) in the same period.

Appendix B

Table A1. Linear regression model statistics for biomass estimates using species-specific allometric
equations and estimates using the general biomass equation [52]. Individual shrub measurements
used in these estimates were collected during a field campaign on the Los Padres National Forest
in 2020.

Shrub Species R2 SE Slope Intercept p-Value N

Adenostoma fasciculatum 0.63 0.02 1.2 0.053 <0.001 380
Arctostaphylos glandulosa 0.49 0.012 0.39 0.056 <0.001 223
Eriogonum fasciculatum 0.66 0.0020 0.24 0.0037 <0.001 24
Quercus berberidifolia 0.52 0.13 2.6 0.17 <0.001 42

Ribes spp. 0.95 0.0077 0.68 0.018 <0.001 10



Remote Sens. 2021, 13, 1581 21 of 24

References
1. Rundel, P. California chaparral and its global significance. In Valuing Chaparral; Underwood, E.C., Safford, H.D., Molinari, N.A.,

Keeley, J.E., Eds.; Springer Series on Environmental Management; Springer International Publishing: Cham, Switzerland, 2018;
pp. 1–27, ISBN 978-3-319-68302-7.

2. Jennings, M.K. Faunal diversity in chaparral ecosystems. In Valuing Chaparral; Underwood, E.C., Safford, H.D., Molinari, N.A.,
Keeley, J.E., Eds.; Springer Series on Environmental Management; Springer International Publishing: Cham, Switzerland, 2018;
pp. 53–77, ISBN 978-3-319-68302-7.

3. Underwood, E.C.; Safford, H.D.; Molinari, N.A.; Keeley, J.E. Valuing Chaparral: Ecological, Socio-Economic, and Management
Perspectives; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-68303-4.

4. Jenerette, D.; Park, I.; Andrews, H.; Eberwein, J. Biogeochemical cycling of carbon and Nitrogen in chaparral dominated
ecosystems. In Valuing Chaparral; Underwood, E.C., Safford, H.D., Molinari, N.A., Keeley, J.E., Eds.; Springer Series on
Environmental Management; Springer International Publishing: Cham, Switzerland, 2018; pp. 141–169, ISBN 978-3-319-68302-7.

5. Luo, Y. Terrestrial Carbon–Cycle Feedback to Climate Warming. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 683–712. [CrossRef]
6. Keeley, J.E.; Davis, F.W. Chaparral. In Terrestrial Vegetation of California, 3rd ed.; University of California Press: Oakland, CA, USA,

2007; pp. 339–366, ISBN 978-0-520-24955-4.
7. Riggan, P.J.; Goode, S.; Jacks, P.M.; Lockwood, R.N. Interaction of Fire and Community Development in Chaparral of Southern

California. Ecol. Monogr. 1988, 58, 155–176. [CrossRef]
8. Keeley, J.E.; Syphard, A.E. Climate Change and Future Fire Regimes: Examples from California. Geosciences 2016, 6, 37. [CrossRef]
9. Safford, H.D. Man and Fire in Southern California: Doing the Math. Fremontia 2007, 35, 25–29.
10. Safford, H.D.; Van de Water, K.M. Using Fire Return Interval Departure (FRID) Analysis to Map Spatial and Temporal Changes in Fire

Frequency on National Forest Lands in California; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2014.
11. Jacobsen, A.L.; Pratt, R.B. Extensive Drought-associated Plant Mortality as an Agent of Type-conversion in Chaparral Shrublands.

New Phytol. 2018, 7, 498–504. [CrossRef] [PubMed]
12. Harmon, M.E.; Marks, B. Effects of Silvicultural Practices on Carbon Stores in Douglas-Fir Western Hemlock Forests in the Pacific

Northwest, U.S.A.: Results from a Simulation Model. Can. J. For. Res. 2002, 32, 863–877. [CrossRef]
13. Ryan, M.G.; Harmon, M.E.; Birdsey, R.A.; Giardina, C.P.; Heath, L.S.; Houghton, R.A.; Jackson, R.B.; McKinley, D.C.; Morrison, J.F.;

Murray, B.C.; et al. A Synthesis of the Science on Forests and Carbon for U.S. Forests; Issues in Ecology; Ecological Society of America:
Washington, DC, USA, 2010; pp. 1–16.

14. Keeley, J.E.; Safford, H.D. Fire as an ecosystem process: Chapter 3. In Ecosystems of California; Mooney, H.A., Zavaleta, E.S., Eds.;
University of California Press: Oakland, CA, USA, 2016.

15. Van de Water, K.M.; Safford, H.D. A Summary of Fire Frequency Estimates for California Vegetation before Euro-American
Settlement. Fire Ecol. 2011, 7, 26–58. [CrossRef]

16. Black, C.H. Biomass, nitrogen, and phosphorus accumulation over a southern California fire cycle chronosequence. In Plant
Response to Stress. NATO ASI Series; Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C., Eds.; SeriesG: Ecological Sciences;
Springer: Berlin/Heidelberg, Germany, 1987; Volume 15.

17. Bohlman, G.N.; Underwood, E.C.; Safford, H.D. Estimating Biomass in California’s Chaparral and Coastal Sage Scrub Shrublands.
Madroño 2018, 65, 28–46. [CrossRef]

18. Allen, E.B.; Williams, K.; Beyers, J.L.; Phillips, M.; Ma, S.; D’Antonio, C.M. Chaparral Restoration. In Valuing Chaparral:
Ecological, Socio-Economic, and Management Perspectives; Underwood, E.C., Safford, H.D., Molinari, N.A., Keeley, J.E., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 347–384, ISBN 978-3-319-68303-4.

19. Pratt, R.B.; Jacobsen, A.L.; Ramirez, A.R.; Helms, A.M.; Traugh, C.A.; Tobin, M.F.; Heffner, M.S.; Davis, S.D. Mortality of Resprout-
ing Chaparral Shrubs after a Fire and during a Record Drought: Physiological Mechanisms and Demographic Consequences.
Glob. Chang. Biol. 2014, 20, 893–907. [CrossRef] [PubMed]

20. Syphard, A.D.; Brennan, T.J.; Keeley, J.E. Extent and Drivers of Vegetation Type Conversion in Southern California Chaparral.
Ecosphere 2019, 10, e02796. [CrossRef]

21. Blackard, J.; Finco, M.; Helmer, E.; Holden, G.; Hoppus, M.; Jacobs, D.; Lister, A.; Moisen, G.; Nelson, M.; Riemann, R.; et al.
Forest Biomass Using Nationwide Forest Inventory Data and Moderate Resolution Information. Remote Sens. Environ. 2008, 112,
1658–1677. [CrossRef]

22. Ohmann, J.L.; Gregory, M.J.; Roberts, H.M. Scale Considerations for Integrating Forest Inventory Plot Data and Satellite Image
Data for Regional Forest Mapping. Remote Sens. Environ. 2014, 151, 3–15. [CrossRef]

23. Bolsinger, C.L. Shrubs of California’s Chaparral, Timberland, and Woodland. USDA For. Serv. Pac. Northwest Res. Stn. Portland
OR 1989, 50. [CrossRef]

24. Padgett, P.E.; Allen, E.B. Differential Responses to Nitrogen Fertilization in Native Shrubs and Exotic Annuals Common to
Mediterranean Coastal Sage Scrub of California. Plant Ecol. 1999, 144, 93–101. [CrossRef]

25. Pratt, R.B.; Jacobsen, A.L.; Hernandez, J.; Ewers, F.W.; North, G.B.; Davis, S.D. Allocation Tradeoffs among Chaparral Shrub
Seedlings with Different Life History Types (Rhamnaceae). Am. J. Bot. 2012, 99, 1464–1476. [CrossRef] [PubMed]

26. Kinoshita, A.M.; Hogue, T.S. Spatial and Temporal Controls on Post-Fire Hydrologic Recovery in Southern California Watersheds.
CATENA 2011, 87, 240–252. [CrossRef]

http://doi.org/10.1146/annurev.ecolsys.38.091206.095808
http://doi.org/10.2307/2937023
http://doi.org/10.3390/geosciences6030037
http://doi.org/10.1111/nph.15186
http://www.ncbi.nlm.nih.gov/pubmed/29727471
http://doi.org/10.1139/x01-216
http://doi.org/10.4996/fireecology.0703026
http://doi.org/10.3120/0024-9637-65.1.28
http://doi.org/10.1111/gcb.12477
http://www.ncbi.nlm.nih.gov/pubmed/24375846
http://doi.org/10.1002/ecs2.2796
http://doi.org/10.1016/j.rse.2007.08.021
http://doi.org/10.1016/j.rse.2013.08.048
http://doi.org/10.2737/PNW-RB-160
http://doi.org/10.1023/A:1009895720067
http://doi.org/10.3732/ajb.1200193
http://www.ncbi.nlm.nih.gov/pubmed/22917948
http://doi.org/10.1016/j.catena.2011.06.005


Remote Sens. 2021, 13, 1581 22 of 24

27. Keeley, J.E.; Brennan, T.J. Fire-Driven Alien Invasion in a Fire-Adapted Ecosystem. Oecologia 2012, 169, 1043–1052. [CrossRef]
[PubMed]

28. Wohlgemuth, P.M.; Lilley, K.A. Sediment delivery, flood control, and physical ecosystem services in southern California
chaparral landscapes. In Valuing Chaparral; Underwood, E.C., Safford, H.D., Molinari, N.A., Keeley, J.E., Eds.; Springer Series on
Environmental Management; Springer International Publishing: Cham, Switzerland, 2018; pp. 181–205, ISBN 978-3-319-68302-7.

29. Galidaki, G.; Zianis, D.; Gitas, I.; Radoglou, K.; Karathanassi, V.; Tsakiri–Strati, M.; Woodhouse, I.; Mallinis, G. Vegetation Biomass
Estimation with Remote Sensing: Focus on Forest and Other Wooded Land over the Mediterranean Ecosystem. Int. J. Remote
Sens. 2017, 38, 1940–1966. [CrossRef]

30. Masek, J.G.; Goward, S.N.; Kennedy, R.E.; Cohen, W.B.; Moisen, G.G.; Schleeweis, K.; Huang, C. United States Forest Disturbance
Trends Observed Using Landsat Time Series. Ecosystems 2013, 16, 1087–1104. [CrossRef]

31. Shoshany, M. Satellite Remote Sensing of Natural Mediterranean Vegetation: A Review within an Ecological Context. Prog. Phys.
Geogr. 2000, 24, 153–178. [CrossRef]

32. Filella, I. Reflectance Assessment of Seasonal and Annual Changes in Biomass and CO2 Uptake of a Mediterranean Shrubland
Submitted to Experimental Warming and Drought. Remote Sens. Environ. 2004, 90, 308–318. [CrossRef]

33. Calvão, T.; Palmeirim, J.M. Mapping Mediterranean Scrub with Satellite Imagery: Biomass Estimation and Spectral Behaviour.
Int. J. Remote Sens. 2004, 25, 3113–3126. [CrossRef]

34. Shoshany, M.; Karnibad, L. Mapping Shrubland Biomass along Mediterranean Climatic Gradients: The Synergy of Rainfall-Based
and NDVI-Based Models. Int. J. Remote Sens. 2011, 32, 9497–9508. [CrossRef]

35. Wittenberg, L.; Malkinson, D.; Beeri, O.; Halutzy, A.; Tesler, N. Spatial and Temporal Patterns of Vegetation Recovery Following
Sequences of Forest Fires in a Mediterranean Landscape, Mt. Carmel Israel. CATENA 2007, 71, 76–83. [CrossRef]

36. Keeley, J.E.; Fotheringham, C.J. Impact of past, present and future fire regimes on North American mediterranean shrublands. In
Fire, Chaparral, and Survival in Southern California; Sunbelt Publishing: San Diego, CA, USA, 2005; pp. 218–262, ISBN 0-932653-69-3.

37. Stephenson, N. Actual Evapotranspiration and Deficit: Biologically Meaningful Correlates of Vegetation Distribution across
Spatial Scales. J. Biogeogr. 1998, 25, 855–870. [CrossRef]

38. Mayer, K.E.; Laudenslayer, W.F. A Guide to Wildlife Habitats of California; California Department of Forestry and Fire Protection:
Sacramento, CA, USA, 1988.

39. Kaufman, L.; Rousseeuw, P.J. Clustering by Means of Medoids. In Statistical Data Analysis, Based on the L1 Norm; Dodge, Y., Ed.;
Elsevier/North Holland: Amsterdam, The Netherlands, 1987; pp. 405–416, ISBN 978-3-0348-9472-2.

40. Flint, L.E.; Flint, A.L.; Thorne, J.H.; Boynton, R. Fine-Scale Hydrologic Modeling for Regional Landscape Applications: The
California Basin Characterization Model Development and Performance. Ecol. Process. 2013, 2, 25. [CrossRef]

41. Uyeda, K.A.; Stow, D.A.; O’Leary, J.F.; Tague, C.; Riggan, P.J. Chaparral Growth-Ring Analysis as an Indicator of Stand Biomass
Development. Int. J. Wildland Fire 2016, 25, 1086–1092. [CrossRef]

42. Uyeda, K.A.; Stow, D.A.; Riggan, P.J. Tracking MODIS NDVI Time Series to Estimate Fuel Accumulation. Remote Sens. Lett. 2015,
6, 587–596. [CrossRef]

43. Keeley, J.E.; Keely, S.C. Chaparral. In North American Terrestrial Vegetation; Barbour, M.G., Billings, W.D., Eds.; Cambridge
University Press: Cambridge, MA, USA, 1988; pp. 165–207, ISBN 0-521-55027-0.

44. CalFire CalFire Stats and Events. Available online: https://www.fire.ca.gov/stats-events/ (accessed on 1 April 2021).
45. Daly, C.; Gibson, W.; Taylor, G.; Johnson, G.; Pasteris, P. A Knowledge-Based Approach to the Statistical Mapping of Climate.

Clim. Res. 2002, 22, 99–113. [CrossRef]
46. Wang, T.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally Downscaled and Spatially Customizable Climate Data for Historical

and Future Periods for North America. PLoS ONE 2016, 11, e0156720. [CrossRef] [PubMed]
47. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial

Analysis for Everyone. Big Remote. Sensed Data Tools Appl. Exp. 2017, 202, 18–27. [CrossRef]
48. Storey, E.A.; Stow, D.A.; O’Leary, J.F. Assessing Postfire Recovery of Chamise Chaparral Using Multi-Temporal Spectral Vegetation

Index Trajectories Derived from Landsat Imagery. Remote Sens. Environ. 2016, 183, 53–64. [CrossRef]
49. Burham, B. Forest Inventory and Analysis Sampling and Plot Design; FIA Fact Sheet Series; USDA Forest Service Forest Inventory

and Analysis National Program; USDA Forest Service: Washington DC, USA, 2005. Available online: https://www.fia.fs.fed.us/
library/fact-sheets/data-collections/Sampling%20and%20Plot%20Design.pdf (accessed on 4 April 2019).

50. McGinnis, T.W.; Shook, C.D.; Keeley, J.E. Estimating Aboveground Biomass for Broadleaf Woody Plants and Young Conifers in
Sierra Nevada, California, Forests. West. J. Appl. For. 2010, 25, 203–209. [CrossRef]

51. Wakimoto, R.H. Responses of Southern California Brushland Vegetation to Fuel Manipulation; University of California: Berkeley, CA,
USA, 1978.

52. Lutes, D.; Keane, R.; Caratti, J.; Key, C.; Benson, N.; Sutherland, S.; Gangi, L. FIREMON: Fire Effects Monitoring and Inventory
System; Rocky Mountain Research Station: Fort Collins, CO, USA, 2006.

53. Jenkins, J.; Chojnacky, D.C.; Heath, L.; Birdsey, R.A. National Scale Biomass Estimators for United States Tree Species. For. Sci.
2003, 49, 12–35.

54. Woodall, C.; Heath, L.; Domke, G.; Nichols, M. Methods and Equations for Estimating Volume, Biomass, and Carbon for Trees in the
U.S. Forest Inventory, 2010; Gen. Tech. Rep. NRS-88; Department of Agriculture, Forest Service, Northern Research Station:
Newtown Square, PA, USA, 2010; 30p.

http://doi.org/10.1007/s00442-012-2253-8
http://www.ncbi.nlm.nih.gov/pubmed/22286083
http://doi.org/10.1080/01431161.2016.1266113
http://doi.org/10.1007/s10021-013-9669-9
http://doi.org/10.1177/030913330002400201
http://doi.org/10.1016/j.rse.2004.01.010
http://doi.org/10.1080/01431160310001654978
http://doi.org/10.1080/01431161.2011.562255
http://doi.org/10.1016/j.catena.2006.10.007
http://doi.org/10.1046/j.1365-2699.1998.00233.x
http://doi.org/10.1186/2192-1709-2-25
http://doi.org/10.1071/WF16080
http://doi.org/10.1080/2150704X.2015.1063736
https://www.fire.ca.gov/stats-events/
http://doi.org/10.3354/cr022099
http://doi.org/10.1371/journal.pone.0156720
http://www.ncbi.nlm.nih.gov/pubmed/27275583
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1016/j.rse.2016.05.018
https://www.fia.fs.fed.us/library/fact-sheets/data-collections/Sampling%20and%20Plot%20Design.pdf
https://www.fia.fs.fed.us/library/fact-sheets/data-collections/Sampling%20and%20Plot%20Design.pdf
http://doi.org/10.1093/wjaf/25.4.203


Remote Sens. 2021, 13, 1581 23 of 24

55. Thompson, M.T.; Toone, M.K. Estimating Root Collar Diameter Growth for Multi-Stem Western Woodland Tree Species on
Remeasured Forest Inventory and Analysis Plots. In Moving from Status to Trends: Forest Inventory and Analysis (FIA) Symposium
2012; Morin, R.S., Liknes, G.C., Eds.; Department of Agriculture, Forest Service, Northern Research Station. [CD-ROM]: Newtown
Square, PA, USA, 2012; pp. 334–337. Available online: https://www.nrs.fs.fed.us/pubs/gtr/gtr-nrs-p-105papers/53thompson-
p-105.pdf (accessed on 3 March 2018).

56. Vourlitis, G.L. Aboveground Net Primary Production Response of Semi-Arid Shrublands to Chronic Experimental Dry-Season N
Input. Ecosphere 2012, 3, art22. [CrossRef]

57. Hoaglin, D.C.; John, W. Tukey and Data Analysis. Stat. Sci. 2003, 18, 311–318. [CrossRef]
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