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Abstract: Target detection and classification is an important application of hyperspectral imaging
in remote sensing. A wide range of algorithms for target detection in hyperspectral images have
been developed in the last few decades. Given the nature of hyperspectral images, they exhibit large
quantities of redundant information and are therefore compressible. Dimensionality reduction is an
effective means of both compressing and denoising data. Although spectral dimensionality reduction
is prevalent in hyperspectral target detection applications, the spatial redundancy of a scene is rarely
exploited. By applying simple spatial masking techniques as a preprocessing step to disregard
pixels of definite disinterest, the subsequent spectral dimensionality reduction process is simpler, less
costly and more informative. This paper proposes a processing pipeline to compress hyperspectral
images both spatially and spectrally before applying target detection algorithms to the resultant
scene. The combination of several different spectral dimensionality reduction methods and target
detection algorithms, within the proposed pipeline, are evaluated. We find that the Adaptive Cosine
Estimator produces an improved F1 score and Matthews Correlation Coefficient when compared to
unprocessed data. We also show that by using the proposed pipeline the data can be compressed by
over 90% and target detection performance is maintained.

Keywords: hyperspectral image processing; dimensionality reduction; feature extraction; target
detection

1. Introduction

Remote sensing from aerial and satellite platforms has become increasingly prevalent
and is an important source of information in areas of research including disaster relief [1],
determining land usage [2] and assessing vegetation health [3]. Remote sensing platforms
are also often deployed in military and security applications such as change detection [4,5],
target tracking [6] and classification. Target Detection (TD) from airborne imagery is a
major challenge and active area of research within the disciplines of signal and image
processing [7–9]. There have been a wide range of TD algorithms of varying complexities
developed over the last few decades [10], ranging from mathematical models to those based
on more intuitive approaches such as angles or distances. The most notable difficulties in
aerial TD are discussed in [11] and include sensor noise effects, atmospheric attenuation
and subsequent correction which can both lead to variabilities in target signature.

Depending on the system, remote sensing data can consist of high resolution RGB
colour data, radar, multispectral, or hyperspectral images. The latter, while providing a
great deal of useful information, often at wavelengths beyond the range of human vision,
introduces a vast quantity of data which must be handled and processed. Dimensionality
Reduction (DR) techniques offer methods of compressing and remapping this high dimen-
sionality data into a reduced, and sometimes more informative, uncorrelated subspace.
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As hyperspectral images contain high levels of redundancy they are easily compressed
using sparsity-based approaches [12] or by applying DR methods. Coupling spectral DR
with TD in order to improve detection and classification rates has been covered widely
in the literature [11,13–19] and has been shown to improve the performance of TD and
classification algorithms.

In TD applications, often the targets are sparsely positioned in an imaged scene,
therefore large amounts of spatial redundancy are exhibited. This spatial redundancy,
like the spectral redundancy also present in hyperspectral images, can be exploited in
order to attain increased performance and efficiency. In [18,19], we investigated using
the Normalised Difference Vegetation Index (NDVI) as a spatial mask on the detected
image in order to constrain the region of interest in the scene. In this paper, however,
the spatial DR is applied prior to the calculation of the dimensionality reduced image in
order to refine the subspace in which any TD is performed. NDVI and its variants are
most often used in remote sensing applications to quickly and effectively assess vegetation
health [3]. Other similar indices are used to detect water/snow in an image or for assessing
how built upon an area is. However, such indices could be used to provide a measure
of how informative a pixel may be or how likely it is to hold a target signature. Pixels
are categorised as informative or non-informative with the non-informative pixels being
discarded. By removing such pixels, the DR calculation can be simplified by reducing the
number of samples, whilst also simplifying and suppressing the background class. As TD
algorithms can be represented as a binary classification, improving the separation between
target and background classes consequently improves TD performance [8]. While various
information indices are commonly used in remote sensing tasks, to the best of the authors’
knowledge, they have never been used to perform spatial DR or coupled with spectral DR
in this way with the aim of improving hyperspectral TD applications.

In this paper, we investigate the use of coupled spatial and spectral DR for hyper-
spectral TD applications. With this approach, we aim to decrease both the spatial and
spectral redundancy exhibited in hyperspectral images, improving the efficiency and per-
formance of various benchmark TD algorithms. The proposed method was tested on two
hyperspectral datasets containing multiple targets in varied scenes.

2. Materials and Method

In this section, we first introduce the notation used in this paper as well as the relevant
background information on each of the datasets used. Secondly the various spectral DR
methods used are introduced followed by the spatial DR method created for purpose of
TD. Finally the various detection algorithms are described.

2.1. Notation

Hyperspectral images can most easily be represented as 3-dimensional datacubes, with
two spatial dimensions and a third spectral dimension. Any hyperspectral image X can
be represented as L individual greyscale images each exposed at a particular wavelength
or spectral band λl , X l : l ∈ {1, 2, ..., L}, where L represents the total number of spectral
bands. Alternatively an image, X, can be thought of as N individual pixels each comprised
of an L-dimensional vector as seen in Equation (1):

X3D =


x1,1 x2,1 · · · xi,1
x1,2 x2,2 · · · xi,2

...
...

. . .
...

x1,j x2,j · · · xi,j

 (1)

where i and j represent the number of columns and rows in the hyperspectral datacube
X3D, respectively. Generally when applying hyperspectral image processing algorithms
to images, it is desirable for the image to be in a 2-dimensional matrix form, X. This is
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shown in Equation (2), where each column consists of a single pixel, xi : i ∈ {1, 2, ..., N},
represented by an L-dimensional vector, as seen in Equation (3).

X2D =
[

x1, x2, x3, · · · xi, · · · xN
]

(2)

x =
[

xλ1 ; xλ2 ; · · · xλL

]
(3)

The vector in Equation (3) represents a single hyperspectral pixel, or a single spec-
tral measurement.

2.2. Image Acquisition

Images from two sources have been used to validate the techniques described here.
The first dataset “OP7”, provided by BAE Systems, consists of three images acquired on the
18 May 2014 from an aerial platform flying at an altitude of approximately 0.78 km. The
platform used a Visible and Near-InfraRed (VNIR) hyperspectral sensor with a spectral
range of roughly 400–1000 nm.

The second set of images were supplied by the UK Defence Science and Technology
Laboratory (DSTL) as part of the University Defense and Research Collaboration (UDRC)
from the Selene trial. Part of this trial collected airborne hyperspectral imagery of large
numbers of spectrally varied targets across a two week period between the 4th and 15th of
August 2014 at an altitude between 0.9 and 1.05 km. A common region from a selection
of seven images captured over this period was used so as to exhibit varied targets under
different environmental conditions. The camera used was also in the VNIR range with a
similar spectral range of roughly 400 nm to 1000 nm with fewer spectral measurements but
a much higher spatial resolution than the OP7 dataset.

Sample false-colour images from each of the datasets can be seen in Figure 1 along
with cropped portions of the target area indicated by a red box.

(a) (b) (c) (d)
Figure 1. False colour images from the datasets used in this work. (a) OP7 image. (b) Target Region
of (a). (c) UDRC Selene image. (d) Target Region of (c).

2.3. Spectral Dimensionality Reduction Techniques

Due to the high correlation between successive bands in hyperspectral images, com-
pression and DR techniques can be readily applied. In this section, we review four of the
most common techniques which we have included in this analysis.

2.3.1. Principal Component Analysis

Principal Component Analysis (PCA) [20] is a classical method of DR. It seeks to
remap highly correlated data into an uncorrelated space using a set of optimal orthogonal
basis vectors, or Principal Components (PC), calculated from the input data. There are
multiple ways of achieving this through both iterative and non-iterative algorithms, we
have included two in this analysis, Eigenvalue Decomposition (EVD) and Non-linear
Iterative Partial Least Squares (NIPALS). The EVD is a common method for performing
PCA and consists of the matrix decomposition Σ = UΛUT , where the matrix Λ is a
diagonal matrix containing the eigenvalues of Σ, i.e., Λ = diag{λ1, λ2, ..., λL} and the
matrix U contains the related eigenvectors [u1, u2, ..., uL]. The eigenvalues in Λ are ordered
such that λ1 > λ2 > ... > λL, hence the first K largest eigenvalues correspond to the first



Remote Sens. 2021, 13, 1647 4 of 25

K eigenvectors. The first K eigenvectors, or PCs, can be used as a set of basis vectors to
transform the original data into an uncorrelated K-dimensional subspace, where K < L,
which represents the most significant information contained in the data.

In some cases, such as those where the desired number of retained components is
known, it is unnecessary and therefore preferable to avoid calculating every PC as is
required in an EVD. In these cases, iterative techniques can be used to calculate each
successive PC in turn until the required number, K, has been reached. The NIPALS
algorithm can be used to achieve this and consists of the decomposition X = TPT , where
X is some mean-centred matrix and the columns of T are the scores and the columns of P
are the loadings. P forms an optimal transform matrix which can be used in an identical
manner to the matrix of eigenvectors from an EVD in transforming input data into a
dimensionality reduced subspace. An overview of the NIPALS algorithm can be found
in [21].

In testing, both the EVD and NIPALS algorithms produced PCs with identical mag-
nitudes but some which exhibited opposite polarity as orthogonality can take one of two
directions. The EVD has no need to converge and is therefore faster while producing
minimal error. With this in mind, only the EVD was used to perform PCA-based DR.

2.3.2. Maximum Noise Fraction

The Maximum Noise Fraction (MNF) [22] transform is similar in operation to PCA
but also accounts for the noise present in input data [23]. Rather than ordering the PCs of
an input image, X, by their variance, as in PCA, they are instead sorted by their estimated
Signal-to-Noise Ratio (SNR). In MNF, it can be assumed that the covariance of the data, Σ, is
a sum of the covariance of the signal, Σs, and the covariance of noise, Σn, i.e., Σ = Σs + Σn.
The MNF transform seeks to maximise the calculated eigenvalues with respect to the
estimated SNR and can be interpreted as two separate PCAs computed in turn, the first to
noise whiten the data, and the second to calculate the PCs. The complete MNF algorithm
is described in [22].

2.3.3. Folded Principal Component Analysis

With both PCA and MNF, as well as many other PCA-like methods, it is necessary to
compute the full covariance matrix Σ. This covariance matrix is of size L× L where L is
equal to the number of spectral bands in an image. Therefore, for images with high spectral
resolution it can be computationally expensive and time-consuming to compute. In order
to circumvent this challenge, Folded Principal Component Analysis (FPCA) [24] seeks to
reduce the size of the covariance matrix and also incorporate the correlation within spectra
into the calculation. In order to perform FPCA, each of the N mean-centred spectral vectors,
x̄, are folded into an H ×W matrix, A, where H ×W = L for some positive integers H
and W. A partial covariance matrix can be calculated as Σ = AT A and using each of
these N partial covariance matrices the full covariance matrix, ΣFPCA, can be calculated
as ΣFPCA = 1

N ∑N
i=1 AT

i Ai. Images can be projected into the FPCA domain by performing
the EVD, of ΣFPCA and using the resultant eigenvectors to project the input data into
the PC space. Auxiliary target spectra can then be folded using the same H and W and
projected using the eigenvectors of ΣFPCA, before being unfolded again to be processed in
the FPCA domain.

2.3.4. Independent Component Analysis

Independent Component Analysis (ICA) is a common method for performing Blind
Source Separation (BSS) used in DR. Unlike PCA, MNF or FPCA, ICA seeks to separate
an ensemble of mixed signals into a set of finite distinct sources or Independent Compo-
nents (IC). This is achieved by maximising the statistical independence of the calculated
components [25]. As hyperspectral images are made up of a weighted sum of a set of finite
pure spectra, or endmembers, it is possible to perform ICA to separate the mixed spectra
into pure spectral endmembers. There are multiple algorithms used to calculate the ICs
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of a set of data, two of the most well used are the FastICA [26] algorithm and the Joint
Approximation Diagonalization of Eigen-matrices (JADE) algorithm [27]. In this paper, the
FastICA algorithm is used instead of the JADE algorithm as it reached convergence both
faster and more reliably. In order to perform ICA based DR, the required number of ICs to
represent the data needs to be calculated. This is achieved by using the notion of Virtual
Dimensionality (VD) [28] which estimates the number of spectrally distinct sources in the
image. Using the method from [29], ICA-DR can be achieved with K ICs.

PCA and MNF are both classified as second order statistics-based transforms which
can be insufficient in some applications [29]. ICA preserves higher order moments, such
as skewness and kurtosis, which can aid in applications which require characterisation
of subtle differences in signature such as classification or detection of small/rare targets.
While it is possible that second-order statistics may be insufficient in preserving such
characterising information it has not been the case with this application. Although it
performs favourably when compared to other ICA algorithms such as JADE, FastICA is
much slower than the other, non-iterative, methods for DR listed here. This is due to the
need for multiple iterations to reach a convergence and is therefore another important
consideration in its choice in any practical application.

2.4. Spatial Dimensionality Reduction Using Vegetation Indices

As well as exploiting the spectral redundancy exhibited in hyperspectral images, the
spatial redundancy can also be utilised for TD through compression or by creating new
features. By investigating the spectral properties of the scene, spatial areas of interest
can be selected and areas of non-interest can be discarded from further processing, often
saving on large computational costs. Vegetation Indices (VI) such as NDVI and its variants
are of particular interest in TD applications as they offer simple and effective methods to
discriminate between vegetative and non-vegetative pixels. Three NDVI variants were
selected and tested in discriminating between the desired background of vegetation and
the foreground of synthetic materials to which the target objects of interest belong. Each of
the methods used in this work are listed in Table 1.

Table 1. Vegetation indices used for spatial DR.

Index Acronym Equation Reference

Normalised Difference
Vegetation Index

NDVI λNIR − λRed
λNIR + λRed

Rouse et al. [30]

Normalised Difference Vegetation
Index (red-edge)

NDVIre
λre − λRed
λre + λRed

Hansen & Schjoerring [31]
Ettehadi et al. [2]

Red-Edge Normalised
Difference Vegetation Index

RENDVI λ750 − λ705

λ750 + λ705

Gitelson & Merzlyak [32]
Sims & Gamon [33]

2.5. Target Detection Algorithms

In this paper, five common classical methods for TD and Anomaly Detection (AD) are
investigated for use in combination with spatial and spectral DR. These are the Adaptive
Cosine Estimator (ACE) [34], Constrained Energy Minimisation (CEM) [13], the Spectral
Angle Mapper (SAM) [35], Spectral Information Divergence (SID) [36], and the Reed-Xiaoli
Detector (RXD) [37]. Each method, with the exception of the latter are TD algorithms and,
as such, they require a priori information about the targets to be detected in the form of a
reference or ground truth spectra. The final method however, the RXD, does not require
prior information about a target and finds outlying or anomalous pixels within the image
and is cited as the benchmark AD algorithm [11]. Whilst other TD algorithms such as
Orthogonal Subspace Projection (OSP) [38,39] are often used to good effect [40–42], such
methods require prior knowledge of the background which may not be fully known and as
a result hinder the performance in a TD application hence they are left out of this analysis.
ACE in particular has been shown to achieve favourable results in similar comparisons
with other TD algorithms [11,14,17,43].
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2.6. Performance Measures

In order to asses the performance of each of the TD algorithms a number of measures
are used in this paper. Each of the various TD and AD algorithms used return a probability
or confidence measure as to whether each pixel contains a target. By varying the threshold
above which a pixel is classified as a target, the various behaviours and performance of a
TD algorithm can be assessed. Both Receiver Operator Characteristic (ROC) curves [44]
and Precision-Recall (PR) curves [45,46] are useful measures in determining an optimal
operational threshold in order to maintain an acceptable False Alarm Rate (FAR). The Area
Under the Curve (AUC) is a useful measure for comparing the ROC and PR behaviours of
various algorithms. The ROC curve can be created by plotting the Probability of Detection
(Pd), against the Probability of False Alarm (Pfa), at a series of thresholds.

Although ROC curves are a simple and effective way of rapidly visualising the perfor-
mance of a classifier, it has been shown that ROC analysis can be flawed for unbalanced
classes, as is the case for TD applications. In [45] it is shown that PR, curves are more
informative for unbalanced classes as they correctly evaluate the fraction of True Positive
(TP) detections amongst the total number of positive predictions, or the precision of the
classifier. Precision can be calculated using the number of TP and False Positive (FP)
detections where precision = TP/(TP + FP). Recall is calculated using the number of
False Negative (FN) detections where recall = TP/(TP + FN). Recall is the fraction of TP
detections amongst the total number of positive examples. In the case of TD applications
the number of positive examples is the total number of target pixels present in an image
and PR curves can be obtained by plotting the precision of a classifier against its recall at a
series of thresholds.

Along with these graph-based methods, four other methods of assessing each of the
TD algorithms were used. Three measures commonly used in assessing binary classifier
performance, the F1 score [46], Matthew’s Correlation Coefficient (MCC) [47] and balanced
accuracy [48] were used. As TD algorithms can be represented as a binary classification
between a positive target class and a negative background class, these measures are applied
to assess how each algorithm performs. The final metric used in this work is the visibility
measure [14]. Visibility is an indication of how distinct a target is from its background. This
is useful in assessing how the detection can be affected by applying DR to input image data.

2.7. Proposed Methodology

In this paper, we are proposing a pipeline to improve TD in hyperspectral images
by combining both spatial and spectral DR methods. This is achieved by performing a
spatial DR on an input image, removing any vegetative, and therefore, non-target pixels,
before projecting the subset of the image into a subspace using more traditional spectral
DR methods. Any relevant ground truth target spectra can also be projected into the same
subspace using the forward transform of each DR method. The TD can then be performed
in the dimensionality reduced subspace. This pipeline is shown in Figure 2.

In previous work, [18,19], both NDVI and PCA were combined to improve the per-
formance of a hyperspectral Hit-or-Miss Transform (HMT) for use as a TD algorithm. By
reducing the spatial and spectral redundancy the computational overhead of the proposed
algorithm was reduced. NDVI was used to mask the already dimensionality reduced
data. However, this meant that the NDVI had no influence over the performance of the
detection. When it is already known that the target is non-vegetative, the application of
NDVI masking prior to the use of spectral DR improves the performance of TD algorithms
because a much more informative subset of pixels is exploited. Rather than using the
spectral information of vegetation in the DR calculation, which can skew the resultant basis
vectors away from representing desirable signatures, it is instead overlooked. The DR is
targeted towards representing potentially more informative pixels. By suppressing the
vegetative part of the background class, an improved separation between the target and
remaining background can be achieved in the DR subspace. The aim is, that by reducing
the number of samples in this way, the calculation of the dimensionality reduced data
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is not only simplified but also more useful information is retained in potentially fewer
components.

Image
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Figure 2. Spatio-spectral dimensionality reduction pipeline for target detection.

3. Experimental Results

In this section, we will first investigate the optimal method of removing vegetative
pixels and then discuss the achievable compression rates when combining both spectral DR
and NDVI-based spatial DR. We then select the optimal detection algorithm for use with
the proposed spatio-spectral DR pipeline shown in Figure 2. Then, we present a subset of
the results gathered using both the OP7 dataset and the UDRC Selene Trial data. Finally,
we investigate the effects of the various spatial and spectral DR schemes combined with
the chosen TD algorithm. Each of the spectral DR methods, PCA, MNF, FPCA and ICA,
are tested with K = 20 components retained and “Raw” refers to the full dimensionality
image where L = 100 for the OP7 data and L = 80 for the Selene trial images.

3.1. Selection of the Optimal Vegetation Index for Spatial Dimensionality Reduction

In order to assess which VI gave the best separation between vegetative and non-
vegetative pixels, the ground truth spectra of multiple green targets from the Selene dataset
as well as the average spectra of a patch of vegetation were investigated. Figure 3 shows
the test image used as well as the results of each of the three VIs.

(a) (b) (c) (d)
Figure 3. Optimal VI experiments (a) UDRC Test Image. (b) NDVI ratio. (c) NDVIre ratio.
(d) RENDVI ratio. (In (b–d) warmer colours indicate higher levels of vegetation and colder colours
indicate non-vegetation.)

All three of the VIs are able to identify a good separation between vegetation and most
other non-vegetative background pixels. However some of the green targets present in the
scene, despite exhibiting distinctly non-vegetative spectra, can produce a ratio similar to
that of the surrounding grass, this is most apparent when using the basic NDVI. The regions
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investigated are indicated by the blue and orange elements in Figure 3, matching the colour
of the plotted spectral signatures in Figure 4. Figure 4 shows the target spectra, background
spectrum, and VI bands used to calculate the ratio of each VI result, respectively.
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Figure 4. VI ratio of each of the three test spectra (a) NDVI ratio and band locations. (b) NDVIre ratio
and band locations. (c) RENDVI ratio and band locations.

Two of the targets from Figure 3a, green perspex (circled in blue) and green ceramic
(circled in orange) were investigated for separation from the background when using VI-
based spatial DR. Each of the three VIs investigated produce a ratio between the intensity
of a pixel at two bands, the two targets produced VI values shown in Table 2.

Table 2. Vegetation index ratios obtained for background and targets.

Vegetation Index Green Perspex Ratio Green Carpet Ratio Background Ratio
NDVI 0.48 0.14 0.53

NDVIre 0.09 0.13 0.39
RENDVI 0.10 0.06 0.28

From Figure 3b–d, Figure 4 and Table 2, it is possible to see that NDVI and the Red
Edge Normalised Difference Vegetation Index (RENDVI) have lower separability between
the “green perspex” target and the background when compared with that of the Normalised
Difference Vegetation Index (red-edge) (NDVIre). In fact, it can be observed that the green
perspex target, pinpointed by the blue arrows in Figure 3b–d, is near indistinguishable from
the background in Figure 3b with only six of the seven targets having a low enough NDVI
value to be reliably distinguished from the background. Despite having a distinct spectral
profile, as shown in Figure 4a, the green perspex has an almost identical NDVI value to the
background (0.48 vs. 0.53) indicating the ratio between the two NDVI bands is nearly the
same. By altering the Near-InfraRed (NIR) band to be placed in the red-edge portion of the
spectrum, as is the case when using NDVIre, a much greater separation is achieved (0.09
vs. 0.39). This is due to the red-edge phenomenon, when the intensity of the background
spectra rises sharply, reflecting NIR light. RENDVI, whilst successfully segmenting all
seven targets in this example, creates a lower contrast between background and target
when compared with NDVIre. As NDVIre provides the best separation between the most
difficult targets and the background it is used to implement spatial DR in this paper.

3.2. Combining Spatial and Spectral DR for Hyperspectral Compression

Here we briefly discuss the effects on image size and compression when combining
spatial and spectral DR techniques. NDVIre is used as a spatial mask, selecting pixels that
are relevant and can be used in subsequent spectral DR and TD processes. By masking
certain pixels they can be discarded from further processing, reducing the sample size.
Then, by performing spectral DR, retaining K components from L spectral bands the sample
size is reduced further. By combining the remaining spatial and spectral components, a
compressed representation of the relevant data is retained for further processing. Table 3
details the size of each of the images used in this paper, as well as their compressed spatial
and spectral sizes along with the percentage of the original data retained after compression.
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Table 3. Achieved compression for combined spatial and spectral DR.

Image # Samples
Full

# Samples
NDVIre L K

Spatial
Comp. (%)

Spectral
Comp. (%)

Total
Comp. (%)

Average
Comp. (%)

OP7_1 160,000 3504 100 20 2.19 20 0.44
0.34OP7_2 160,000 2500 100 20 1.56 20 0.31

OP7_3 160,000 2232 100 20 1.40 20 0.28

IM_140804 3,210,191 649,435 80 20 20.23 25 5.06

4.61

IM_140806 3,839,976 578,674 80 20 15.07 25 3.77
IM_140807 3,415,052 689,245 80 20 20.18 25 5.05
IM_140808 3,015,944 543,569 80 20 18.02 25 4.51
IM_140812 4,360,159 610,172 80 20 13.99 25 3.50
IM_140813 3,301,404 807,262 80 20 24.45 25 6.11
IM_140815 3,640,769 626,776 80 20 17.22 25 4.30

The OP7 dataset images are first able to be compressed to 1.72% of their original size
on average as NDVIre selects a small proportion of the total pixels to process further. By
retaining K = 20 components in the subsequent spectral DR stage, this is reduced further to
an average of 0.34% of their original size. The images in the Selene trial have a much higher
spatial resolution and a larger sample is retained after using the NDVIre spatial mask as a
large proportion of the pixels represent non-target and non-vegetative materials, as shown
in Figure 1. The pixels retained after NDVIre represent an average of 18.45% of the original
image and applying spectral DR, with K = 25, reduces this to 4.61% on average.

3.3. Comparison of the TD Algorithms Used

Each of the detection algorithms used were individually tested for their suitability
when combined with the spatial and spectral DR schemes selected. In order to validate
which algorithm performed optimally, the proposed method was applied to a subset of the
Selene data. First, a ROC analysis was performed with examples of ROC curves for each
combination of TD and DR algorithms are shown in Figure 5 for the full spatial scene and
in Figure 6 when combined with NDVIre. Figures 5 and 6 show the upper left quadrant of
the ROC curves in order to highlight the differences between each of the methods used.
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Figure 5. ROC Curves for each TD and spectral DR scheme pairing on the full scene. (a) ACE.
(b) CEM. (c) SAM. (d) SID. (e) RXD.
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Figure 6. ROC Curves for each TD and spectral DR scheme pairing in combination with spatial DR.
(a) ACE. (b) CEM. (c) SAM. (d) SID. (e) RXD.

As previously stated, ROC analysis, in isolation, is insufficient for comparing unbal-
anced binary classifiers [45]. However, it is interesting to note the disparity between the
ROC curves from each of the TD algorithm outputs. In Figure 5, each of the algorithms
used have near ideal ROC curves regardless of which spectral DR scheme is used when
working on the full spatial scene. However when spatial DR is employed, only the ACE
and CEM algorithms remain near ideal as seen in Figure 6. The AUC of the ROC curves
increase for each spectral DR scheme when combined with NDVIre-based spatial DR and
the ACE algorithm, as shown in Figure 6a. By simplifying the background, and there-
fore improving the covariance estimate, the ACE algorithm can achieve better separation
between the known target and the estimated background. Similarly, by suppressing the
background, the FIR filter weight estimation that is necessary for the CEM algorithm is
simplified. This is reflected in the increased AUC values of the ROC curve when using
CEM with NDVIre-based spatial DR, as shown in Figure 6b.

As well as ROC curves, PR curves were generated for each of the combinations of TD
and DR algorithms with and without the NDVIre spatial DR. The PR curves of each of the
TD algorithms when considering both the full spatial scene and with the application of
NDVIre-based spatial DR are shown in Figure 7.

Investigating the PR curves shown in Figure 7 and the corresponding AUC values in
Table 4 we see that using ACE, CEM and SAM generally all yield high AUC values for each
of the spectral DR schemes used. When NDVIre-based spatial DR is used in combination
with the spectral DR the AUC increases in almost every case, including on the raw data
where no spectral DR is used. SID, when used on the full dimensionality data, provides an
average AUC which is once again improved when using NDVIre-based spatial DR. The
RXD performs well when using the full data and each of the spectral DR algorithms with
the exception of PCA where it fails to discriminate target materials. This is due to the
fact that, mathematically, PCA is the inverse operation of the RXD [49]. PCA exploits the
redundancy of hyperspectral images by only retaining the PCs corresponding to the largest
eigenvalues whereas the RXD works by investigating the anomalous data attributed to
smaller eigenvalues which have been discarded.
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Figure 7. PR Curves for each TD and spectral DR scheme pairing in combination with spatial DR.
(a) ACE. (b) CEM. (c) SAM. (d) SID. (e) RXD.

Table 4. Comparison between the AUC of the PR curves using the full and spatial DR images.

PR Raw PCA MNF FPCA ICA

AUC Full NDVIre Full NDVIre Full NDVIre Full NDVIre Full NDVIre

ACE 0.649 0.7556 0.6038 0.7505 0.6229 0.7393 0.56 0.7186 0.5999 0.7507
CEM 0.6207 0.6852 0.6208 0.7673 0.6033 0.6633 0.6124 0.6669 0.6195 0.6849
SAM 0.577 0.6723 0.5127 0.4443 0.4938 0.0993 0.528 0.6194 0.6006 0.7507
SID 0.5315 0.6112 0.131 0.3582 0.0187 0.0102 0.3314 0.2625 0.1809 0.5871
RXD 0.5153 0.5086 0.0055 0.0175 0.5358 0.6604 0.5445 0.5816 0.5224 0.5049

Both the ROC and PR analysis were performed on a per-target basis. The results
shown in Figures 5–7 and Table 4 are from the detection of a single target however they are
generally representative of the performance over every target present in the scene. Along
with the ROC and PR curves, the other performance measures detailed in Section 2.6 were
calculated for each of the targets in the scene. These measures were then averaged in order
to obtain an overview of each TD algorithm’s general performance, the results of which
can be seen below in Figure 8.
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Figure 8. Average performance of each TD and DR algorithm combination when used on the full
scene vs. when combined with spatial DR.

Similar to the results drawn from Figures 5–7, each of the TD algorithms perform well
when considering the AUC of the ROC curves. ACE and CEM give the highest AUC of the
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PR curves with ACE, CEM, and SID each performing better when combined with spatial
DR. Generally using the spatial DR reduces the visibility with the exception of CEM and
the RXD where it slightly increases. ACE gives the highest visibility when considering
both the full scene and when using spatial DR indicating it is the best at separating the
background from the target of the algorithms investigated. ACE and SID display the best
precision, with both methods improving when using spatial DR. ACE also displays the
highest balanced accuracy, F1 score and MCC of each of the detectors tested. For these
reasons, the remaining results in this paper are generated using the ACE algorithm solely.
It is interesting to note that, as well as reducing the sample size for increased efficiency
in each of the detection algorithms, the performance after the application of spatial DR is
generally as good or an improvement over using the full scene, as seen in Figure 8.

3.4. Results on the OP7 Dataset

The first of two datasets used in this paper was provided by BAE System. It consists
of three images of a forest scene each portraying a common target area from overlapping
views. The target area contains three calibration panels, one grey, one black and one white,
which were used as the targets of interest. Figure 9a shows a false colour representation
of one of the images with all three targets present in the scene. Figure 9c shows the same
image masked using the NDVIre method detailed in Section 2.4. Figure 9b,d are enlarged
views of the target areas of Figure 9a,c, respectively.

(a) (b) (c) (d)
Figure 9. Example of the OP7 Dataset. (a) False colour image of the target area. (b) Enlarged version
of (a). (c) Retained pixels following the NDVIre spatial masking. (d) Enlarged version of (c).

Of the two datasets, OP7 is simpler as it contains fewer distinct materials and objects
in the scene compared to the images from the Selene Trial dataset. The OP7 images also
have a lower spatial resolution when compared to the Selene Trial data, with a Ground
Sample Distance (GSD) of approximately 1 metre. As a result roughly nine pixels per target
contain pure spectra.

In order to assess how each TD algorithm’s behaviour varied with the number of
components retained using each DR scheme, the F1 score, MCC, balanced accuracy and
visibility were calculated at various values for K between K = 10 and K = L, where
L = 100 for the OP7 data as shown in Figure 10. It must be noted that, when using FPCA,
the dip in performance in each measure is a consequence of an implementation limitation
which results in the creation of a singular matrix. This restricts the choice of the number of
retained components and is discussed further in Section 4.

As seen in Figure 10, both balanced accuracy and visibility are largely invariant to
the number of components, K, retained. Although interestingly, at lower values of K, the
visibility using each spectral DR methods is greater than that of the raw data. Conversely,
the F1 score and MCC both vary as the number of components increase to be equal to
the original spectral dimensionality of the data, both with and without the application of
spatial DR. This is to be expected, in the case where K = L, the data is functionally identical,
although it has been remapped, and no information has been lost in the DR operation.
By using spatial DR prior to spectral DR, both the F1 score and MCC are increased above
what is achieved using the raw full dimensionality data without spatial DR.
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Figure 10. Performance measures using the ACE TD algorithm and each DR scheme with a varying
number of retained components on the OP7 dataset.

When comparing TD performance on the full spatial dimensionality images with that
of the NDVIre masked images, both with and without the application of spectral DR, the F1
score and MCC both increase. However when spatial DR is applied, the average F1 score
and MCC are considerably higher. The removal of the vegetative background discards
highly disparate observations and simplifies the problem of separating background from
target. This increases the precision of the detection as seen in Tables 5 and 6. By reducing
the complexity of the background, the targets, although more similar to the remaining
background, can be separated in the subspace more easily.

The MCC, in comparison to the F1 score, is slightly higher in both spatial DR cases
as it takes into account the correct identification of the true negative class. The balanced
accuracy drops slightly when NDVIre is applied. As the balanced accuracy is the average
of the True Positive Rate (TPR) and True Negative Rate (TNR), the decrease in the size of
the True Negative (TN) class, without a corresponding proportional decrease in FP, results
in a lower balanced accuracy. Despite the increase in False Positive Rate (FPR) when using
NDVIre, the absolute number of FP detections decreases. It can also be seen in Figure 10
that, by removing the easily separated vegetative background using NDVIre, the visibility
of the targets decreases. This occurs because the materials which remain are, on average,
more similar to the targets.

Further comparisons were made by retaining 20 components from each of the spectral
DR methods as this provided a good balance of performance and compression. As shown
in Figure 10, K = 20 components also gave clear improvements over the raw, full dimen-
sionality, scene when combined with spatial DR. The improvement in detection when
using spatial DR can be seen in Figure 11 where there is less confusion in the detection map
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where NDVIre is applied, Figure 11d. The target is the brightest object in the scene in each
case, indicating good separability from the background.
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Figure 11. Detection statistics of the ACE algorithm on the full dimensionality data where yellow
indicates a response of 1 and blue represents a response of 0. (a) Without spatial DR. (b) Enlarged
version of (a). (c) With NDVIre. (d) Enlarged version of (c).

In order to quantify this improvement, the ROC and PR curves for both the full and
spatial dimensionality reduced images are shown in Figure 12 for each spectral DR method
where K = 20.
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Figure 12. ROC and PR curves for detecting Target 1 (grey tile) in the OP7 dataset (a) ROC curve
using the full spatial dimensionality data. (b) ROC curve using spatial DR pre-processing. (c) PR
curve using the full spatial dimensionality data. (d) PR curve using spatial DR pre-processing.

The ROC curves in Figure 12a,b are of the ACE detection statistics on the full scene and
NDVIre masked scene, respectively. The AUC of the ROC curves alone is not significant
as, regardless of the spatial and spectral DR used, it remains nearly identical. The AUC
of the PR curves (Figure 12c,d) when using the raw uncompressed data, PCA, MNF or
ICA dimensionality reduced data increases when spatial DR is applied. However, when
applying FPCA the AUC falls slightly.

The results from Figures 10–12 are all calculated from a single target in order to display
an example of the performance achieved. The average results for each target are shown in
Table 5 when considering the full scene and in Table 6 when spatial DR has been applied.



Remote Sens. 2021, 13, 1647 15 of 25

Table 5. Average performance measures for each target in the OP7 dataset without spatial DR applied
using the ACE algorithm.

ACE-Full

K = 20 DR AUC ROC AUC PR Visibility Precision Recall Bacc F1 MCC

Grey Tile

Raw 1.00 0.84 0.88 0.37 0.88 0.93 0.35 0.43
PCA 1.00 0.77 0.94 0.12 0.95 0.96 0.12 0.18
MNF 1.00 0.79 0.93 0.15 0.95 0.96 0.15 0.21
FPCA 1.00 0.80 0.92 0.17 0.94 0.96 0.17 0.23
ICA 1.00 0.78 0.93 0.16 0.95 0.96 0.16 0.23

Black Tile

Raw 1.00 0.06 0.60 0.09 0.62 0.80 0.06 0.11
PCA 1.00 0.10 0.68 0.05 0.72 0.84 0.05 0.09
MNF 1.00 0.15 0.70 0.09 0.75 0.85 0.07 0.12
FPCA 1.00 0.13 0.71 0.05 0.76 0.85 0.05 0.09
ICA 1.00 0.11 0.67 0.04 0.72 0.83 0.05 0.09

White Tile

Raw 1.00 0.74 0.79 0.57 0.79 0.89 0.53 0.59
PCA 1.00 0.67 0.93 0.22 0.94 0.96 0.28 0.37
MNF 1.00 0.68 0.85 0.39 0.86 0.92 0.41 0.47
FPCA 1.00 0.60 0.83 0.33 0.84 0.91 0.35 0.41
ICA 1.00 0.67 0.79 0.47 0.80 0.89 0.44 0.49

All Spectra

Raw 1.00 0.55 0.76 0.34 0.77 0.87 0.32 0.37
PCA 1.00 0.52 0.85 0.13 0.87 0.92 0.15 0.22
MNF 1.00 0.54 0.83 0.21 0.85 0.91 0.21 0.27
FPCA 1.00 0.51 0.82 0.18 0.85 0.91 0.19 0.25
ICA 1.00 0.52 0.80 0.22 0.82 0.89 0.22 0.27

Table 6. Average performance measures for each target in the OP7 dataset with NDVIre-based spatial
DR applied using the ACE algorithm.

ACE-NDVIre

K = 20 DR AUC ROC AUC PR Visibility Precision Recall Bacc F1 MCC

Grey Tile

Raw 1.00 0.86 0.72 0.73 0.74 0.86 0.59 0.65
PCA 1.00 0.83 0.75 0.56 0.79 0.87 0.48 0.54
MNF 1.00 0.85 0.76 0.56 0.80 0.87 0.48 0.54
FPCA 1.00 0.84 0.81 0.54 0.84 0.90 0.51 0.57
ICA 1.00 0.75 0.73 0.52 0.77 0.86 0.43 0.50

Black Tile

Raw 0.98 0.37 0.52 0.40 0.57 0.76 0.25 0.33
PCA 0.94 0.08 0.48 0.06 0.56 0.74 0.09 0.14
MNF 0.96 0.09 0.46 0.07 0.54 0.73 0.09 0.14
FPCA 0.94 0.09 0.47 0.08 0.54 0.73 0.10 0.15
ICA 0.93 0.08 0.42 0.05 0.49 0.71 0.08 0.12

White Tile

Raw 0.97 0.66 0.57 0.83 0.58 0.78 0.58 0.63
PCA 0.95 0.61 0.59 0.78 0.60 0.79 0.59 0.63
MNF 0.95 0.62 0.61 0.74 0.62 0.80 0.58 0.62
FPCA 0.92 0.59 0.59 0.64 0.61 0.79 0.51 0.55
ICA 0.94 0.63 0.57 0.73 0.59 0.78 0.53 0.58

All Spectra

Raw 0.98 0.63 0.61 0.65 0.63 0.80 0.47 0.53
PCA 0.96 0.50 0.61 0.47 0.65 0.80 0.39 0.44
MNF 0.97 0.52 0.61 0.46 0.65 0.80 0.38 0.44
FPCA 0.96 0.50 0.62 0.42 0.66 0.81 0.37 0.43
ICA 0.96 0.49 0.57 0.43 0.62 0.78 0.35 0.40

In general, as shown in Tables 5 and 6, the AUC of the ROC curves are similar
regardless of the spectral and spatial DR used. The AUC of the PR curves varies with
the spectral DR used with each of the methods providing an average AUC. Generally,
employing spectral DR maintains the performance when considering the full spatial scene
but when combined with spatial DR there is a slight decrease in the AUC of the PR
curves. Applying NDVIre-based spatial DR improves the AUC when considering the full
dimensionality data. The precision of the spatial DR coupled methods is increased in
comparison to using the full spatial scene as certain false positives are removed either
directly via the masking operation or indirectly by improving the spectral DR calculation.
The recall drops slightly, however this may not be significant in TD applications as one
pixel on target can be sufficient for the identification and classification of an object of
interest. Figure 10 shows a drop in the visibility and balanced accuracy measures when
applying spatial DR which is consistent for each of the targets, as shown in Figure 13.
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Figure 13. Comparison between the performance measures when combining spatial and spectral DR
on the OP7 dataset.

The visibility drops significantly when using the spatial DR as the highly dissimilar
vegetative background is removed, making the average background and target spectra
more similar. The balanced accuracy falls when using NDVIre as the TN class decreases
without a corresponding drop in FP detections. The F1 score and MCC both increase when
using NDVIre-based spatial DR when applied to the full dimensionality data as well as
for each spectral DR scheme used. In nearly all of the measures tested, the full spectral
dimensionality image with and without spatial DR performed the best of all methods on
average with the application of spatial DR tending to improve the performance. Each
of the spectral DR methods employed retained only 20 components of the original 100,
reducing the computational complexity and cost of performing the TD while maintaining
similar performance.

3.5. Results on the UDRC Selene Dataset

The second of the two datasets used in this paper was provided by DSTL. It consists
of seven images of a different forest scene with a large concrete area with metal containers,
vehicles and other objects captured over the course of two weeks in August 2014. Each
image covers a different view of this common target area containing between five and
seven calibration panels of various colours and materials with a GSD of roughly 0.3 m.

Figure 14c shows the image masked using the NDVIre method detailed in Section 2.4
with Figure 14b,d providing an enlarged view of the target area from Figure 14a,c, respec-
tively.

(a) (b) (c) (d)
Figure 14. Example image from the UDRC Selene Dataset. (a) False colour image of the target area.
(b) Enlarged version of (a). (c) Retained pixels following the NDVIre spatial masking. (d) Enlarged
version of (c).

The same process of plotting the F1 score, MCC, balanced accuracy and visibility of a
target from the OP7 data against the number of components, as in Figure 10, was applied
to one of the target materials (green ceramic) present in the images from Figure 14. These
graphs can be seen in Figure 15.
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Figure 15. Performance measures using the ACE TD algorithm and each DR scheme with a varying
number of retained components on the UDRC Selene dataset.

As in Figure 10 using the OP7 data, the average F1 score and MCC both increase with
the number of retained components until K = L. ICA and FPCA both perform well on
average at K = 20 whereas both PCA and MNF require more components to represent the
data fully. Applying the spatial DR to each of the spectral DR methods improves both their
F1 score and MCC regardless of the number of components retained. Similar to the results
from Section 3.4, the balanced accuracy and visibility are lowered when using spatial DR
because of the reduced TN class and more similar average background signature. As in
the results gathered from the OP7 dataset, applying spectral DR improves the balanced
accuracy and visibility of the full spatial scene at lower values of K. The remaining results
were obtained with K = 20 as it provided a good balance between detector performance
and compression. The results shown in Figure 15 also indicate that improved performance
could be obtained at K = 40 at the expense of compression rate. It must again be noted
that FPCA requires more careful consideration when selecting the value of K in order to
avoid the creation of a singular matrix and subsequent drops in performance as seen in
Figure 15. This is discussed in detail in Section 4.

Similar to the results obtained on the OP7 dataset in Figure 11, removing the vege-
tation and simplifying the background class improves separation between the synthetic
background and targets. Whilst there is an overall decrease in target visibility, as the
average spectra is more similar to the desired targets, there is less varied information to
be represented, either in the full dimensionality image or in a dimensionality reduced
subspace. This leads to less confusion in the detection image, as shown in Figure 16d,
where the clutter present in the scene is less likely to be misidentified as a target, when
compared to Figure 16b.
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Figure 16. Detection statistics of the ACE algorithm on the full dimensionality data where yellow
indicates a response of 1 and blue represents a response of 0. (a) Without spatial DR. (b) Enlarged
version of (a). (c) With NDVIre. (d) Enlarged version of (c).

The ROC curves in Figure 17a,b are of the ACE detection statistics on the full scene
and NDVIre-based spatial DR scene, respectively. The two sets of ROC curves are almost
identical and do not provide definitive results, but indicate a small improvement when
using the spatial DR. Comparing the PR curves in Figure 17c,d shows that when each
spectral DR scheme is used in conjunction with spatial DR the AUC is increased by 10–15%.
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Figure 17. ROC and PR curves for detecting Target 3 (green ceramic) in the Selene dataset (a) ROC
curve using the full spatial dimensionality data. (b) ROC curve using spatial DR pre-processing.
(c) PR curve using the full spatial dimensionality data. (d) PR curve using spatial DR pre-processing.

The average results for each target in the Selene dataset are shown in Table 7 when
considering the full scene and in Table 8 when spatial DR has been applied. The average
performance of the ACE detector when combined with each spatial and spectral DR method
used are shown in Figure 18.
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Table 7. Average performance measures for each target in the Selene dataset without spatial DR
applied using the ACE algorithm.

ACE-Full

K = 20 DR AUC ROC AUC PR Visibility Precision Recall Bacc F1 MCC

Brown Carpet

Raw 0.97 0.33 0.65 0.19 0.67 0.82 0.17 0.24
PCA 0.97 0.06 0.60 0.04 0.64 0.80 0.03 0.07
MNF 0.97 0.46 0.75 0.17 0.78 0.87 0.15 0.21
FPCA 0.97 0.55 0.75 0.22 0.78 0.87 0.20 0.26
ICA 0.97 0.57 0.75 0.25 0.78 0.87 0.22 0.28

Green Carpet

Raw 0.98 0.61 0.82 0.32 0.83 0.91 0.36 0.43
PCA 0.95 0.07 0.45 0.06 0.51 0.72 0.03 0.06
MNF 0.98 0.54 0.80 0.23 0.83 0.89 0.24 0.30
FPCA 0.98 0.58 0.85 0.25 0.89 0.92 0.29 0.35
ICA 0.98 0.60 0.86 0.22 0.90 0.92 0.27 0.32

Green Ceramic

Raw 0.99 0.65 0.94 0.19 0.94 0.96 0.29 0.39
PCA 0.98 0.60 0.85 0.16 0.89 0.92 0.19 0.26
MNF 0.99 0.60 0.93 0.13 0.95 0.96 0.20 0.29
FPCA 0.99 0.54 0.94 0.12 0.96 0.96 0.20 0.30
ICA 0.99 0.52 0.94 0.13 0.96 0.96 0.20 0.30

Green Perspex

Raw 1.00 0.63 0.95 0.22 0.95 0.97 0.32 0.42
PCA 0.99 0.44 0.91 0.08 0.93 0.95 0.12 0.20
MNF 1.00 0.55 0.95 0.16 0.97 0.97 0.24 0.33
FPCA 1.00 0.51 0.95 0.16 0.97 0.97 0.25 0.34
ICA 1.00 0.57 0.96 0.15 0.97 0.97 0.23 0.33

Grey Ceramic

Raw 0.99 0.61 0.77 0.31 0.78 0.88 0.27 0.34
PCA 0.98 0.47 0.81 0.13 0.83 0.90 0.11 0.17
MNF 0.99 0.58 0.85 0.16 0.88 0.92 0.18 0.24
FPCA 0.99 0.55 0.84 0.18 0.87 0.91 0.21 0.27
ICA 0.99 0.53 0.82 0.18 0.85 0.90 0.19 0.25

Orange Perspex

Raw 0.99 0.32 0.90 0.12 0.90 0.95 0.20 0.31
PCA 0.99 0.25 0.92 0.05 0.93 0.96 0.08 0.18
MNF 0.99 0.29 0.93 0.07 0.94 0.96 0.13 0.24
FPCA 0.99 0.30 0.93 0.08 0.94 0.96 0.14 0.25
ICA 0.99 0.31 0.93 0.08 0.94 0.96 0.14 0.25

White Perspex

Raw 0.98 0.07 0.48 0.07 0.49 0.74 0.05 0.10
PCA 0.99 0.27 0.83 0.04 0.85 0.91 0.05 0.11
MNF 0.99 0.10 0.65 0.04 0.67 0.82 0.03 0.08
FPCA 0.98 0.03 0.56 0.04 0.59 0.78 0.03 0.07
ICA 0.98 0.02 0.45 0.03 0.49 0.72 0.02 0.05

All Spectra

Raw 0.99 0.46 0.77 0.21 0.78 0.88 0.23 0.31
PCA 0.98 0.30 0.74 0.08 0.77 0.87 0.08 0.14
MNF 0.99 0.46 0.82 0.14 0.85 0.91 0.16 0.23
FPCA 0.99 0.45 0.82 0.16 0.84 0.90 0.19 0.26
ICA 0.99 0.45 0.79 0.15 0.82 0.89 0.18 0.25

Vis
ib
ilit

y

B. A
cc

ur
ac

y F1

M
C
C

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 M

e
a

s
u

re

Figure 18. Comparison between the performance measures when combining spatial and spectral DR
on the Selene dataset.
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Table 8. Average performance measures for each target in the Selene dataset with NDVIre-based
spatial DR applied using the ACE algorithm.

ACE-NDVIre

K = 20 DR AUC ROC AUC PR Visibility Precision Recall Bacc F1 MCC

Brown Carpet

Raw 1.00 0.20 0.53 0.15 0.55 0.76 0.13 0.18
PCA 0.97 0.01 0.31 0.00 0.37 0.65 0.01 0.03
MNF 0.99 0.15 0.56 0.12 0.61 0.78 0.09 0.14
FPCA 0.99 0.27 0.59 0.17 0.64 0.79 0.13 0.18
ICA 1.00 0.47 0.68 0.22 0.73 0.84 0.19 0.25

Green Carpet

Raw 1.00 0.63 0.82 0.37 0.83 0.91 0.41 0.47
PCA 0.95 0.05 0.41 0.05 0.46 0.70 0.04 0.07
MNF 1.00 0.48 0.75 0.24 0.79 0.87 0.24 0.31
FPCA 1.00 0.58 0.82 0.30 0.86 0.91 0.32 0.38
ICA 1.00 0.61 0.89 0.28 0.93 0.94 0.34 0.40

Green Ceramic

Raw 1.00 0.70 0.96 0.37 0.96 0.97 0.49 0.56
PCA 1.00 0.63 0.91 0.25 0.93 0.95 0.30 0.38
MNF 1.00 0.62 0.96 0.27 0.97 0.97 0.38 0.46
FPCA 1.00 0.60 0.96 0.28 0.97 0.97 0.39 0.46
ICA 1.00 0.62 0.96 0.30 0.98 0.98 0.42 0.49

Green Perspex

Raw 1.00 0.68 0.97 0.41 0.97 0.98 0.54 0.60
PCA 1.00 0.61 0.96 0.23 0.98 0.98 0.31 0.38
MNF 1.00 0.60 0.97 0.32 0.98 0.98 0.43 0.50
FPCA 1.00 0.60 0.97 0.33 0.98 0.98 0.44 0.50
ICA 1.00 0.64 0.97 0.33 0.98 0.98 0.44 0.51

Grey Ceramic

Raw 1.00 0.62 0.73 0.40 0.75 0.86 0.35 0.41
PCA 1.00 0.47 0.76 0.22 0.79 0.87 0.19 0.26
MNF 1.00 0.60 0.78 0.29 0.82 0.89 0.28 0.35
FPCA 1.00 0.58 0.78 0.29 0.83 0.89 0.30 0.35
ICA 1.00 0.60 0.79 0.28 0.83 0.89 0.27 0.34

Orange Perspex

Raw 1.00 0.35 0.87 0.18 0.87 0.93 0.25 0.36
PCA 1.00 0.25 0.91 0.09 0.91 0.95 0.14 0.25
MNF 1.00 0.35 0.92 0.11 0.93 0.95 0.18 0.29
FPCA 1.00 0.33 0.92 0.12 0.92 0.95 0.18 0.30
ICA 1.00 0.36 0.93 0.11 0.94 0.96 0.17 0.29

White Perspex

Raw 0.98 0.11 0.41 0.10 0.43 0.70 0.08 0.12
PCA 0.99 0.24 0.72 0.10 0.75 0.85 0.09 0.16
MNF 0.98 0.06 0.50 0.06 0.54 0.75 0.04 0.09
FPCA 0.98 0.06 0.48 0.05 0.53 0.74 0.04 0.09
ICA 0.94 0.02 0.35 0.02 0.41 0.67 0.02 0.05

All Spectra

Raw 1.00 0.46 0.73 0.28 0.74 0.86 0.30 0.37
PCA 0.98 0.30 0.67 0.13 0.70 0.83 0.14 0.20
MNF 0.99 0.40 0.75 0.20 0.78 0.87 0.22 0.28
FPCA 0.99 0.43 0.76 0.22 0.79 0.88 0.24 0.31
ICA 0.99 0.47 0.77 0.22 0.80 0.88 0.26 0.32

In general, from Tables 7 and 8, the AUC of both the ROC and PR curves is similar
regardless of the spectral and spatial DR used. By applying NDVIre-based spatial DR, the
precision of the spatial DR coupled methods increases in comparison to using the full spatial
scene with the recall dropping slightly. As seen in Figure 15, there is a decrease in visibility
of the target when using the spatial DR as the highly dissimilar vegetative background
is removed. Figure 18 shows that, on average, the visibility drops slightly for each of the
spectral DR methods when NDVIre is applied when K = 20 components are retained. The
balanced accuracy also decreases slightly due to the reduction in the size of the TN class.
Both the F1 score and MCC are improved when using spatial DR in all methods tested.
The full dimensionality images with and without spatial DR have the best performance.
However, of the spectral DR methods used, MNF, FPCA and ICA perform similarly despite
retaining the equivalent of only 25% of the total spectral components. When combined
with spatial DR both ICA and FPCA maintain similar levels of performance compared to
the full dimensionality image with no spatial DR applied. Applying the proposed method
to the Selene dataset (Figure 18 and Tables 7 and 8) allows for improved results, however
these improvements are not as significant as those achieved from the processing of the
OP7 dataset. This can be attributed to the increased complexity of the Selene trial images
when compared to the OP7 data. The performance can be improved further by retaining
additional DR components, as shown in Figure 15, albeit at the expense of compression
and therefore at an increased computational cost.
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4. Discussion

The proposed NDVIre-based spatial DR is relatively simple, requiring information
from only two wavelengths and can be readily applied to TD and other similar applications.
By using NDVIre it is possible to detect varied spectral targets composed of metals, plastics
and other synthetic materials against a vegetative background. NDVI variants allow for
the discrimination between vegetative and non-vegetative pixels due to known material
characteristics in the red-edge portion of the spectrum. Other VIs, whilst not considered
here, as exploiting the red-edge portion was determined the key component of this method,
may provide alternative insights and allow for the more optimal detection of additional
materials in alternative environments. By combining both spatial and spectral DR, the
computational complexity and memory requirements can be reduced whilst maintaining,
or in some cases improving upon, detection performance as shown in Figures 13 and 18.
Using spatial DR had little effect on the AUC of the ROC or PR curves, the main improve-
ments came from the increased F1 score, MCC and precision. On average, there is a slight
reduction in recall and balanced accuracy, however, one correctly detected and classified
pixel per target may be sufficient for certain applications.

The complexity and performance of the spectral DR methods utilised varies. PCA is
the simplest method used but also requires the most spectral components to be retained in
order to be competitive. Applying the spatial DR and simplifying the background prior to
performing spectral DR improved the performance of all methods but most notably when
using PCA, which was competitive in both datasets with the addition of spatial DR. MNF
can be conceptualised as two PCAs, one for noise reduction and the second to transform
the noise whitened data into the reduced subspace. This extra noise removal step offers a
distinct advantage when compared to PCA and allows it to perform similarly to FPCA and
ICA. FPCA performed favourably in both datasets and is efficient given the simplification
when calculating the partial covariance matrix. However, when using FPCA the choices of
the number of components, K, and the height, H, and width, W, of the folded matrix are
far more sensitive than the other methods and are subject to two rules:

1. K must be a factor of the total number of wavelengths L or
2. When selecting the folding parameters H and W, L > (H − 1)W

In any case where the first rule is true, the expression in the second rule will automati-
cally be valid. H was selected to be half the value of K in order to adapt with the changing
number of components. However, the folded array must be padded with zeros in order
to fulfil the expression H ×W = L, if these zeros formed an entire row of the covariance
matrix they will form a zero component in both the projected image and target. When
these interact in each of the TD algorithms, usually by inner product, it forms a singular
matrix. As inverse matrices are prevalent in the implementations of the TD algorithms
used, singular matrices completely suppress the detection. This phenomenon caused the
undulating behaviours present in Figures 10 and 15 and informed the choice of the number
of DR components in order to compare each TD algorithm. ICA is the most complicated
and computationally expensive method, but performed well on both datasets. Only using
the full dimensionality data, with and without spatial DR, was an improvement over the
ICA based methods. In general the spectral DR methods, whilst increasing the balanced
accuracy and visibility when smaller numbers of components are retained, decrease the
F1 score and MCC when compared with the raw full dimensionality data. Both FPCA
and ICA offer consistent and improved detection when combined with ACE and NDVIre-
based spatial DR. In general, the most impressive results are obtained using the ACE TD
algorithm which corroborates the conclusions of other similar works investigating this
topic [11,14,17].

The methods detailed here offered improvement to the TD performance on both
datasets considered. However greater improvements were obtained on the simpler dataset.
Increasing the number of spectral DR components retained to account for the increased
variability in the Selene dataset would improve the performance. This is at the expense
of the compression rates that can be achieved at lower values of K. On average applying
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NDVIre-based spatial DR increases precision and slightly decreases the recall of the TD
algorithms used. The visibilities of the targets decrease as background pixels which are
dissimilar to the targets are not considered. The average background signature, after
applying the NDVIre-based spacial DR, becomes more similar to the target signatures.
However, applying spectral DR and mapping the data into a more informative subspace
can alleviate this issue.

5. Conclusions

DR is a tool often employed in various hyperspectral imaging applications, usually
to reduce the number of spectral bands present in an image due to its high spectral
redundancy. However, known spatial redundancies are rarely exploited. This paper
provides an investigation into how spatial DR can be utilised in a TD application. We
have shown that in each case tested using multiple spectral DR schemes, the addition of a
spatial DR pre-processing stage improved the performance of the TD algorithm considered.
By applying both spatial and spectral DR the complexity of the data is reduced and
computational cost and memory requirements can be lowered.

We used robust, classical TD/AD and DR algorithms in order to assess the proposed
method. The provision of a priori information gives the TD algorithms an advantage over
AD algorithms like the RXD for example. Whilst the RXD correctly identifies the anomalous
pixels, it fails to discriminate between specific target spectra resulting in low precision.
Therefore, AD is insufficient for the application we are proposing. Of the detection methods
tested, the ACE algorithm performs the best both when considering the full spatial scene
and when applying the NDVIre-based spatial DR-especially when combined with the
FPCA and ICA DR algorithms.

We have shown that the proposed pipeline can compress an input image by >90%
whilst maintaining the detector performance seen in the processing of the raw images.
This pipeline is readily applicable in TD scenarios where the predominant background is
comprised of vegetative pixels. The proposed method may be adapted to suppress other,
highly predictable, background signatures given an appropriate index. Indices such as the
built-up index could provide the inverse to NDVI and its variants masking non-vegetative
pixels directly, or alternatively providing auxiliary features. Additionally, multiple indices
can be generated rapidly and combined to provide additional information about the pixels
in a scene. Existing indices could also be used in the detection of camouflaged objects or
bespoke alternative measures may be developed.

Potential future work includes using an adaptive method for selecting the optimal
number of components, K, to retain in each DR method. In PCA, MNF and FPCA, variations
on scree plots [20] can be used to find the elbow point. Alternatively, the value of K at
which the number of components represent a sufficient percentage of the variance in the
data could be chosen. Similarly for ICA, VD [28] can be used to estimate the number of
spectrally distinct sources in the image and allows for the automation of this approach.

Although the proposed spatial DR approach has been tested on classical DR and
TD/AD algorithms more state-of-the-art approaches to spectral DR could be considered
as well as more complex detection algorithms. While the visibility of the target generally
dropped when using spectral DR, the detection was improved and so a measure which can
determine how distinctive the target is within the reduced subspace would be of benefit.
Along with spectral DR other methods of spatial DR could be considered.

In order to avoid saturation of tables and results, the most informative and interesting
results were included here. The full set of results generated from this work will be available
online at a later date.
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Abbreviations

ACE Adaptive Cosine Estimator
AD Anomaly Detection
AUC Area Under the Curve
CEM Constrained Energy Minimisation
DR Dimensionality Reduction
EVD Eigenvalue Decomposition
FAR False Alarm Rate
FN False Negative
FNR False Negative Rate
FP False Positive
FPCA Folded Principal Component Analysis
FPR False Positive Rate
GSD Ground Sample Distance
IC Independent Components
ICA Independent Component Analysis
MCC Matthew’s Correlation Coefficient
MNF Maximum Noise Fraction
NDVI Normalised Difference Vegetation Index
NDVIre Normalised Difference Vegetation Index (red-edge)
NDWI Normalised Difference Water Index
NDSI Normalised Difference Snow Index
NIPALS Non-linear Iterative Partial Least Squares
NIR Near-InfraRed
OSP Orthogonal Subspace Projection
Pd Probability of Detection
Pfa Probability of False Alarm
PC Principal Components
PCA Principal Component Analysis
PR Precision-Recall
RENDVI Red Edge Normalised Difference Vegetation Index
ROC Receiver Operator Characteristic
RXD Reed-Xiaoli Detector
SAM Spectral Angle Mapper
SID Spectral Information Divergence
SNR Signal-to-Noise Ratio
TD Target Detection
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
VD Virtual Dimensionality
VI Vegetation Indices
VNIR Visible and Near-InfraRed
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