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Abstract: Pixel-wise classification of hyperspectral images (HSIs) from remote sensing data is a
common approach for extracting information about scenes. In recent years, approaches based on
deep learning techniques have gained wide applicability. An HSI dataset can be viewed either as a
collection of images, each one captured at a different wavelength, or as a collection of spectra, each
one associated with a specific point (pixel). Enhanced classification accuracy is enabled if the spectral
and spatial information are combined in the input vector. This allows simultaneous classification
according to spectral type but also according to geometric relationships. In this study, we proposed a
novel spatial feature vector which improves accuracies in pixel-wise classification. Our proposed
feature vector is based on the distance transform of the pixels with respect to the dominant edges in
the input HSI. In other words, we allow the location of pixels within geometric subdivisions of the
dataset to modify the contribution of each pixel to the spatial feature vector. Moreover, we used the
extended multi attribute profile (EMAP) features to add more geometric features to the proposed
spatial feature vector. We have performed experiments with three hyperspectral datasets. In addition
to the Salinas and University of Pavia datasets, which are commonly used in HSI research, we include
samples from our Surrey BC dataset. Our proposed method results compares favorably to traditional
algorithms as well as to some recently published deep learning-based algorithms.

Keywords: hyperspectral image classification; spectral-spatial feature vector; distance transform;
stacked autoencoder

1. Introduction

Hyperspectral images collect both spectral and spatial information of the scene of
interest. Since spectral signature varies with material composition and there is a spectrum
for each pixel in the image, an HSI gives the spatial distribution of different materials in
the image. The number of spectral bands in an HSI depends on the imaging system but
usually there are hundreds of bands in an HSI providing a useful source of information.
HSIs provide rich datasets that are useful in many areas such as remote sensing [1–4],
agriculture [5], food processing [6–8], face recognition [9], etc. In some of these applications
such as in most of the remote sensing related areas, the goal is to perform pixel-wise
segmentation. Different algorithms have been proposed in the literature to perform remote
sensing HSI classification that can be divided into two categories: traditional and deep-
learning based methods.

Traditional methods such as k-nearest neighbor (KNN) classifier [10], random for-
est [11] and support vector machine (SVM) [12] have been successfully applied and
achieved good results. However, these methods only use spectral information and do not
take into account the spatial location of the input pixels. To further exploit the existing
information in an HSI and advance the classification accuracies, spectral-spatial feature
extraction methods have been proposed and widely used in the literature. The logic of
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these methods is that in an HSI, pixels in a local region most likely own similar spectra.
Extended multi-attribute profile (EMAP) [13] as an example of these joint spectral-spatial
methods, processes the input image by applying attribute filters to extract geometric or
textural information. This method models spatial features with respect to operators based
on fixed structural elements (SEs).

Deep learning-based methods have been used for remote sensing HSI classification
applications since the year 2014 [14] and have become very popular ever since. In this
work, Chen et al. used joint spectral-spatial features and stacked auto-encoder (SAE) as
the deep learning framework. In 2016, Ma et al. [15] proposed a variation of SAE called
spatial updated deep auto-encoder (SDAE). In this method to consider sample similarity
and accommodate contextual information, a regularization term is added to the energy
function. More recently, Teffahi et al. [16] used EMAP features along with sparse auto-
encoder to perform HSI classification. Deep belief network (DBN) is another type of deep
neural network which is built of layers of restricted Boltzmann machine (RBM) and is
successfully employed in the classification of remote sensing hyperspectral images. In 2015,
Chen et al. [17] employed the similar framework as used in [14] and replaced SAE with a
DBN. In 2017, Zhou et al. [18] also used DBN to perform HSI classification. However, they
applied a group based weight-decay process in training of the group- restricted Boltzmann
machine (GRBM), the bottom layer of the DBN. Convolutional neural network (CNN) as
another type of the deep learning models has been successfully applied in HSI classification
as well [19–21]. In 2017, Li et al. [20] proposed a data augmentation method to deal with
the large number of training samples required for training the CNN. Also, to incorporate
the spatial information, the authors used the majority voting strategy in the test time.
Pan et al. [21] proposed a CNN based deep-learning model to classify HSI datasets. In this
paper, spectral and spatial information are merged through rolling guidance filter (RGF),
an edge-preserving filter. In 2018, Shu et al. [19] used two shallow CNNs whose inputs are
a one-channel spectral quilt obtained by stacking spectral patches.

In remote sensing HSI classification, in addition to the spectral data, spatial relation-
ships between pixels provides additional information that can be used to enhance accuracy
of classification. In other words, rather than considering each pixel as an independent
spectrum during the feature extraction phase, pixel location and geometric relationship
to nearby pixels are used to help label pixels. One question we consider in this work
is whether pixels should all weigh equally in this computation, or whether the weight
of specific pixels should be weighted based on geometric relationships. If a target pixel
location is close to an edge, there is a high probability that some of its neighbors are located
on the other side of the border and thus belong to a different class. If all the neighboring
pixels have the same contribution in building the target pixel’s spatial feature vector, this
will not be a good representation of the pixel’s spatial information. So, the goal of this
study is to create a more accurate representation of the spatial feature vectors by assigning
different weights to the neighbors.

In this paper, we proposed a novel approach for spectral-spatial feature extraction.
We weight pixels based on their difference to significant edges in the image based on
the assumption that pixels well-separated from the boundaries of geometric regions are
more likely to be representative of the whole region than pixels towards the edge. We
first calculate the gradient image of the input HSI. We then use the results from a distance
transform for each pixel with respect to the dominant edges to augment the pixel’s spatial
feature vector. To the best of our knowledge, this is the first time distance transform
values are used in this way to add weights to a target pixel surrounding neighbors. Next,
we augment the spatial feature vector with EMAP features in order to integrate further
geometric information. Finally, the joint spectral-spatial feature vectors provide input to a
two-layer stacked autoencoder including a sparse AE in each layer. The workflow diagram
of our proposed HSI classification method is shown in Figure 1. We performed extensive
experiments on three hyperspectral datasets and results show that our proposed method
outperforms the other methods examined in this study.
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The rest of this paper is organized as follows: In Section 2, a brief description of the
algorithms including in our proposed method is presented. Section 3 presents our proposed
feature extraction and classification framework. Experimental results and comparison to
other methods are presented in Sections 4 and 5. Finally, Section 6 concludes this paper.

Figure 1. The workflow diagram of our proposed method.

2. Background

In this study, we used SAE with sparse AEs in its layers as the deep learning frame-
work. So, in Sections 2.1–2.3, we describe the structure of these machine learning models
and how they are used to extract features. To extract geometrical attributes from the input
HSI and build our proposed feature vector, we utilized EMAP features as well. EAP is
an extended attribute profile obtained using only one attribute (e.g., area) filter. Since
we are interested in extracting different information from the image, we used extended
multi attribute profiles which applies multiple attribute filters on each principal component
image extracted from the input HSI. In Section 2.4, we provide a brief description of the
EMAP features.
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2.1. Autoencoder

An autoencoder is a three-layer neural network with the goal of replicating its input
into its output. These layers include input layer x, hidden layer h, and output layer y
as shown in Figure 2a. Training an AE can be thought of as a two steps process: encod-
ing and decoding. In the first step, input data is encoded to a new feature space and
in the second part, input data is tried to be reconstructed using the extracted features
during the encoding phase. The encoding and decoding processes can be formulated as
Equations (1) and (2), respectively:

hi = f (Whxi + bh) (1)

x̃i = g(W ohi + bo) = g(W o( f (Whxi + bh)) + bo) (2)

where xi and hi are the ith input and its corresponding hidden feature vector. x̃i represents
the reconstructed version of x̃i. Also, f and g are the encoding and decoding functions.
In practice, AEs are designed such that they cannot reproduce their input perfectly rather
capable of delivering an approximation of the input. Since such a model is required to
only copy important aspects of the data, it most likely represents favorable features of the
input [22]. The goal of training an AE is to minimize the reconstruction error for all training
samples through an optimization process which can be formulated as Equation (3):

θ = arg min
W,b

M

∑
i=1

L(xi, x̃i) (3)

where L(.) stands for the loss function. M and θ are the total number of training examples
and the best set of parameters found during the optimization process, respectively.

x h y

Input
data

Reconstructed
data

...

...

(a)

Classification
layer

layer 1 layer 2 layer 3

Input layer

...

...

...

...

(b)

Figure 2. Block diagram of (a) a sample autoencoder and (b) stacked autoencoder.

2.2. Sparse Autoencoder

A sparse AE is a model whose training loss function involves a sparsity regularization
term. This regularization term imposes the sparsity constraint on the output of the AE’s
hidden layer and is a function of the mean of the output value of the hidden layer’s
neurons [23]. This mean value can be represented as Equation (4):

ρ̂j =
1
M

M

∑
i=1

f
(
W jxi + bj

)
(4)

where W j and bj are the vector of weights and the bias value of the jth neuron, respectively.
A neuron is activated if its activation value is high enough. Having a low value for ρ̂j means
that neuron j tends to be selective and respond only to that subset of the training data that
includes specific features. Adding a term to the loss function that measures the difference
between the ρ̂j and the desired neuron’s output value, called sparsity regularization, makes
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each neuron master learning features belonging to only a small portion of training samples.
Kullback-Leibler divergence [24] can be considered as such sparsity regularization term:

γsparsity =
N

∑
j=1

KL
(
ρ||ρ̂j

)
=

N

∑
j=1

ρ log

(
ρ

ρ̂j

)
+ (1− ρ) log

(
1− ρ

1− ρ̂j

)
(5)

where N and ρ are the number of neurons in the hidden layer and the desired value for the
average activation of each neuron, respectively. One drawback of having such a sparsity
regularization term in the cost function is that during the training process, high values may
be assigned to the weights of the network in order to maximize ρ̂j. To prevent this case to
happen, a weight regularization term should be added to the AE’s cost function as shown
in Equation (6):

γweights =
1
2 ∑‖W‖2

2 (6)

where ‖W‖2 is the L2 norm of the AE’s weight matrix. Finally, the cost function of the
sparse AE can be expressed as Equation (7):

J =
1
M

M

∑
i=1

(xi − x̃i)
2 +

(
λ× γweights

)
+
(

β× γsparsity
)

(7)

where λ and β are the L2 weight regularization and sparsity regularization
coefficients, respectively.

2.3. Stacked Autoencoder

An SAE is composed of layers of AEs such that the hidden layer of AE in layer l
becomes the input layer of the AE in layer l + 1 as shown in Figure 2b. Training process of
an SAE includes two steps: pre-training and fine-tuning.

During the pre-training step, each AE is trained individually in an unsupervised
manner. Having trained an AE, the output layer with its weights and biases are removed
and the hidden layer’s parameters are saved to be used for the next step. Also, except for
the first AE whose input is the original data, the input of other AEs is the hidden features
extracted from the previous AE.

In the fine-tuning step, the pre-trained AEs are put one after another with a classifi-
cation layer on top to provide the supervised training. The input data is given to the AE
in the first layer and the SAE is trained top to bottom. It should be noted that the hidden
layers’ weights and biases which have been obtained from the pre- training step are used
as the initial values during the SAE’s fine-tuning process.

2.4. Extended Multi-Attribute Profiles

Morphological attribute profiles (APs) [25] represent structural information in an
image. They are extracted by the sequential application of morphological attribute filters.
An attribute can be considered as any measure which can be computed on the connected
component areas in an image. Examples of such attributes are area, length of the diagonal of
the box bounding the region, length of the perimeter, image moments, standard deviation,
etc. [13]. When the input data is a hyperspectral image, APs can be computed on the k
principal components (PCs) extracted from the HSI which leads to the definition of the
extended attribute profiles (EAP):

EAP = {AP(PC1), AP(PC2), ..., AP(PCk)} (8)
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Since in practice, extracting different attributes from the image is desired, the concept
of APs is expanded to EMAPs which applies multiple attribute filters on each PC image
extracted from the input HSI:

EMAP =
{

EAPa1 , EAP
′
a2

, ..., EAP
′
an

}
(9)

where ai represents each of the n attributes used to compute the EMAP data structure.
The prime sign indicates the exclusion of the original PC score image in forming the
corresponding EAP to avoid the presence of each PC image multiple times in the final
EMAP structure.

In this paper, we used EMAP features as part of the spatial feature vector [16] for the
train and test pixels as will be explained in Section 3.

3. Methods

In pixel-wise classification, our goal is to group pixels according to their membership
in a discrete set of classes (types). Spatial information can be used to enhance classification
because it is likely that multiple pixels of the same class will be geometrically grouped
together. Thus the classification of a particular pixel provides additional evidence towards
the classification of its neighbours [15]. In our work, we have taken advantage of this
tendency in a nuanced way. We predict that pixels away from the edges of a class should
weigh more heavily in classification, because the likelihood that they will be similar to
nearby pixels is assumed to be greater. A pixel at the edge of a region is likely to be
near pixels of different classes, which means that its geometric location is less useful
in classification. Consider the cases shown in Figure 3. In Figure 3a, the orange border
enclosed a class of pixles of the same class. We have used the blue square to identify a
pixel that is located well within the orange area. Green squares depict the neighborhood
area around the blue pixel. Because the blue pixel is located well within the orange area
far away from any boundary, our hypothesis is that this pixel and its neighbors should
belong to the same class. Therefore, when we form the feature vector for the blue pixel, the
spectral values of the green region will be included as features of the blue pixel. We treat
pixels close to or on the border in the opposite way. Consider the red pixel and its pink
neighbourhood depicted in Figure 3b. The red pixel is located close to a boundary, so its
neighbours belong to multiple classes. In such cases as these, we would decrease the effect
of the neighbors in the target pixel’s spatial feature by factoring in the (small) distance
from the edge of the region. Our approach is to augment the feature vector with the value
of each neighbor along with its distance transform value. This ensures that neighbours
further from an edge are weighted more heavily, whereas neighbours nearer to an edge
have their effect suppressed.

(a) (b)

Figure 3. Schematic of the justification of using the distance transform in the spatial feature vector.
(a) Normal pixel case. (b) Border pixel case.
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In order to find the distance transform image from an HSI cube (see Figure 4), we
propose the following procedure: First, independently apply a Gaussian smoothing filter
to each band of the HSI to suppress input noise. Next, we calculated the gradient image
by employing the method described in [26].The aerial remote sensing scenes used in this
study, consist of structures such as agricultural areas, roads and buildings representing
edges at major directions as can be seen in Figures 5–7. These edges represent borders of
regions of different classes in each dataset. So, obtaining a gradient image which highlights
these edges and so the borders of these regions is desired. Since HSI datasets are composed
of many bands, we used the method described in [26] to obtain a one band gradient image
from the entire dataset. This gradient image highlights the borders of the desired regions.
This process is described as follows:

First, for each spectral band, we computed the image gradients at the four major
directions 0°, 45°, 90°, and 135° using Sobel filters [27] according to Equation (10):

Gij = I j ∗ hi
s.t i ∈ {0, 45, 90, 135} and j = 1, 2, ..., N

(10)

where I j is the image at band j, hi is the Sobel filter at one of the four specified directions,
N is the total number of spectral bands, and Gij is the gradient image of band j obtained
from the ith Sobel filter. Also, ∗ represents the convolution operation.

Figure 4. Steps of our proposed process for obtaining the distance transform image from a hyper-
spectral dataset (here Salinas dataset is used as an input example).
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(a) (b)
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Fallow_rough_plow

Fallow_smooth
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Lettuce_romaine_5wk

Lettuce_romaine_6wk

Lettuce_romaine_7wk

Vinyard_untrained

Vinyard_vertical_trellis

Figure 5. Salinas dataset. (a) False color image. (b) Pseudo ground truth image.

(a) (b)

Asphalt

Meadows

Gravel

Trees

Painted metal

sheets

Bare soil

Bitumen

Self-blocking

bricks

Shadows

Figure 6. University of Pavia dataset. (a) True color image. (b) Pseudo ground truth image.

(a) (b)

Tree Grass Asphalt Concrete Roof

Figure 7. Surrey dataset. (a) False color image. (b) Pseudo ground truth image.

Next, to obtain the single image gradient for each direction, the corresponding gradi-
ents of all bands are added together:

Gi =
N

∑
j=1

Gij (11)

where Gi is the gradient image at direction i and N is the total number of spectral bands.
Finally, to compute the final gradient image of the whole HSI cube, the average of the

four directional image gradients is computed:
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G = (1/4)×
4

∑
i=1

Gi (12)

where G is the output gradient image of the input HSI.
Having calculated the gradient image, we apply a threshold to extract strong edges.

Pixels with values greater than T1 are labeled as foreground and the rest are labeled
as background in the resulting binary mask. To remove small connected components
in the thresholded image, first morphological opening is applied on the binary mask
image and then connected components having fewer than T2 pixels are removed from the
image. In Section 4.2.3, we explain what values are chosen for these two hyperparameters.
Finally, in order to find the distance of the pixels in the original image to the foreground
(edge) pixels in the thresholded image, we used distance transform [28] with euclidean
distance metric:

Deuc =

√
(x1 − x2)

2 + (y1 − y2)
2 (13)

where (x1, y1) and (x2, y2) represent two pixels’ locations in the image. The distance
transform yields a resulting image. The brightness of pixels in the transformed image
indicates distance from the edge. Figure 4 illustrates how the process acts on an image
from the Salinas HSI dataset.

The spatial feature vector is then augmented with the distance transform values as is
shown in Figure 8. To find the spatial features of the pixels in the HSI, similar to [14], we
first reduced the dimension of the data along its spectral axis using the principal component
analysis (PCA) method. Then, for each target pixel (blue square in Figure 8), a surrounding
neighborhood area (green region) is considered. PCA searches for the most accurate
data representation in a lower dimensional subspace composed of the uncorrelated linear
combinations of the original variables called principal components. What PCA does is
mapping the input data to the dimensions along which data vary the most. Since we are
interested in reducing the dimensionality of the input data, we only keep the first few PCs
which contain the most information of the original data. In Section 4.2.1, we talk about the
number of preserved PCs in our experiments. To form the primary spatial feature vector,
PC values of the neighbors and distance transform values from the corresponding distance
transform image (Figure 4) are combined according to Equation (14):

Sz = horzcat(PCi, Dxi )

s.t i = 1, ..., p
(14)

where Sz and xi represent the primary spatial feature vector associated with the target pixel
z and the ith pixel in the neighborhood region around this pixel, respectively. PCi and Dxi

represent a vector containing the PC score values and the distance transform value (scalar)
associated with pixel xi, respectively. Also, horzcat(.) indicates horizontal concatenation.
Note that the distance transform values (D1 to D8) can be placed either before or after
each set of PC values for each neighbour of the target pixel. With this transformation, we
ensure that the contribution of neighbour pixels in forming the target pixel’s spatial feature
declines with proximity to edges of the region.
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Figure 8. Block diagram of extracting the proposed spatial feature vector.

To compute the final proposed spatial feature vector and extract even more spatial
information by adding geometric attributes to the primary spatial feature vector, similar
to [16] we incorporated the EMAP features (see Section 2.4) as well. Finally, the pixel’s
spectrum is added to the proposed spatial feature vector to form the input data to the
stacked auto-encoder.

In Section 4, we test the effectiveness of our proposed method in classification of
various remote sensing hyperspectral scenes. We performed two sets of experiments. In the
first set of experiments (Proposed-P), we used only our primary proposed feature vector. In
the second set of experiments (Proposed-F) we test our final feature vector that includes the
EMAP features as well as the distance transform information.

In our Proposed-F feature vector to build the EMAP features for Salinas and University
of Pavia datasets, we used area of the regions and the length of the diagonals of the regions’
bounding boxes as the regions attributes. For the Surrey dataset, area of the regions, length
of the diagonals of the regions’ bounding boxes and standard deviation of the pixels in the
regions are considered. For each attribute, an EAP is obtained from the first four PC images
of the input HSI for all three datasets. For computing each AP, four different threshold
values for filtering are used which are listed in Table 1.

Table 1. Values of the thresholds used for obtaining each AP.

Dataset EAPa EAPd EAPs

Salinas [1000 2000 3000 5000] [50 75 100 125] -
Pavia University [100 500 1000 5000] [10 25 50 100] -

Surrey [1000 2000 3000 5000] [50 75 100 125] [20 30 40 50]

4. Results

We have tested our method with applications to three hyperspectral datasets. The data
sets are listed above (Section 4.1). The metrics used for the performance evaluation are
class-specific accuracy, overall accuracy (OA), average accuracy (AA), Kappa coefficient,
and the test time. In the experiments, we randomly picked 10% of the labeled samples for
training and reserved the remaining 90% for testing. For each experiment we performed
ten trials (with a different random selection each time). We have reported the mean value
for each of the accuracy metrics along with the standard deviation. All experiments are
performed using Matlab R2017a on a desktop with an Intel Core i7 3.7 GHz cpu and an
NVIDIA GeForce GTX 1080 Ti gpu. Since all experiments have been performed on the
same device, the test times are comparable.
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4.1. Hyperspectral Datasets

In this study, we used three hyperspectral datasets. Salinas, University of Pavia
(http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes, ac-
cessed on 20 September 2019), and Surrey. Main characteristics of these datasets are
listed in Table 2.

Table 2. Characteristics of the HSI datasets used in this study.

Dataset Image Size (Pixel) Image Spatial Resolution
(m) Imaging Sensor Nnumber of

Spectral Bands
Wavelength
Range (µm)

Salinas 512 × 217 3.7 AVIRIS 204 0.36–2.5
Pavia University 610 × 340 1.3 ROSIS 103 0.43–0.86

Surrey 150 × 150 1 CASI-1500 72 0.36–1.05

Salinas dataset was collected by the means of Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor in 1998 over Salinas Valley, California. Salinas hyperspectral
dataset originally included 224 spectral bands. However, removal of 20 water absorp-
tion bands leaves only 204 bands of interest. This database contains an image of size
512 × 217 pixels in each band and has the high spatial resolution of 3.7 m. The ground
truth of the Salinas scene covers 16 classes including vegetables, bare soil, and vineyard
fields. Figure 5 shows the false color image of this dataset along with its pseudo color
ground truth.

The University of Pavia database was gathered using a reflective optics system
imaging spectrometer (ROSIS) sensor over the University of Pavia located in northern
Italy. The University of Pavia dataset has 103 spectral bands in the wavelength range of
0.43–0.86 µm. The spatial extent of each band is 610 × 340 pixels. The ground truth image
contains 9 different classes. A true color image of this dataset and its corresponding pseudo
color ground truth are shown in Figure 6.

The Surrey dataset is a novel data set collected by our team. In this work we have
processed a small subset of a hyperspectral image captured by the airborne CASI-1500
sensor over the city of Surrey, BC, Canada in April 2013. This HSI includes 72 spectral
bands in the range of 0.36 µm to 1.05 µm with the spectral resolution of 9.6 nm and the
high spatial resolution of 1 m. The available ground truth includes 5 different classes. The
false color and the pseudo color ground truth images are shown in Figure 7.

4.2. Parameter Tuning

Even though network’s parameters are tuned during the training step, there are
hyperparameters in the model that need to be carefully set. These hyperparameters
include the number of retained PCs during the dimensionality reduction step, n, size of
the neighborhood region around each target pixel, s, number of the neurons in each layer
of the network, and the required threshold parameters in the distance transform image
acquisition process, T1 and T2.

4.2.1. Number of Retained PCs and Size of the Neighborhood

In this set of experiments, we used our primary proposed spatial feature vector and
tried to find the best values for n and s hyperparameters. We considered keeping 1 to
10 PCs during the dimensionality reduction step. For the neighborhood size, we examined
the following window sizes: 3× 3, 5× 5, 7× 7, and 9× 9. Distribution of the OA versus
the aforementioned values for the two hyperparameters are depicted in Figure 9 for the
three hyperspectral datasets.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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(a) (b)

(c)

Figure 9. OA obtained by our proposed primary spatial feature vector (Proposed-P) vs n and s for
(a) Salinas, (b) University of Pavia, and (c) Surrey datasets.

As Figure 9a shows there is a general increase in the OA versus parameter n specially
for s = 3, 5, and 7. Increasing the size of the neighborhood area has a positive effect on the
OA as well. However, in the case of s = 9, for some values of n OA drops compared to
some of its corresponding values for s = 7. Larger values for n and s result in increasing
the size of the input vector to our deep network which consequently leads to having more
trainable parameters. On the other hand, in general with larger n and s we achieve higher
classification accuracies. Since larger neighborhood sizes has a more significant effect
on increasing the accuracy than selecting more PCs, we chose the 7× 7 neighborhood
size and set the n equal to 4 to decrease the computational cost. According to Figure 9b,
OA generally increases with the increase of n. However, to have a trade off between
the accuracy and the complexity of the feature vector, the value of 5 was chosen for this
hyperparameter. Also, neighborhood window is chosen to be 7× 7 since it results in the
best OA when n is set to be 5. For the Surrey dataset, we observed a general increase in
the OA with the size of the neighborhood (Figure 9c). Increasing the value of parameter n
results in a generally higher OA up to n = 8. To have an agreement between the accuracy
and the size of the feature vector, similar to the case of University of Pavia, parameters s
and n are chosen to be 7× 7 and 5, respectively. Table 3 summarizes all the selected values
for parameters n and s for the three datasets.
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Table 3. Selected number of retained PCs and the neighborhood size for the three datasets.

Dataset n s

Salinas 4 7 × 7
Pavia University 5 7 × 7

Surrey 5 7 × 7

4.2.2. Size of the Hidden Layers

One of the hyperparameters that need to be set, is number of neurons in each layer.
We tried eight values for this parameter for the three databases. Figure 10 shows the OA vs
the size of the hidden layers for the three HSI databases. As can be seen from this figure,
number of hidden units does not have much effect on the OA. So, in order to have an
optimized number of trainable parameters in the network we chose the value of 60 for this
hyperparameter for all three datasets.

40 50 60 70 80 90 100 110

Number of hidden units

90

92

94

96

98

100

O
A

(%
)

Salinas

Pavia

Surrey

Figure 10. OA versus number of hidden units in each layer for the three hyperspectral datasets.

4.2.3. Required threshold parameters

In our method, there are two thresholds in the process of obtaining the distance
transform image of each dataset: A threshold above which pixels in the gradient image
are considered strong edges T1, and a threshold for removing the connected components
having fewer than P pixels in the binary mask image (see Figure 4) T2. We tried five
different values for T1 and T2 for all three datasets in this study. Figure 11 shows the
distribution of the OA versus the five values for these two parameters. For the Salinas
dataset, T1 and T2 equal to 0.08 and 14 gave the highest OA. For the University of Pavia
dataset, values of 0.31 and 50 for the T1 and T2 resulted in the highest OA. Also, for the
Surrey dataset, T1 and T2 equal to 0.2 and 28 led to the best OA. Class specific accuracies,
OA, AA, kappa coefficient, and the test time corresponding to these values are listed in
the second last column of Tables 4–6. Corresponding classification maps are also shown
in Figures 12–14.
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(a) (b)

(c)

Figure 11. OA obtained by the Proposed-P feature vector vs parameters T1 and T2 for (a) Salinas,
(b) University of Pavia, and (c) Surrey datasets.
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Table 4. Class-specific accuracy(%), OA(%), AA(%), Kappa coefficient, and the test time related to the different methods for
the Salinas dataset using 10% of the training data.

No Train Test L-SVM K-SVM EMAP DAE PPF-CNN EMAP-SAE Proposed-P Proposed-F

1 201 1808 99.39 99.60 100 99.61 99.17 99.87 100 99.90
2 373 3353 99.70 99.69 99.95 99.70 99.66 99.70 99.94 99.85
3 198 1778 99.58 99.63 99.84 98.49 98.38 99.35 100 99.30
4 139 1255 99.44 99.39 15.68 99.02 99.28 98.88 98.88 99.58
5 268 2410 98.87 98.93 98.40 98.01 98.56 98.76 99.46 98.68
6 396 3563 99.88 99.74 99.84 99.75 99.83 99.72 99.99 99.94
7 358 3221 99.75 99.58 99.86 99.24 99.81 99.47 99.86 99.63
8 1127 10,144 88.40 88.39 87.92 91.17 94.58 89.72 93.34 95.46
9 620 5583 99.81 99.80 99.84 99.74 99.82 99.73 99.91 99.83
10 328 2950 97.48 97.37 96.68 97.09 96.28 96.51 98.59 98.47
11 107 961 98.71 98.93 97.63 97.13 96.34 97.61 97.92 99.17
12 193 1734 99.79 99.92 94.51 99.92 99.81 99.44 99.85 100
13 92 824 99.11 99.61 29.70 99.42 98.54 97.63 99.27 99.94
14 107 963 97.32 97.79 95.12 98.68 96.36 95.53 98.18 99.47
15 727 6541 65.03 74.94 62.74 88.17 82.12 82.87 91.25 94.00
16 181 1626 98.73 98.71 99.83 97.79 97.79 99.25 99.75 98.86

OA 5415 48,714 92.42 ± 0.12 93.75 ± 0.13 88.45 ± 0.19 95.92 ± 0.22 95.75 ± 0.69 94.90 ± 0.12 97.17 ± 0.17 97.93 ± 0.15

AA 96.31 ± 0.11 97.00 ± 0.08 86.10 ± 0.12 97.68 ± 0.22 97.27 ± 0.46 97.13 ± 0.21 98.51 ± 0.11 98.88 ± 0.08

Kappa 0.91 ± 0.001 0.93 ± 0.001 0.87 ± 0.002 0.95 ± 0.002 0.95 ± 0.008 0.94 ± 0.001 0.97 ± 0.002 0.98 ± 0.002

Test time (s) 14.10 12.32 7.03 0.48 10.36 0.59 0.08 0.09

Table 5. Class-specific accuracy(%), OA(%), AA(%), Kappa coefficient, and the test time related to the different methods for
the University of Pavia dataset using 10% of the training data.

No Train Test L-SVM K-SVM EMAP DAE PPF-CNN EMAP-SAE Proposed-P Proposed-F

1 663 5968 85.04 89.17 90.08 94.45 98.82 98.20 97.29 99.29
2 1865 16,784 95.11 96.32 97.85 98.68 99.28 99.31 99.86 99.87
3 210 1889 68.05 71.97 93.75 86.26 82.30 94.13 96.87 99.09
4 306 2758 89.93 92.32 96.36 95.73 93.22 95.74 97.72 97.69
5 135 1210 99.62 99.47 99.31 99.64 99.73 99.02 99.83 99.61
6 503 4526 55.31 72.67 91.07 89.94 95.42 97.86 99.05 98.99
7 133 1197 72.79 75.23 89.66 85.03 87.05 98.43 97.31 99.72
8 368 3314 72.06 75.98 94.51 90.68 92.58 95.99 96.61 98.52
9 95 852 93.84 94.84 77.89 99.21 99.42 99.35 99.39 99.17

OA 4278 38,498 84.61 ± 0.23 88.61 ± 0.17 94.60 ± 0.07 95.11 ± 0.46 96.55 ± 0.32 98.13 ± 0.44 98.70 ± 0.10 99.34 ± 0.11

AA 81.31 ± 0.35 85.33 ± 0.45 92.28 ± 0.26 93.29 ± 0.62 94.20 ± 1.10 97.56 ± 0.46 98.21 ± 0.12 99.11 ± 0.18

Kappa 0.79 ± 0.003 0.85 ± 0.002 0.93 ± 0.001 0.93 ± 0.006 0.95 ± 0.004 0.97 ± 0.004 0.98 ± 0.001 0.99 ± 0.001

Test time (s) 8.74 6.51 4.07 0.25 7.03 0.35 0.06 0.07

Table 6. Class-specific accuracy(%), OA(%), AA(%), Kappa coefficient, and the test time related to the different methods for
the Surrey dataset using 10% of the training data.

No Train Test L-SVM K-SVM EMAP DAE PPF-CNN EMAP-SAE Proposed-P Proposed-F

1 412 3709 88.60 90.06 88.42 92.95 95.11 91.69 95.25 94.15
2 185 1662 68.40 73.11 83.92 83.69 75.92 82.66 90.55 88.58
3 438 3937 88.80 89.57 93.50 90.65 92.50 93.65 93.76 96.19
4 124 1117 91.54 91.20 98.38 90.68 96.72 92.45 94.28 96.49
5 215 1936 76.70 76.86 87.50 84.54 86.46 91.39 89.74 94.48

OA 1374 12361 84.35 ± 0.43 85.66 ± 0.49 90.19 ± 0.46 89.45 ± 0.54 90.49 ± 0.47 91.12 ± 0.63 93.19 ± 0.27 94.31 ± 0.25

AA 82.81 ± 0.65 84.16 ± 0.81 90.34 ± 0.52 88.51 ± 0.66 89.34 ± 0.59 90.37 ± 0.75 92.72 ± 0.35 93.98 ± 0.24

Kappa 0.79 ± 0.006 0.81 ± 0.007 0.87 ± 0.006 0.86 ± 0.007 0.87 ± 0.006 0.88 ± 0.008 0.91 ± 0.003 0.92 ± 0.003

Test time (s) 2.31 1.02 1.5 0.18 6.91 0.24 0.05 0.06
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)
Figure 12. Salinas (a) ground truth, (b–i) classification maps resulting from different methods.
(b) Linear SVM, (c) kernel SVM, (d) EMAP, (e) DAE, (f) PPF-CNN, (g) EMAP-SAE, (h) Proposed-P,
and (i) Proposed-F.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)
Figure 13. University of Pavia (a) ground truth, (b–i) classification maps resulting from different
methods. (b) Linear SVM, (c) kernel SVM, (d) EMAP, (e) DAE, (f) PPF-CNN, (g) EMAP-SAE,
(h) Proposed-P, and (i) Proposed-F.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 14. Surrey. (a) ground truth, (b–i) classification maps resulting from different methods.
(b) Linear SVM, (c) kernel SVM, (d) EMAP, (e) DAE, (f) PPF-CNN, (g) EMAP-SAE, (h) Proposed-P,
and (i) Proposed-F.

5. Discussion

To check the effectiveness of our proposed method, we compared it with some tradi-
tional and recent hyperspectral classification methods. These methods include linear SVM,
Kernel SVM with radial basis function (RBF), extended multi-attribute profiles (EMAP),
DAE [14], PPF-CNN [20], and EMAP-SAE [16]. We implemented both linear and kernel
SVM using libsvm library [29].

We performed 10-fold cross validation to find the best values for the regularization
parameter C and the width of the gaussian kernel gamma. For the Salinas database, value
of 103 for C in case of linear SVM and values of 103 and 1 for C and gamma parameters of
the gaussian SVM resulted in the best performance. For the University of Pavia dataset,
C equal to 10 for the linear SVM and in case of the kernel SVM values of 103 and 0.1 for
C and gamma outperformed the other values. For the Surrey dataset, these values have
been obtained as 103, 105, and 0.01, respectively. We used the kernel SVM classifier with
the EMAP method and found the following values for the gaussian SVM’s parameters
for the three datasets: Salinas: C = 106 and gamma = 0.1, University of Pavia: C = 104 and
gamma = 0.001, and Surrey: C = 103 and gamma = 0.01. With all other methods we used
logistic regression (LR) classifier. Tables 4–6 compare the result of our proposed methods
(using the Proposed-P and Proposed-F spatial feature vectors) with the other methods
experimented in this study.

From these tables, we can draw the following conclusions. First, methods that combine
spectral and spatial information achieve higher classification accuracies compared to the
spectral-based approaches (L-SVM and K-SVM). Second, deep learning-based classifiers
(i.e., DAE, PPF-CNN, EMAP-SAE, Proposed-P, and Proposed-F) outperform traditional
HSI classification methods for almost all the accuracy metrics. In the DAE and EMAP-SAE
methods, similar to our algorithm, joint spectral-spatial information and SAE is employed.
However, they did not use the weighting strategy for neighboring pixels. So, by comparing
the results of our Proposed-P feature vector with these two methods we can conclude
that assigning different weights to the neighboring pixels improves the accuracy of the
classification. Furthermore, this improvement shows the effectiveness of our proposed
algorithm to compute such weights. The last column of these tables shows the results
of our Proposed-F feature vector. The increase in the accuracy metrics compared to the
results from our proposed primary feature vector shows the effectiveness of adding more
geometric attributes on top of our proposed-P spatial feature vector. Therefore, as can
be seen from these tables, adding the distance transform value to the feature vector and
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combining it with EMAP features improves accuracy metrics as well as the test time
compared to the other methods. As an example, Table 7 summarizes the improvements
made by our proposed methods compared to the EMAP-SAE [16] algorithm. For the
Salinas dataset in terms of OA, adding only distance transform features (Proposed-P)
improves the result by 2.27% compared to the EMAP-SAE method. For the University
of Pavia and Surrey datasets, the corresponding increase in the OA is 0.57% and 2.07%,
respectively. Furthermore, the kappa coefficient has been improved by 0.03, 0.01, and 0.03
for the three datasets, respectively. The increase in the AA compared to the EMAP-SAE
method for the three datasets have been observed as 1.38 %, 0.65%, and 2.35%, respectively.
The improvements made by our final feature vector (Proposed-F) are as follows: for the
Salinas dataset the OA, AA and Kappa coefficient have been improved by 3.03%, 1.75%,
and 0.04, respectively. The observed increase in these metrics for the University of Pavia
dataset are 1.21%, 1.55%, and 0.02, respectively. Finally, we can see an improvement of
3.19%, 3.61%, and 0.04 for the Surrey dataset.

Table 7. The improvements made by our methods on the accuracy metrics compared to the EMAP-
SAE [16] algorithm. The plus sign shows the improvement in the corresponding accuracy metric.

Proposed-P Proposed-F

Salinas
OA +2.27 +3.03
AA +1.38 +1.75

Kappa +0.03 +0.04

Pavia University
OA +0.57 +1.21
AA +0.65 +1.55

Kappa +0.01 +0.02

Surrey
OA +2.07 +3.19
AA +2.35 +3.61

Kappa +0.03 +0.04

Figures 12–14 show the classification maps obtained from our method and the other
methods explored in this study. As can be seen from these figures, there are fewer mis-
classified pixels in our classification maps which is consistent with the results shown in
Tables 4–6. For instance, according to Figure 12i (and also Table 4), our proposed final
spatial feature vector especially improves the classification accuracies of classes 8 and 15
of the Salinas dataset. As Figure 13i shows, our proposed feature vector improves the
classification accuracy of class 3 of the University of Pavia dataset significantly compared
to other methods.

6. Conclusions

In this paper, we proposed a new method for the HSI classification task. In an HSI,
pixels in a same region with a high probability belong to the same category. Therefore,
the information of a target pixel’s neighbors may be used as the pixel’s spatial features.
However, our conjecture in this work is that not all neighbours should be permitted to
contribute to the same extent in forming the spatial feature vector for a target pixel. We
hypothesize that pixels farthest from geometric boundaries are most likely to be located
near neighbours of the same class, and as a result pixel distance from geometric edges
should be used to weight the contribution of neighbouring pixels. Our proposed approach
incorporates a new distance transform-based spatial feature vector which augments the
spatial feature vector with the distance of pixels from the boundaries of geometric regions.
The distance measure is obtained from a distance transform after some morphological
processing of the input image. We use the stacked sparse autoencoder as the deep learning
framework and train it based on a training data set with known classification. To find the
best values for parameters of our method, we performed extensive experiments in the
hyperparameter space. We also investigated the impact of geometric information by further
augmenting the feature vector with EMAP features. We tested our method on three HSI
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datasets and based on our experimental results, we obtained the following findings. First,
assigning different weights to the target pixel’s adjacent neighbors improved classification
accuracies, in accordance with our hypothesis. We also saw an increase in classification
accuracy with the inclusion of EMAP features in the spatial feature vector, which provides
more support to the importance of spatial information in hyperspectral images. Regardless
of the improvements made by our algorithm it has some limitations. First, since training
and evaluation of our model should be done on each dataset separately, three different
sets of the SAE’s weights and model’s hyperparameters are obtained. Second, since our
model introduces several hyeprparameters that need to be tuned, a careful search in the
hyperparameter space is needed.

Although the experimental results show that our method outperforms the other
traditional and recent HSI classifiers experimented in this study, there is still work to be
done in the future. For example, to test the generalization power of our algorithm, it should
be tested on more remote sensing hyperspectral scenes acquired with various sensors.
Training a unified model that can perform pixel-wise classification of these various remote
sensing HSI scenes with a high accuracy is another future research goal. Moreover, with
more computational power, we would need less time to explore more combinations of
hyperparameter values in order to ensure our classification accuracy is maximized.

Author Contributions: Methodology, H.M. and K.M.; Software, H.M.;Writing—original draft, H.M.;
Writing—review and editing, H.M., K.M. All the authors contributed significantly to the research.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NSERC Discovery Grant and CSA FAST 2019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Jinfei Wang and Boyu Feng for providing us
the Surrey dataset along with the ground truth image.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
AA Average accuracy
AE Auto encoder
AP Attribute profile
AVIRIS Airborne visible/infrared imaging spectrometer
CNN Convolutional neural network
DBN Deep belief network
EAP Extended attribute profile
EMAP Extended multi-attribute profile
GRBM Group-restricted Boltzmann machine
HSI Hyperspectral image
KNN K-nearest neighbor
PC Principal component
PCA Principal component analysis
OA Overall accuracy
RBM Restricted Boltzmann machine
RGF Rolling guidance filter
ROSIS Reflective optics system imaging spectrometer
SAE Stacked auto encoder
SE Structural element
SVM Support vector machine
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