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Abstract: Fast and accurate prediction of the geoeffectiveness of coronal mass ejections (CMEs) and
the arrival time of the geoeffective CMEs is urgent, to reduce the harm caused by CMEs. In this paper,
we present a new deep learning framework based on time series of satellites’ optical observations that
can give both the geoeffectiveness and the arrival time prediction of the CME events. It is the first time
combining these two demands in a unified deep learning framework with no requirement of manually
feature selection and get results immediately. The only input of the deep learning framework is the
time series images from synchronized solar white-light and EUV observations. Our framework first
uses the deep residual network embedded with the attention mechanism to extract feature maps for
each observation image, then fuses the feature map of each image by the feature map fusion module
and determines the geoeffectiveness of CME events. For the geoeffective CME events, we further
predict its arrival time by the deep residual regression network based on group convolution. In order
to train and evaluate our proposed framework, we collect 2400 partial-/full-halo CME events and its
corresponding images from 1996 to 2018. The F1 score and Accuracy of the geoeffectiveness prediction
can reach 0.270% and 75.1%, respectively, and the mean absolute error of the arrival time prediction is
only 5.8 h, which are both significantly better than well-known deep learning methods and can be
comparable to, or even better than, the best performance of traditional methods.

Keywords: coronal mass ejections; solar-terrestrial relations; deep learning; attention mechanism;
satellite observation image

1. Introduction

Coronal Mass Ejections (CMEs) are fierce eruption phenomena in the solar atmosphere,
which is one important source of severe space weather events [1]. When arriving at Earth,
the magnetic field and plasma in a CME will disturb Earth’s space environment and may
cause geomagnetic storms [2]. Magnetic storms are threats to the high-tech modern society,
which relies on stable satellite communication, global navigation and electricity power
supplements in almost every aspect [3]. To reduce the potential damages of CMEs, a reliable
forecasting model is necessary. Generally speaking, it takes 1–5 days for CMEs to propagate
from the Sun to Earth, which makes it theoretically feasible to predict its geoeffectiveness
and the arrival time in advance.

Many efforts have been made to achieve a fast and accurate forecast in traditional
methods. Based on the observations from Large Angle and Spectrometric Coronagraph
(LASCO) onboard the Solar and Heliospheric Observatory (SOHO) [4], many empirical
models have been developed, such as the empirical shock arrival (ESA) [5] model, the
Cone model [6] and Self-similar Expansion model [7]. These models are based on the
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math-fit of observed morphology evolution of CMEs in the coronagraph and with a
presumed propagation model. Although limited by the projection effects [8] from one
single coronagraph, these models’ correctness and arrival time prediction is acceptable.
The launch of the Solar-Terrestrial Relations Observatory (STEREO) [9] twin star provides
additional view points away from the Sun–Earth line. With the observations from the
Heliosphere Imagers (HIs) [10], the projection effects have been further reduced and
the improved empirical models have been proven to be adequately effective [11]. Most
of the empirical models are mathematical models with no requirement of background
heliospheric measurements. Hydrodynamic models, like the drag-based model [12] and
shock-based models [13,14], take into consideration the acceleration or deceleration of a
CME caused by the ambient solar wind. However, those models are kinetic models without
magnetic fields and with limited physical meanings, and the solar wind parameters used
as input in these models need to be measured in-situ or manually set based on historical
measurements. This situation was changed by magnetohydrodynamics (MHD) [15–17]
models. With properly set input parameters and boundary conditions, a MHD model could
track the whole transit of a CME from the Sun to the Earth at the cost of high computing
power consumption [18]. The demands of supercomputers make such forecast models
hard to distribute and to give a near real-time forecast.

In recent years, with the continuous development of machine learning and deep
learning, related methods have also been applied to geoeffectiveness and arrival time
prediction of CMEs. Besliu-Ionescu et al. [19] attempts to use the logistic regression
which uses only initial CME parameters as input to predict the geoeffectiveness of CMEs,
but it doesn’t fit well on the training set. Sudar et al. [20] uses the fully connected
neural network (FCNN) to analyse the transit time for 153 CME events using the initial
velocity of the CME and the central meridian distance of the associated flare as inputs,
the mean absolute error (MAE) obtained is about 11.6 h. Liu et al. [21] uses the support
vector machine (SVM) [22] to predict the arrival time for 182 geoeffective partial-/full-halo
CME events, and the MAE is about 5.9 h. However, 5.9 h is the best result in a random
100,000 testing set. The above machine learning methods require manual collection of
parameters and if the relevant parameters are missing, it may cause a wide range of errors.
Wang et al. [23] first uses the convolutional neural network to estimate the arrival time
of geoeffective CME events based on satellite observation images. It only uses the SOHO
LASCO C2 white-light corona observations as input, and the error was about 12.4 h.
Although the error is large, the input is a directly observed image, which simplifies the
tedious work of manual feature acquisition. All above-mentioned four methods have
certain limitations, mainly in that they can only predict the geoeffectiveness of CMEs or
can only predict the transit/arrival-time of CME events that can reach Earth, and do not
combine the two demands in a machine learning or deep learning method.

With the introduction of large image data sets such as ImageNet [24] and
MS-COCO [25], many simple, highly modularized convolutional neural networks ar-
chitecture [26–35] have been proposed in the field of computer vision. VGGNet [27] uses a
stack of very small (3× 3) convolution filters to increase the depth of the network, and ex-
plore the impact of depth on network performance. Resnet [28] presents a residual learning
framework to make the deep neural network easier to train, and make the gradient back
propagated by the model have better local correlation [36]. GoogLeNet [29] proposes the
Inception module, which increases the width and depth of the network without increasing
the computational budget and improves the adaptability of the network to different scales
through multi-scale processing. Resnext [31] combines the idea of the Inception module
with the residual learning, and improves the performance of the model by increasing the
cardinality. Mobilenet [32] builds a lightweight deep neural network through depth-wise
separable convolutions.

In this paper, we present a deep learning framework based on time series of satellites’
optical observations that can give both the geoeffectiveness and the arrival time prediction
of the CME events. The framework is composed of the collection of time series observation
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images, the geoeffectiveness prediction algorithm and arrival time prediction algorithm.
The contributions of this paper are summarized as follows:

(1) It is the first time that making geoeffectiveness and arrival time predictions of CMEs
in a unified deep learning framework and forming an end-to-end prediction. Once
we get the observation images, we can immediately get the prediction result without
selecting features manually or professional knowledge.

(2) For the geoeffectiveness prediction of CMEs, we propose a deep residual network
embedded with the attention mechanism and the feature map fusion module. Based
on those, we can effectively extract key regional features and fuse the feature from
each image.

(3) For the arrival time prediction of geoeffective CMEs, we propose a data expansion
method to increase the scale of data and deep residual regression network to capture
the feature of the observation image. Meanwhile, the cost-sensitive regression loss
function is proposed to allow the network focus more attention on hard predict-
ing samples.

The remainder of this paper is organized as follows—in Section 2, we introduce
our proposed deep learning framework in detail. Section 3 describes the dataset and
experimental setting. The experimental results and comparisons are reported in Section 4.
Sections 5 and 6 are the discussion and conclusion, respectively.

2. Methods

The overall deep learning framework is shown in Figure 1. When predicting the
geoeffectiveness and arrival time of the CME events, we first collect the corresponding
satellite observation images from 10 min before up to 4 h after the onset time of the CME
events and feed them into the deep learning framework as the only input.

Figure 1. The overall deep learning framework of jointing geoeffectiveness and arrival time prediction. In the framework,
we first predict the geoeffectiveness of CMEs and for geoeffective CMEs, we further predict the arrival time.

Then our framework determines the geoeffectiveness of the CME event. Specifically,
we use the deep residual network embedded with the attention mechanism which plays
the role of feature extraction module in geoeffectiveness prediction to extract the feature
map for each observation image. Since the number of observation images collected in
each CME event is not fixed (see the details in Section 3.1), we use the feature map fusion
module to fuse the feature maps of each input image into a fused feature map, and predict
the probability that the CME event is geoeffective or not. If the probability is greater than
0.5, it is judged as a geoeffective CME event.

For a geoeffective CME event, our framework further predicts its arrival time by pre-
dicting the arrival time of each image in the CME event and taking the average. Specifically,
we first use the deep residual regression network based on group convolution to extract the
feature map of each image, and then predict the transit time of each image. The predicted
arrival time of each image can be obtained through the predicted transit time plus the
observation time of the image, and the average predicted arrival time of all input images
in the CME event is taken as the predicted arrival time of the CME event. The reason for
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adopting this strategy is to prevent the problem of under-fitting of the CME arrival time
prediction network due to fewer geoeffective samples and the detailed reasons can be seen
in Section 2.2.1.

2.1. Geoeffectiveness Prediction of CMEs
2.1.1. Deep Residual Network Embedded with the Attention Mechanism

The proposed deep residual network embedded with the attention mechanism is used
to extract the feature map from each observation image. Our network is designed based on
the traditional convolutional neural networks and modified to make it more suitable for
CME observation images. The main features are as follows—compared with ImageNet,
the features of the CME image are more sparse, so we select larger convolution filters; using
the residual learning to train a deeper network; introducing the attention mechanism to
extract key area features.

The input image will first pass through data preprocessing. It consists of scaling,
normalization and gray scale conversion. After that, the input image will be a gray scale
image and pixel size is 256× 256, and the weight of each pixel is between [0, 1].

Next, our network will extract the feature map from the input image. The architecture
of our network is shown in Table 1. The first layer is a 11× 11 convolution with 64 filters
and the stride is 2. Compared with the ImageNet data set, the features of CME image are
relatively sparse, using convolution filters with big kernel size can better fuse the features.
The second layer is the max pooling layer, which can downsample the feature dimensions
while retaining the main features. Next layers are composed of six residual blocks with
embedded attention. Each residual block introduces residual learning to make deeper
neural networks easier to train, and attention mechanism is introduced to extract key
regional features.

Table 1. The architecture of the deep residual network embedded with the attention mechanism.

Layer Name Layer Output Size

Conv1 11× 11, 64, stride 1 256× 256

Max Pool 3× 3, max pool, stride 2 128× 128

Conv2_x


5× 5, 64
5× 5, 64

Channel Attention
Spatial Attention

× 2 128× 128

Conv3_x


5× 5, 128
5× 5, 128

Channel Attention
Spatial Attention

× 2 64× 64

Conv4_x


5× 5, 256
5× 5, 256

Channel Attention
Spatial Attention

× 2 32× 32

The residual block with embedded attention has two forms. The first form is shown in
Figure 2, and it is used when the input and output are of the same dimensions. The formula
is as follows:

y = F(x, {Wi}) + x, (1)
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where x and y are the input and output vectors of the residual blocks, F(x, {Wi}) represents
the residual mapping to be learned. In our network, the formula of F(x, {Wi}) is as follows:

F(x, {Wi}) = SpatialAtt(ChannelAtt(W2σ(W1x))), (2)

where W1 and W2 denote the convolution operation with the filter size of 5× 5, and the con-
volution operation is followed by batch normalization [37] by default. Batch normalization
allows each layer of the network to learn the wanted distribution, reduces the dependence
on parameter initialization and can effectively alleviate the phenomenon of gradient van-
ishing/gradient exploding. σ denotes the activation function RELU [38], ChannelAtt and
SpatialAtt represent the channel attention mechanism and the spatial attention mechanism,
respectively. Here, the channel attention mechanism is performed first, and then the spatial
attention mechanism. The second form is used to match dimensions when the input and
output are different dimensions, it can be expressed as follows:

y = F(x, {Wi}) + Wsx, (3)

where Ws represents a convolution operation with the filter size of 1 × 1. Based on
Equation (1), the dimensions of x are changed to the dimensions of y through Ws.

The attention mechanism has achieved great success in computer vision tasks [39–45],
it can enhance the core information that is strongly related to the target task, while suppress-
ing other information that is weakly related to the target task. Here, our network combines
the channel attention module with the spatial attention module, and the realization of the
attention mechanism is the same as CBAM [39].

Figure 2. The illustration of the residual block with embedded attention. It combines residual learning with the atten-
tion mechanism.

The channel attention module explores the inter-channel relationship of the feature
map and pays more attention to key channels, the computation process is as follows.
First, the input feature map F ∈ RH×W×C using average pooling and max pooling on the
spatial dimensions to aggregate the spatial information in the feature map and obtain two
spatial context descriptions, and the shape of each descriptions is all R1×1×C. Next, both
two spatial descriptions are forwarded to two shared full connection layers, and merged
by element-wise summation. Then, sigmoid is performed to scale the attention weights
to [0, 1] and the shape of generating channel attention weights is R1×1×C. Finally, the
attention weights are multiplied with the input feature map as the output feature map.

The spatial attention module is complementary to the channel attention mechanism,
and its main purpose is to explore the inter-spatial relationship of the feature map. Through
the spatial attention module, the network can pay more attention to key spatial regions,
and the computation process is as follows. First, the input feature map F ∈ RH×W×C

using average pooling and max pooling on the channel dimension to aggregate the channel
information of the feature map, and generate two channel context descriptors RH×W×1.
Next, the two channel context descriptors are connected in the channel dimension and fuse
the concat channel context descriptors through the convolution operation with the filter
size of 7× 7. Then, perform the sigmoid to scale the attention weights to [0, 1], and obtain
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the spatial attention weights RH×W×1. Finally, the spatial attention weights are multiplied
with the input feature map as the output feature map.

2.1.2. Feature Map Fusion Module

The feature map fusion module is proposed to solve the situation that the number
of images collected in each CME event is not fixed. The illustration of the feature map
fusion module is shown in Figure 3. When the deep residual network embedded with
the attention mechanism extracts the feature map for each input image in the CME event,
the feature map fusion module fuses the feature map of each image into a fused feature
map based on the attention mechanism. It can be divided into three steps:

1. Calculate the importance of each point in the feature map based on the attention
mechanism. The module attention mechanism can focus limited attention on impor-
tant regions. Through the above-mentioned channel attention module and spatial
attention module, the feature map attention weights of the different channels axes
and spatial axes are obtained, then the two attention weights are combined by adding
to obtain the each point importance of the feature map.

2. Adjust the point importance of each feature map in combination with the mutual
influence between the time series feature maps. If there are N feature maps, for each
point coordinate (x, y, z) of the ith feature map, it will adjust its weight through the
weight of the same position in other feature maps as follows:

Wix,y,z =
eWix,y,z

∑N
j=1 eWjx,y,z

, (4)

where Wjx,y,z represents the importance of the point whose coordinates of the j feature
map is (x, y, z). Here, assuming that the shape of the feature map is RH×W×C, then
x ∈ [0, H), y ∈ [0, W), z ∈ [0, C).

3. Fuse all feature map weights and point importances into one feature map. We multiply
the point importance of each feature map with the original feature map weights to
obtain the contribution of each feature map in the final fused feature map, and add
the contribution of each feature map to get a fused feature map.

Figure 3. The illustration of the feature map fusion module. It fuses the feature map of each image into a fused feature map
based on the attention mechanism.

2.2. Arrival Time Prediction for Geoeffective CMEs
2.2.1. Data Expansion Based on Sample Split

The well performance of deep learning is inseparable from large-scale training data.
In the prediction of the arrival time for geoeffective CME events, there are only 246
geoeffective CME events, and the number of observation images in each CME event
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is not fixed. The small sample size of the geoeffective CME events and the complexity of
each sample make it difficult for the regression network to learn distinguishing features.

Since each observation image in the CME event can obtain its corresponding transit
time by subtracting the observation time from the arrival time of the CME event, we can
split the CME event to expand the scale of the data. Specifically, we split each observation
image collected in the CME events as a new sample and use the transit time of the corre-
sponding image as the label. For each image, our network predicts its transit time. After
that, the sample size can be increased to 10×, and from the original 246 samples to the
current 3460 samples. In the training phase, the network predicts the transit time of each
observation image, and the predicted arrival time can be obtained by adding the transit
time to the observation time of the image. In the testing phase, we calculate the average
arrival time of each input image in this CME event as the arrival time of this CME event.

2.2.2. Deep Residual Regression Network Based on Group Convolution

The architecture of the arrival time prediction network is shown in Table 2. The overall
architecture is similar to the geoeffectiveness feature extraction network. First, through the
data preprocessing, the original image is scaled, normalized and gray-scale processed in
sequence. The first two layers of the network still use the same convolutional layer and
max pooling. Next layers are composed of six residual blocks based on group convolution,
and the illustration of the residual block is shown in Figure 4. Referring to the idea of
Resnext [31], the network introduces group convolution to realize the split-transform-
merge strategy. Through group convolution, the floating point operations (FLOPs) of the
network can be reduced while increasing the cardinality of the network to improve the
performance of the network.

Table 2. The illustration of the deep residual regression network based on group convolution.

Layer Name Layer Output Size

Conv1 11× 11, 64, stride 1 256× 256

Max Pool 3× 3, max pool, stride 2 128× 128

Conv2_x

[
5× 5, 64, g = 32

5× 5, 64

]
× 2 128× 128

Conv3_x

[
5× 5, 128, g = 32

5× 5, 128

]
× 2 64× 64

Conv4_x

[
5× 5, 256, g = 32

5× 5, 256

]
× 2 32× 32

FC1 FC, Dropout 1× 256

FC2 FC 1× 1

The residual blocks based on group convolution first splits the input feature map
F ∈ RH×W×C in the channel dimension to obtain group sub-feature maps, where group is
a parameter and uses as the default value of 32 in our network. The shape of each sub-
feature map is RH×W×C/group. Next, convolution operation with the filter size of 5× 5 is
performed on each sub-feature map to transform and learn the features of each sub-feature
map. Then the transformed sub-feature maps are reconnected in the channel dimension,
and the information of the inter sub-feature maps is merged through the 5× 5 convolution
operation. Finally, the merged feature map is added with the shallow input feature maps.
There are two purposes using residual connection based on group convolution. One is
reducing the FLOPs of the network and speeding up the network. If the parameter of
group convolution is group, the FLOPs of group convolution is only 1/group of traditional
convolution operation. The other is increasing the cardinality of the network. In addition to
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the dimensions of depth and width, cardinality is also an essential factor that can improve
the performance of the network.

5 × 5 conv 5 × 5 conv

Figure 4. The illustration of the residual block based on group convolution.

After extracting the feature map from the input image, the multi-layer perceptron
module is followed to obtain the predicted arrival time, which contains two fully connected
layers and Dropout [46]. The random inactivation probability of Dropout is 0.2 to prevent
the network from overfitting.

2.2.3. Cost-Sensitive Regression Loss Function

In the training phase, each observed image uses the deep residual regression network
based on group convolution to predict the transit time. But we find that the loss between
different images is quite different. We hope that the network can focus more attention on
hard samples and reduce the proportion of simple samples in the loss function. In this
paper, we propose a cost-sensitive regression loss function through the combination of L1
Loss and L2 Loss. The formula is as follows:

Loss =
{
|ypred − ytrue| i f |ypred − ytrue| ≤ β hours
(ypred − ytrue)2 otherwise,

(5)

where ypred represents the prediction result of our network, ytrue represents the actual label,
and β is manually set as a positive number greater than 1. We define the sample with an
error less than or equal to β as an easy sample, and the sample with an error greater than β
as a hard sample. In the training phase, the error of almost all samples is greater than 1. For
these easy samples with a loss greater than 1, using L1 Loss can reduce its proportion in
the loss function, and when the gradient is updated by backpropagation [47], the absolute
value of the gradient contributed by these easy samples is only 1, which reduces the impact
on the network. For hard samples, the value of the loss function is much larger than easy
samples, thus avoiding the situation where the loss function is dominated by easy samples.
Meanwhile, the absolute value of the gradient contributed during backpropagation is
greater than 2× β, which is also much larger than the simple sample, and the greater the
error, the greater the absolute value of the gradient. Compared with L1 Loss, our loss
distinguishes samples with different errors on the gradient of backpropagation. Compared
with L2 Loss, our loss reduces the proportion of most easy samples in the loss function
and the contribution of gradient updates, so that the network can pay more attention to
hard samples.
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3. Experiments
3.1. Dataset

The performance of a deep learning algorithm is inseparable from large-scale data,
so we collect partial-/full-halo CME events and corresponding satellite time series obser-
vation images from 1996 to 2018 to build a large-scale and differentiated data set.

First, we select partial-/full-halo CME events from the SOHO LASCO CME Catalog [48],
and each CME event includes onset time, the angular width and other parameters. Then the
geoeffectiveness of each CME event is checked with other sources’ data. The geoeffective-
ness definition used in this research is one CME eventually arrives at Earth and causes
geomagnetic disturbances during which the minimal Dst index is smaller than −30 nT.
We employ a similar approach to the one in CAT-PUMA [21] to construct the geoeffective
CMEs data set, collect events from the Richardson and Cane List [49], the full halo CMEs
provide by the University of Science and Technology of China [50], the George Mason
University CME/ICME List [51] and the CME Scoreboard by NASA, respectively. We
collect geoeffective CMEs and their corresponding onset/arrival time. Here the onset time
is the time of a CME’s first appearance in the Field-of-View (FOV) of SOHO LASCO C2,
and the arrival time of CMEs is defined as the arrival time of interplanetary shocks driven
by CMEs hereafter. After that, align the collected geoeffective CMEs with the selected
partial-/full-halo CME events through onset time.

For convenience, we collected images directly through CDAW Data Center (https:
//cdaw.gsfc.nasa.gov/images/soho/lasco/ (accessed on 18 March 2021), the Day Month
Year can be obtained through the corresponding CME event). Observations from Extreme
ultraviolet Imaging Telescope (EIT) on the SOHO spacecraft or Atmospheric Imaging
Assembly (AIA) on the Solar Dynamics Observatory (SDO) can provide some information
on the source region of CMEs, while the LASCO C2 coronagraph observations provide
CMEs’ evolution and propagation information. So for each CME event, the composite
running-difference images of SOHO/LASCO C2 and SOHO/EIT or SDO/AIA from 10 min
before up to 4 h after the onset times of the events are collected. We believe such combined
observations are more discriminative and can provide a better forecast.

After the CME events with zero images are eliminated, there are a total of 2400
partial-/full-halo CME events and corresponding 35,666 images are collected, including
246 geoeffective CME events and 3460 corresponding images. In our data set, since the SDO
satellite was launched in 2010 and the CCD bakeout of EIT and AIA, there will be three
different formats of observations images: only LASCO C2 format, LASCO C2 combine
EIT format and LASCO C2 combine AIA format. Meanwhile, we count the distribution
of images in the CME events, as indicated in Figure 5, the number of CME events with
only LASCO C2 format is 76, the number of CME events with LASCO C2 combine EIT
format is 1117 and the number of CME events with LASCO C2 combine AIA format is
1207. The CME events which only contain LASCO C2 observation are fewer and randomly
distributed in geoeffective or non-geoeffective CMEs, so they will not bias the training and
testing of our method. Due to the different operation status of different instruments, the
time interval between adjacent observation images is not fixed, which will lead to large
fluctuations in the number of images collected for each CME event (shown in Figure 6).

3.2. Experimental Setting

In order to train and evaluate the proposed deep learning framework, we introduce
the experimental setting.

For the geoeffectiveness prediction of CMEs, 2400 CME events are randomly divided
into the training set and the testing at approximately 4:1 ratio, and the proportion of
geoeffective and non-geoeffective samples in the training set is basically the same as
that in the testing set. Specifically, the training set has 1725 non-geoeffective samples
and 197 geoeffective samples, and the testing set has 429 non-geoeffective samples and
49 geoeffective samples. The training procedure is performed in the PyTorch framework.
In the training phase, we use Adam [52] as the default optimizer to update the parameters

https://cdaw.gsfc.nasa.gov/images/soho/lasco/
https://cdaw.gsfc.nasa.gov/images/soho/lasco/
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of all deep learning methods in which the learning rate is 0.001, the related parameters β1
and β2 are set to 0.9 and 0.999. One hundred epochs are used for training, and the batch size
is 1. The training of all methods adopts a down-sampling strategy due to the imbalanced
geoeffective and non-geoeffective samples. Specifically, one eighth of the non-geoeffective
samples are combined with the geoeffective samples as the training samples in each epoch.
The loss function adopts binary cross-entropy, the formula is as follows:

Loss =
1
N

N

∑
i=1
−[yilogpi + (1− yi)log(1− pi)], (6)

where yi represents the actual label of the ith sample, when the current sample is geoeffec-
tive, the corresponding value of yi is 1, otherwise it is 0, pi represents the probability that
the ith sample is predicted to be a geoeffective, and N represents the number of samples.

Figure 5. The distribution of different formats in CME events.

Figure 6. The distribution of the number of observation images in CME events.

For the arrival time prediction of geoeffective CMEs, 246 geoeffective CME events
are randomly divided into the training set and the testing set at approximately 8:1 ratio.
Specifically, the training set contains 218 CME events and corresponding 3042 observation
images while the testing set contains 28 CME events and corresponding 418 observation
images. The training procedure is also performed in the PyTorch framework. In the training
phase, we use AdamW as the default optimizer to update the parameters and avoid the
network overfitting, the related parameters β1 and β2 are also set to 0.9 and 0.999, the
weight decay coefficient is set to 0.01. We train with a total number of 100 epochs and the
default batch size is 32. The learning rate is set to 0.01 initially, and is multiplied by 0.6 at
epoch 40, 60 and 80. The comparing traditional convolutional neural networks all adopt L2
Loss and data expansion based on sample split in the training phase.
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4. Results
4.1. Results on the Geoeffectiveness Prediction of CMEs

To assess the performance of the geoeffectiveness prediction algorithm, we divide
the data into four types based on the prediction results and actual label. Record the CME
events that are geoeffective and correctly predicted as true positive (TP), the CME events
that are non-geoeffective and correctly predicted as true negative (TN), the CME events
that are geoeffective but incorrectly predicted as false negative(FN), the CME events that
are non-geoeffective but incorrectly predicted as true negative (FP). Based on the four
types of classification results, the metrics for evaluating the prediction of geoeffectiveness
algorithm can be obtained through the following formulas:

Accuracy =
TP + TN

TP + TN + FN + FP
(7)

F1 score =
2 ∗ Recall ∗ Precision

Recall + Precision
. (8)

Accuracy is a widely used metric that measures the performance of a classifier and the
definition is the percentage of the correctly classified positive and negative examples. F1
score is the trade-off recall and precision. Precision is the fraction classified as geoeffective
CMEs that are true geoeffective CMEs and its value is equal to TP

TP+FP , recall is the fraction
of true geoeffective CMEs recovered by the model and its value is equal to TP

TP+FN . Due
to the imbalance of geoeffective and non-geoeffective samples, F1 score is a better choice
metric [53]. And we use F1 score as the main evaluation metric, and Accuracy as the
secondary evaluation metric. The performance of different models is first compared with
the F1 score, and when the F1 score is the same, the Accuracy is further compared. The
two metrics both need a threshold for deciding when the model output in the range [0, 1]
becomes a positive class and we use 0.5 as the default parameter.

We first compare the proposed geoeffectiveness prediction method with traditional
convolutional neural networks (CNNs), including VGG [27], Resnet [28],
MobileNetv2 [54]. VGG increases the depth of the network by stacking 3 × 3 convo-
lution filters, Resnet introduces residual learning to train the deeper neural networks,
MobileNetv2 introduces inverted residual structure on the basis of depthwise separable
convolution. The results are shown in Table 3, our method has significant improvement
in F1 score and accuracy, with an average improvement of 0.041 and 11.8%, respectively.
The main reasons are as follows—firstly, the kernel size of the convolution filter of the
traditional CNNs is relatively small, which is not fit well for the sparse features of the
CME observation image; secondly, the attention mechanism in residual blocks of our
network can distinguish the features of different regions by different attention weights;
thirdly, these traditional CNNs fuse the feature maps of different observation images by
simply averaging the feature maps which may cause the role of the important feature map
is downplayed.

Then, we compare the method of long short-term memory (LSTM) [55] combined with
CNN, which extracts the features of each image through CNN and uses LSTM to combine
time series features, but the result is not good. The main reasons are as follows—one is
that the time interval between adjacent observation images is large, and it leads to the
relationship between time series images become difficult to capture; the other is the number
of time series observation images in each CME event is unfixed, it increases the training
difficulty of LSTM combined with CNN.

In summary, the deep residual network embedded with the attention mechanism and
the feature map fusion module proposed in this paper are effective and the performance of
our method is significantly better than traditional deep learning methods.
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Table 3. Comparison of the geoeffectiveness prediction of CME events with other methods.

Method F1 Score 41 Accuracy 42

ResNet18 0.203 −0.067 59.0% −16.1%

Vgg16 0.235 −0.035 67.4% −7.7%

MobileNetv2 0.249 −0.021 63.4% −11.7%

CNN+LSTM 0.185 −0.085 11.5% −63.6%

Ours 0.270 - 75.1% -

4.2. Results on the Arrival Time Prediction for Geoeffective CMEs

On the arrival time prediction of CME events, the evaluation metric adopts mean
absolute error (MAE). The MAE formula can be defined as follows:

MAE =
1
N

N

∑
i=1
|ypredict

i − ytrue
i |, (9)

where N represents the number of CME events in the testing set, ytrue
i represents the actual

arrival time of the ith CME event, and ypredict
i represents the predicted arrival time.

For comparison with other methods, we chose four well-known CNN models and
three machine learning/deep learning methods, which are used in the CME arrival time
prediction task. The results are shown in Table 4.

In addition to the three CNN models mentioned above, we also add ResNext [31] to
compare. Resnext repeats a building block that aggregates a set of transformations with
the same topology. The mean absolute error of four CNN models is 8.1 h and has been
increased 2.3 h in average when compared to our method. The main reasons for the better
performance of our method are as follows—firstly, our method uses a more suitable kernel
size of the convolution filter; secondly, our method introduces the residual block based
on group convolution to train deeper networks and improve network performance by
increasing the cardinality of the network; thirdly, our method uses cost-sensitive regression
loss function to reduce the error of hard sample.

Meanwhile, we also compare with the machine learning/deep learning methods used
in CME arrival time prediction. Sudar et al. [20] uses FCNN to predict the transit time
for CME events using the initial velocity of the CME and the central meridian distance
of the associated flare as inputs, the MAE is about 11.6 h and is twice the error of our
method. CAT-PUMA [21] uses SVM fitting parameters to predict the arrival time for
geoeffective partial-/full-halo CME events, the MAE is increased 0.1 h when compared
with our method. Moreover, 5.9 h is the best result in a random 100,000 testing set. Both
two machine learning methods are necessary to manually collect the parameters and
if the relevant parameters are missed, errors of the related CME events will be raised.
Wang et al. [23] first uses CNN to predict the arrival time for geoeffective CME events,
with an error of 12.4 h. Compared with our method, the error is greatly increased. The
main reason is that the network is too simple to capture distinguishing features, and it only
uses the observation of the LASCO C2 white light coronagraph as input.

Finally, we determine the value of β in the cost-sensitive regression loss function
through enumeration on the basis of data expansion and deep residual regression network.
As shown in Table 5, the MAE is 6.4 h when using L2 Loss. After switching to cost-sensitive
regression loss, different β all bring a small improvement, with an average improvement of
0.3 h. Among them, the β value of 3 is the optimal choice and the MAE is only 5.8 h.

In summary, our proposed arrival time prediction algorithm is effective and is better
than well-known machine learning/deep learning methods.
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Table 4. Comparison of the arrival time prediction for geoeffective CMEs with other methods.

Method MAE (Hours) 4

Convolutional Neural
Networks

ResNet18 7.6 −1.8

Vgg16 8.6 −2.8

MobilenetV2 8.0 −2.2

ResNext 8.3 −2.5

Machine learning/deep
learning used in CME
arrival time prediction

FCNN 11.6 −5.8

CAT-PUMA 5.9 −0.1

Wang’s CNN 12.4 −6.6

- Ours 5.8 -

Table 5. The performance of different loss functions and different values of β based on data expansion
and deep residual regression network.

Loss MAE (Hours)

L2 Loss 6.4
cost-sensitive regression loss with β = 2 6.1
cost-sensitive regression loss with β = 3 5.8
cost-sensitive regression loss with β = 4 6.2

cost-sensitive regression loss with β = 4.5 6.1

5. Discussion

Time series of solar white-light running-difference images can be used to extract the
morphology features of CMEs by tracking the bright structure in the coronagraph FOV [56].
EUV images of the whole solar disk provide information on CMEs’ source regions with
additional spatial and temporal coverage in eruption observations. Taking combinations
of both observation images as input, our deep learning framework outperforms the state-
of-the-art methods both on the geoeffectiveness and arrival time prediction of the CME
events (see experimental results given in Section 4). Besides, it has the following features:

1. This is the first time that making geoeffectiveness and arrival time prediction of CMEs
in a unified deep learning framework.

2. This is the first time that the CNN method is applied to geoeffectiveness prediction
of CMEs.

3. The only input of the deep learning framework is the time series images from syn-
chronized solar white-light and EUV observation images that are directly observed.

4. Once we get the observation images, we can immediately get the prediction result
with no requirement of manually feature selection and professional knowledge.

5.1. Discussion on the Prediction of Geoeffectiveness

The previous experimental results show that our method is effective for geoeffective-
ness prediction. But there are still many misjudgments, we discuss the main source of
classification error through the confusion matrix on the testing set. As shown in Figure 7,
our method predicts the CME events that are non-geoeffective as geoeffective and 92 CME
events are misclassified. This may be caused by the choice of the threshold, therefore the
performance of our method under different thresholds is analyzed. As shown in Figure 8,
we select 20 thresholds at equal intervals between [0, 1] to verify the performance of the
method. When the threshold is changed from the default 0.5 to 0.7, we get a higher F1 score
and Accuracy, and they are 0.277% and 80.3%, respectively. The main reason is that the
threshold is changed from 0.5 to 0.7, the number of CME events incorrectly predicted as
geoeffective has greatly decreased while the number of CME events that correctly predicted
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as geoeffective is almost unchanged. However, with the threshold continues to increase,
almost all CMEs are predicted as non-geoeffective, and due to the imbalance of samples in
the test set, samples that are non-geoeffective account for about 90%, so the Accuracy is
still continue to improve but F1 score has reduced sharply. This phenomenon also reflects
the rationality of our evaluation metrics. For unbalanced data, F1 score can better reflect
the performance of the model. When the F1 score of two methods is the same, we can
distinguish through Accuracy. In the practical applications, we also can select different
thresholds according to the actual needs.

Figure 7. The confusion matrix of the geoeffectiveness prediction results of our method on the
testing set.

Figure 8. The performance of our method in geoeffectiveness prediction with different thresholds on
the testing set.

5.2. Discussion on the Arrival Time Prediction for Geoeffective CMEs

Here, we first discuss the relationship between the predicted transit time of our
method and the actual transit time on the testing set. As shown in Figure 9, the different
blue dots represent the different CME events. The black dashed line representing the
predicted transit time is equal to the actual transit time. The two green dashed lines show
the deviation from the black line and the deviation is 5.8 h, which represents the MAE of
our method. From the distribution of the dots, we can find that most dots are between
the two green dashed lines and the dots are scattered close to the black dashed line. This
proves that our method is effective for most CME events, and the prediction error of most
CME events is less than 5.8 h. Specifically, we use the probability of detection (POD) to
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quantify the probability that the CME prediction error is less than the MAE of our method,
and the formula is defined as follows:

POD =
Hits

Hits + Misses
, (10)

where the absolute prediction errors less than 5.8 h are called Hits and others called Misses.
The POD of our method is 60.7%.

Then, we discuss the detailed comparison of our method for CMEs in the testing set
with four well-known CNN models (VGG, Resnet, MobileNetv2, Resnext). As shown in
Figure 10, the red dash-dotted line indicates the average absolute errors of CNN methods
and its value is 8.1 h. The blue dots (53.5%) represent the events that our method has a
better performance and the error is less than 8.1 h. The green dots (14.2%) represent the
events that our method has a better performance but the error is greater than 8.1 h. The
red dots (14.2%) represent the events that our method performs worse and the error is
less than 8.1 h. The purple dots (17.8%) represent the events that our method performs
worse and the error is greater than 8.1 h. In general, our method performs better for 67.7%
CME events.

Figure 9. The relationship between the predicted transit time and the actual transit time of our
method on the testing set.

Figure 10. Compared with other methods on the arrival time prediction for each CME event on the
testing set.

5.3. Applicability of the Proposed Framework in the Feature

When our method completes training and obtains the optimal weights, once we feed
the observation images to the framework, we can immediately obtain the prediction results.
In the future study, with the continuous high frequency of CME events, more CME events
and corresponding satellite observation images will be collected, so the data set will be
further expanded. As the size of the data set continues to increase, the performance of the
model is expected to be further improved. Meanwhile, with the gradual implementation
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of new satellite observation projects, such as Advanced Space-Based Solar Observatory,
continuous high-temporal-resolution images of solar observations will also improve the
performance of our method.

6. Conclusions

In this paper, we propose a deep learning framework based on satellite time series
observation images that can predict both the geoeffectiveness and the arrival time of CME
events with no requirement for manually feature selection or professional knowledge.
We construct a data set with 2400 partial-/full-halo CME events and 246 geoeffective
partial-/full-halo CME events from 1996 to 2018. On the geoeffectiveness prediction of
CME events, 2400 CME events are randomly divided into training set and testing set at
approximately 4:1 ratio. On arrival time prediction of geoeffective CMEs, 246 geoeffective
CME events are randomly divided into a training set and a testing set at approximately 8:1
ratio. Extensive experiments are conducted by comparing with state-of-the-art methods.

The main results of this study can be summarized as follows. First, the deep learning
framework has been successfully applied to the geoeffectiveness and arrival time prediction
of CME events. Second, on the geoeffectiveness prediction of CMEs, we propose a deep
residual network embedded with the attention mechanism and the feature map fusion
module to extract key regional features and fuse the features from each image. Third,
data expansion method, deep residual regression network and cost-sensitive regression
loss function are proposed to improve the performance of the arrival time prediction of
CMEs. Fourth, our method is superior to other state-of-the-art deep learning methods on
the geoeffectiveness prediction of CMEs, it can achieve 0.270 F1 score and 75.1% accuracy.
Fifth, regarding arrival time prediction, our method is better than traditional CNNs and
the machine learning/deep learning methods applied previously and the mean absolute
error is only 5.8 h.

In this work, we have demonstrated the importance of satellite time series images.
In the future, we will combine the parameter features such as the angular width, average
speed, estimated mass, and so forth, with observation images for multimodal machine
learning, and the features extracted from the image can be combined with other features to
further improve the performance of the model. Furthermore, future work will introduce
refined predictions to give a high-level priority to CMEs associated with stronger solar
flares (i.e., M class or above flares) to reduce potential damages to the maximum.
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