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Abstract: The demand for rice production in Asia is expected to increase by 70% in the next 30 years,
which makes evident the need for a balanced productivity and effective food security management
at a national and continental level. Consequently, the timely and accurate mapping of paddy rice
extent and its productivity assessment is of utmost significance. In turn, this requires continuous
area monitoring and large scale mapping, at the parcel level, through the processing of big satellite
data of high spatial resolution. This work designs and implements a paddy rice mapping pipeline in
South Korea that is based on a time-series of Sentinel-1 and Sentinel-2 data for the year of 2018. There
are two challenges that we address; the first one is the ability of our model to manage big satellite
data and scale for a nationwide application. The second one is the algorithm’s capacity to cope with
scarce labeled data to train supervised machine learning algorithms. Specifically, we implement an
approach that combines unsupervised and supervised learning. First, we generate pseudo-labels
for rice classification from a single site (Seosan-Dangjin) by using a dynamic k-means clustering
approach. The pseudo-labels are then used to train a Random Forest (RF) classifier that is fine-tuned
to generalize in two other sites (Haenam and Cheorwon). The optimized model was then tested
against 40 labeled plots, evenly distributed across the country. The paddy rice mapping pipeline is
scalable as it has been deployed in a High Performance Data Analytics (HPDA) environment using
distributed implementations for both k-means and RF classifiers. When tested across the country,
our model provided an overall accuracy of 96.69% and a kappa coefficient 0.87. Even more, the
accurate paddy rice area mapping was returned early in the year (late July), which is key for timely
decision-making. Finally, the performance of the generalized paddy rice classification model, when
applied in the sites of Haenam and Cheorwon, was compared to the performance of two equivalent
models that were trained with locally sampled labels. The results were comparable and highlighted
the success of the model’s generalization and its applicability to other regions.

Keywords: pseudo-labeling; paddy rice mapping; distributed learning; semi-supervised learning;
food security; high performance computing

1. Introduction

Over the last decades, the continuous increase in global population and need for
nutrition, in combination with the impact of climate change on food production, is ex-
pected to affect the food sector significantly [1]. The agricultural productivity needs to
be strengthened in order to accommodate the needs of the growing population, while
preserving environmentally-friendly and sustainable agricultural practices. In this context,
there is a need for the timely, large-scale and accurate monitoring of agricultural production
and the provision of the necessary knowledge for evidence-based decision making on food
security matters [1,2].
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Rice is a widely planted crop in the world and the most important food staple in Asia.
Merely fifteen Asian countries, including South Korea that is the study area of this work,
account for 90% of the global rice production and the demand is expected to increase by
70% in the next 30 years [3]. These figures indicate that there is pressing need for timely
and accurate knowledge for rice’s spatial distribution and its expected yield at national
and continental scales [4].

According to the Korean Statistical Information Service (KOSIS), South Korea culti-
vates approximately 730 thousand hectares and produces more than 3.5 million tonnes of
rice annually, which amounts to 0.5% of the global rice production. Furthermore, the global
food security index by the Economist Intelligence Unit ranks South Korea’s performance
at the top 30 (29/113), with a score 72.1. However, there is systematic overproduction of
rice that results in large storage costs and shortage in other major grains. This is due to the
governmental direct payment scheme that focuses on rice and gives limited incentives for
the cultivation of other crops [5]. Even more, South Korea scores a negative 85%, referring
to the percentage difference from the mean global score, in the crop storage facility indi-
cator of the global food security index. This indicator is based on the assessment on the
governmental investments to improve crop storage.

To address the required large-scale monitoring of agricultural production, Earth Obser-
vation (EO) data are widely used and constitute a unique basis for deriving the necessary
information. For the purposes of food security monitoring, the Food and Agriculture
Organization of the United Nations (FAO), the European Union (EU), but also global
and regional initiatives such as the Group on Earth Observations Global Agricultural
Monitoring (GEOGLAM) and Asian Rice Crop Estimation and Monitoring (Asia-RiCE),
have invested greatly in the exploitation of EO to monitor the extent, health, growth and
productivity of the agricultural land over very large areas [6–9].

The monitoring and mapping of paddy rice extent in South Korea and the estimation
of its productivity is currently performed by the Korea Rural Economic Institute (KREI).
The current approach is based on costly and time-consuming field visits and the collection
of field data at sampled points. This point information is then spatially interpolated
through statistical techniques in order to extract the required nationwide rice production
assessments. In this regard, EO derived information through the implementation of
Artificial Intelligence (AI) techniques is a key enabler for facilitating detailed assessments
over large areas. This is achieved by providing spatial exhaustiveness, timeliness and high
thematic precision.

However, AI algorithms require a significant amount of ground truth data to train the
prediction models, which in most of the cases are scarce and of poor quality. The issue of
getting access to reliable ground truth data becomes even more challenging when dealing
with large scale applications that cover vast areas at national or continental level. Another
issue linked to the detailed, precise and exhaustive mapping of paddy rice extent relates to
the spatial resolution of the EO data used.

Over the past decades, several studies have been conducted for paddy rice map-
ping, using MODIS sensor data as the main source for crop monitoring. The high revisit
frequency of the MODIS missions offers significant capabilities for continuous monitor-
ing, and therefore it has been utilized in relevant studies both at global or continental
scale [10–12] and at national scale [13–15]. However, due to the low spatial resolution of
MODIS images, detailed thematic information is not feasible. This limitation has been
resolved by employing higher spatial resolution satellite images, such as the Landsat TM
data [16–18]. However, the Landsat TM data are characterized by longer revisit times
and hence suboptimal temporal resolution for this kind of applications. Additionally,
Synthetic Aperture Radar (SAR) data have been used in a plethora of studies for paddy
rice mapping. The SAR signal gets mirrored at the surface of calm and open water bodies,
being particularly useful to detect paddy rice that is inundated during the first stages of its
cultivation [4,19–21].
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In recent years, new satellite missions that offer imagery of improved spatial and
temporal resolution have introduced a paradigm shift in the potential for new applications,
but also in the ways in which data is processed and knowledge is extracted. An example
of such missions are the Sentinels, which freely and systematically supply images of high
spatial and temporal resolution at a global scale. However, these EO data streams, which
can be described as Big Data, demand increased computational power for their effective
and efficient exploitation [22]. The Sentinel-1 and Sentinel-2 missions are ideal for the
monitoring of agriculture, with the latter being primarily designed for such applications.
The coverage of large areas, the short revisit times and the high spatial resolution of SAR
and optical imagery has made Sentinel-1 and Sentinel-2 missions the main sources of EO
data for numerous studies that address the monitoring of food security and the control of
agricultural policies [23–26]. The common denominator for all these studies has been the
accurate and spatially detailed mapping of crops.

In the context of paddy rice mapping, multiple classification techniques have been
utilized, including neural networks, supervised and unsupervised machine learning tech-
niques, but also rule-based algorithms. Indicatively, Tian et al. (2018) have introduced a
k-means unsupervised classifier for mapping multi-season (early, middle and late) paddy
rice using Sentinel-1 and Landsat-8 data [27]. Torbick et al. (2017) have developed a rice
monitoring system, combining Sentinel-1, Landsat-8 OLI and PALSAR-2 data using a RF
classifier [28]. Nguyen et al. (2016) have analyzed the relationship between the rice grow-
ing cycle and the temporal variation of Sentinel-1 backscatter (VV and VH) to then map
rice using a decision tree on the extracted phenological parameters [29]. Finally, Jo et al.
(2020) have tested three kinds of deep learning approaches for paddy rice classification
to overcome the scarcity of labeled data. These deep learning applications included data
augmentation, semi-supervised classification and domain-adapted architecture [21].

Nevertheless, in most studies the ground truth samples to train supervised classifiers
are manually collected. In other cases, authors employ unsupervised learning techniques
that are computationally costly due to their exhaustive nature. Furthermore, few studies
have attempted large-scale paddy rice mapping at the field level, and the consequent
management of big EO data through distributed computing or other pertinent big data
technologies. These challenges undermine the development of a transferable, site in-
dependent and computationally economic framework for rice mapping. In this regard,
and under the key considerations of scalability, reproducibility and transferability that
are essential for large scale applications, this study implements a high spatial resolution
paddy rice classification pipeline that is largely independent of the hard-to-attain ground
truth information.

Specifically, this work implements a hybrid model that is based on a large-scale
supervised paddy rice mapping architecture using pseudo-labels. This study contributes by
managing to generate useful labeled data in a fully dynamic approach, using unsupervised
learning (Section 3.2). Then, the extracted rice clusters are used to train an RF classifier,
which is parameterized to minimize the generalization error when the model is applied
to other areas (Section 3.4). Overall, this study implements a comprehensive pipeline for
paddy rice mapping at very large scales and with high spatial resolution, using minimal
ground truth information.

In addition, we utilize a High Performance Data Analytics (HPDA) environment for
managing and efficiently processing the large feature spaces of Sentinel-1 and Sentinel-2
time-series (Section 3.4). We contribute with a fully distributed Apache SPARK based work-
flow that links the custom-made temporal interpolation on PySPARK dataframes algorithm
(Section 3.1) and the distributed implementations of the k-means and RF algorithms. This
way, we fully exploit the HPDA infrastructure, minimising the computational cost. Finally,
in Section 5 we discuss the robustness of the pseudo-labeling method, the generalization of
the paddy rice classification model and the potential for the pipeline to scale.
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2. Materials
2.1. Study Area

The study area consists of three sites in South Korea, which are located in separate
climatic and agro-climatic zones and are described by diverse paddy rice cultivation
characteristics [30,31].The climatic and agro-climatic zones of South Korea are shown in
Figure S3. The three sites have been selected in order to first allow for and then test the
generalization of the paddy rice classification model.

South Korea is in the temperate monsoon and continental climate zones. It has an
average annual temperature that ranges from 10 ◦C to 15 ◦C, reaching the highest values
in August (23–26 ◦C) [32]. The annual precipitation ranges from 1000 mm to 1800 mm in
the southern part of the country and from 1200 mm to 1500 mm in the central region [33].
According to the Korea Meteorological Administration, over half of the total precipitation
falls during the summer season due to the Asian Monsoon.

The reference site, based on which the generalized paddy rice classification model
was trained, comprises the region around the cities of Seosan and Dangjin that are located
at the northwestern end of the South Chungcheong province (Figure 1B).

Figure 1. Study area in South Korea—(A) Cheorwon, (B) Seosan-Dangjin and (C) Haenam.

Seosan and Dangjin are recorded as the highest rice producers in the country [34].
The sites shown in Figure 1A,C are used for the validation and testing of the paddy rice clas-
sification model. Haenam (Figure 1C) is located in South Jeolla Province, below the Taebaek
Mountains, and is characterised by an oceanic and rather warm climate [35]. Cheorwon
(Figure 1A) is located next to the border with North Korea, in the Gangwon province.

The different climatic and paddy rice cultivation characteristics for the three sites
are summarized in Table 1, indicating their respective rice transplanting and harvesting
periods [34,36,37]. Table 1 and Figure 2 reveal that the three sites are described by diverse
conditions that is expected to first enable and then showcase the generalization of the
paddy rice classification model. Specifically, the model is trained using pseudo-labels in
the reference site of Seosan-Dangjin, then optimized (Section 3.4) and tested in the Haenam
and Cheorwon sites (Section 4).
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Table 1. Climatic and paddy rice cultivation characteristics for the three study sites [30,33–37].

Seosan/Dangjin Haenam Cheorwon

Mean Elevation (m) 37 45 215
Annual Mean Temperature (C) 11.911.4 13.4 10.2

Annual Mean Precipitation (mm) 1285.7/1158.7 1325.4 1391.2
Annual Mean Humidity (%) 74.1 73.4 70.4

Climate zone Central Southern Northern
Agro-climatic zone Western central plain [30]/Zone 2 [31] South western coastal [30]/Zone 1 [31] Northern central inland [30]/Zone 4, 5 [31]
Rice area 2018 (ha) 37,728 (sum) 18,484 9429

Rice yield 2018 (tons) 206,475 (sum) 89,106 52,653
Rice transplanting late May—mid June early—mid June mid—late May

Rice harvesting early September to mid October late September to early October early to mid September

2.2. Satellite Data

In this study, we used both optical and SAR images. This combination of Sentinel-1
and Sentinel-2 data enhances the discrimination between the land use/land cover targets,
exploiting the weather independent SAR data to create dense time-series of satellite imagery.
Additionally, SAR data are ideal for rice mapping, as paddy rice is inundated during the
initial stages of the cultivation. SAR backscatter coefficient values are low for calm water
bodies and therefore rice is strongly differentiated from other crops [38–41]. Sentinel-1
GRD and Sentinel-2 L1C data for the year 2018 were acquired from the Umbrella Sentinel
Access Point, developed by the National Observatory of Athens.

Rice paddies are inundated approximately one month before transplanting takes place.
However, the start of the inundation period differs from place to place. For instance in
the Haenam site, transplanting takes place a bit later in the year. Figure 2 shows the mean
values of NDVI for rice paddies in each site.

Figure 2. NDVI time-series for the three study sites; Seosan-Dangjin (Blue), Haenam (Orange),
Cheorwon (Green). The up-pointing triangles enclose the transplanting period, while the down-
pointing triangles enclose the harvesting period.

The faded colored area around each curve illustrates the standard deviation. The dif-
ferences in the growth of paddy rice among the sites are evident. The high standard
deviation values for the months of April and May on the Haenam curve can be explained
by the fact that certain parcels go through one winter and one summer cultivation within
the same year. This results in a slight delay of the transplanting period, as it is indicated by
the orange curve in Figure 2.

Furthermore, the period in which transplanting can take place is enclosed within
the up-pointing triangles at the beginning of each NDVI curve. Respectively, the down-
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pointing triangles at the end of each curve correspond to the periods in which harvesting
can occur. Therefore, in order to create a generalized and robust rice classification model
that is not subject to the aforementioned region-based differences, the feature space is
truncated to include acquisitions starting from June onward, for all sites.

After pre-processing all available Sentinel-2 images to Level-2A products, using the
Sen2Cor software, we selected the cloud-free instances based on the percentage of cloud
coverage according to the generated Scene Classification [42]. The cloud mask produced
from the Scene Classification product, included the classes of high probability clouds,
medium probability clouds, cirrus, snow and cloud shadows. Then, only the images with
cloud coverage less than 70% over the site were included in the feature space. The relatively
cloud-free Sentinel-2 datasets used for each site, covering June to October of 2018, amounted
to 16 images for Seosan-Dangjin (128 GB), 13 images for Haenam (130 GB) and 19 images
for Cheorwon (90 GB).

Figure 3 indicates the acquisition dates for the selected Sentinel-2 images for all three
sites. These images, along with the generated Vegetation Indices (VIs), construct the
Sentinel-2 component of the feature space.

Figure 3. Timeline of the phenological stages for paddy rice in South Korea, along with the acquisition
dates of the Sentinel-2 images for 2018.

2.2.1. Sentinel-1 Data

A time-series of Sentinel-1 images was acquired between the dates 1 June 2018–
31 October 2018. Specifically, we used the Level 1 Ground Range Detected (GRD) products
in Interferometric Wide (IW) swath mode. The IW mode acquires data with a 250 km
swath at 5 m by 20 m spatial resolution. The pre-processing of Sentinel-1 data included
(i) clipping to the area of interest, (ii) radiometric calibration, (iii) speckle filtering using
the Lee filter, (iv) terrain correction using Shuttle Radar Topography Mission (SRTM) 10-m
and (v) conversion of backscatter coefficient (σ0) into decibels (dB). The steps are shown in
Figure 4. The VV and VH bascatter coefficient time-series are sampled with a fixed 10-day
step, averaging the values in each 10-day window. This is done in order to slightly reduce
the dimensionality of the Sentinel-1 component of the feature space.
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Figure 4. Pre-processing workflow for generating Sentinel-1 VV and VH backscatters.

2.2.2. Sentinel-2 Data

For this study, a time-series of Sentinel-2 MSI scenes were acquired for the period June
to October 2018. The Sentinel-2 images consist of 13 spectral bands at 10, 20 and 60 m of
spatial resolution. The 60 m resolution bands, namely B01, B09 and B10, have not been
utilized. Furthermore, the images have been atmospherically corrected, transforming them
from Top-Of-Atmosphere (TOA) Level 1C products to Bottom-Of-Atmosphere (BOA) Level
2A products, using the Sen2Cor software [43]. The data were then re-sampled to 10 m
spatial resolution, re-projected and clipped over the areas of interest.

Furthermore, three vegetation indices were computed to enhance the feature space,
namely the Normalized Difference Vegetation Index (NDVI) (Equation (1)), the Normalized
Difference Water Index (NDWI) proposed by Gao et al. (1996) (Equation (2)) and the Plant
Senescence Reflectance Index (PSRI) (Equation (3)) [44–46]. The NDVI and NDWI indices
have been extensively used in the EO-based crop classification literature, as they are good
indicators of the biomass and water content of crops. On the other hand, PSRI is particularly
sensitive to the crops’ senescence phase [25,47–51].

ndvi =
nir− red
nir + red

(1)

ndwi =
nir− swir
nir + swir

(2)

psri =
red− blue
red_edge

(3)

2.3. Labeled Data

This study focuses on generating pseudo-labels, using unsupervised learning, in order
to train a distributed RF classifier. Nevertheless, labeled sets have been both acquired and
generated to (a) select the optimal clustering for pseudo-labels that will form the training
set (Section 3.2), (b) fine-tune the model for nationwide generalization (Section 3.2) and
(c) test the model generalization (Section 4).

Level-3 land cover maps were used as an initial reference point for generating the la-
beled data, as made available from the Korean Ministry of Environment (KME). The Level-3
land cover maps are generated using Very High Resolution (VHR) satellite imagery
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(KOMPSAT-2 and IKONOS) and aerial ortho-photos from one or two years [21]. The map
objects are 3-m wide for linear elements and 100 m2 for plane elements and therefore
the spatial resolution is comparable to the corresponding resolution of the Sentinel data.
However, the maps are not updated every single year. Furthermore, it was deduced that
they tend to be unreliable and subject to significant errors with respect to both object
geometries and the land cover labeling. Nonetheless, they were an adequate starting point
for our labeling process.

The labeled data generated in this study have been derived from a Sentinel-1 and
Sentinel-2 based photo-interpretation. The labeling process refers to the identification of
rice and non-rice pixels and it was applied to all three study sites, for the inspection year
of 2018. The method has been based on the most recent Level-3 land cover map for each
respective site, which were then appropriately corrected to be compliant to the year of
inspection. To this end, the first step was to utilize a change detection method, as published
in [52], to update the available Level-3 land cover maps for each site. This was done by
identifying large changes on rice objects between the year of the land cover map production
and the year of inspection. Those instances were later removed from the rice class of the
updated maps.

Consequently, two different experts conducted blind photo-interpretation using multi-
temporal Sentinel-1 and Sentinel-2 images and the updated Level-3 land cover maps as a
reference. Each of the first two interpreters independently assigned labels to approximately
5–10% of each site. Then, a third interpreter determined the final labels by making an ulti-
mate decision on the disagreements of the first two. The samples were evenly distributed
in space and thus representative of the entire site to ensure reliable model optimization and
classification assessment. Additionally, the samples were taken from diverse landscapes in-
cluding agriculture, water, forest and urban classes. The locations of the photo-interpreted
samples are presented in Figure S1.

The inundation and transplanting periods for paddy rice differ among the study
areas. Specifically, in Cheorwon the inundation starts in the mid-late April, while in
Seosan-Dangjin in the end of April and in Haenam in the middle of May. Therefore,
the photo-interpretation analysis included Sentinel-1 and Sentinel-2 data starting from
the month of April. The sensitivity of Sentinel-1 data to water has been primarily used to
identify the inundated areas before the start of the transplanting phase. Low backscatter
coefficient values, revealing water content, and the corresponding geometric patterns of
fields have served as a first indication to separate and label the rice paddies [28]. Figure 5
shows the photo-interpretation rules used in the first step of the labeling process.

Rules 1–3 had to be satisfied, while rules 4 & 5 served as an additional indication for
the labeling of rice paddies. To be noted that in certain cases, and especially due to the size
of a paddy rice or its narrow shape (e.g., terrace paddy), it was difficult to extract reliable
information on existing inundation patterns using solely Sentinel-1 data. To overcome this
problem, an analysis of NDWI multi-temporal profiles was additionally carried out for
candidate rice paddies that had satisfied several or all of rules 2–5, but not rule 1. Actually,
in cases that NDWI was found smaller than 0.2 before transplanting, in the specific parcel
was assigned the non-rice label, otherwise the decision process was moving to the next
step that made use of Sentinel-2 multi-temporal photo-interpretation keys. An indicative
example is illustrated in Figure 6.
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Figure 5. Example of the photo-interpretation rules used for creating the labeled dataset.
The grayscale image is the VH backscatter for the 31 May 2018 Sentinel-1 acquisition and the colored
image is the RGB for the 18 April 2018 Sentinel-2 acquisition. The latter is used for feature clarity.

Figure 6. Examples of photo-interpretation keys based on the time-series of Sentinel-2 RGB (top) and
NDVI images (bottom).

The interpretation of the time-series of Sentinel-2 true color and false color (B08-B04-
B03) composites has proven to be particularly useful in examining whether or not a parcel
complies with the different phenological stages of rice. In the end, the examination of NDVI
and NDWI multi-temporal signatures were used to guide the final decision of the photo-
interpreter. Their decision was dictated by the fact that NDWI gets higher values before
the transplanting period and starts lessening thereafter. On the other hand, NDVI exhibits
the inverse phenomenon, as it increases after the transplanting period, reaching its peak
values at the end of flowering, when it starts decreasing again as rice enters in its ripening
phase (Figure 6). This procedure was applied in all three study sites. The generated labeled
sets for the Seosan-Dangjin, Haenam and Cheorwon sites included 1,675,632 non-rice and
1,287,183 rice pixels, 2,944,147 non-rice and 892,141 rice pixels and 1,137,195 non-rice and
195,942 rice pixels, respectively.
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Finally, in order to further test the success in the generalization of the model, its
transferability and robust applicability in different agro-climatic zones over the entire
country, the labeled set created by the authors of [21] was additionally included and used
in this study (Figure 7). For this, the authors have identified ten evenly distributed sites
in South Korea that fall into ten different agro-climatic zones according to [30]. Each site
includes four plots in agricultural, urban, forest and water abundant landscapes. The size of
the plots ranged from 6 to 6.5 km2. By applying a photo-interpretation study, the necessary
test data were produced based on the existing level-3 land cover maps that were updated to
reflect the 2018 reality. This was done using visual interpretation and cross-validation with
the employment of three independent interpreters, who were assisted by Google Earth and
domestic street view data (https://map.kakao.com; https://map.naver.com).

Figure 7. Location of test sites across South Korea. Each site is composed of four plots that are
respectively characterized by agricultural, urban, forest and water landscapes.

3. Methods
3.1. Sentinel-2 Time-Series Interpolation

The cloud covered instances in the Sentinel-2 time-series, which were masked out, are
represented as null values in the feature space. We applied linear interpolation in order
to fill in these gaps. Due to the large volume of the data, this method was implemented
in PySpark and processed in the HPDA. Since there is not any ready-to-use function to
interpolate a PySpark Dataframe, this interpolation method was developed from scratch.
This allowed for the mass processing of the time-series, efficiently filling in the missing
values of large datasets.

Then, and in order to avoid possible temporal gaps between the available acquisitions,
we transformed the Sentinel-2 feature space to a time-series of fixed step, generating values

https://map.kakao.com
https://map.naver.com


Remote Sens. 2021, 13, 1769 11 of 26

that represent the 5th, 15th and 25th day of each month. In order to do this, a workflow of
two separate interpolation methods was followed.

Initially, the method illustrated in Figure 8 examines the time windows between the
1st and the 10th, the 11th and the 20th and the 21st until the end of each month. A weighted
average interpolation is applied to the acquisitions that fall within each window and it
then constructs part of the fixed-step time-series. However, it is likely that there are not
any observations within a specific window, resulting in the absence of features for the
corresponding temporal instance. In order to fill these remaining temporal gaps, linear
interpolation was applied between the previous and next available fixed temporal instances.

Figure 8. An example of the Sentinel-2 temporal interpolation methodology for images acquired
between 20 July and 10 September 2018.

3.2. Pseudo-Labeling

In an attempt to address the common issue of ground truth data scarcity, we examined
a pseudo-labeling approach to generate labeled data for training. This can be done using
only a small amount of ground truth data (see Section 5). The pseudo-labels were generated
using a distributed k-means classifier, employing as input the time-series of the vegetation
indices (NDVI, NDWI, PSRI) for the months of June and July.

K-means is one of the simplest and most popular unsupervised machine learning
algorithms [53–56]. The algorithm aims to cluster the data into k groups, where the variable
k is specified by the user. At the beginning, k different clusters are created, using k
randomly generated candidates. Then every entity is assigned to the nearest cluster based
on their features. In the next step, the entities are reassigned to the nearest cluster that is
now represented from the mean value of the entities that belonged to it from the previous
step. The algorithm keeps iterating until the assignment of data points to clusters remains
unchanged. The outputs of the algorithm are the means of the k clusters (centroids), as well
as the labels for each sample, which are then used as training data.

In our approach and due to the large volume of data the distributed k-means version
of the Pyspark API was used. First, an execution of k-means is performed with only two
clusters (k = 2), separating land from water. Having extracted the land pixels, a second-level
clustering for multiple k values (5–15) takes place (Figure 9).
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Figure 9. Workflow for generating rice pseudo-labels using k-means clustering.

Each pixel is assigned to a different cluster. However, there is no further information
about the land cover that each cluster represents. Thus, a method to identify the rice
cluster for all individual clusterings (for k = 5–15) is required. This is achieved by the
Mean Squared Error (MSE) between the centroid of each cluster and the mean time-series
signature of the rice class, as extracted from the labeled set (Section 2.3).

Once the rice cluster has been identified for each individual run, the precision and
recall for this cluster is calculated against the labeled set. This is the only instance when
labeled data are utilized in the classification process. The clustering with the best precision
and recall combination is selected, and these extracted rice labels are then used for training
the RF (Section 3.4). The optimal combination of precision and recall is shown in Section 4.

3.3. Model Performance Evaluation

In this study, four metrics were used to evaluate the performance of the paddy
rice classification model and that is the precision, recall, kappa coefficient and F1 score.
The aforementioned metrics are derived from the confusion matrix between the model
predictions and the ground truth stemming from the validation and test sets [57]. Precision
(Equation (4)) reveals the actual number of pixels that the model has predicted correctly,
whereas recall (Equation (5)) denotes the proportion of the correctly classified pixels
against the total number of pixels for a particular class [58]. In addition, the kappa
coefficient (Equation (7)) identifies the difference between the actual classification and a
random classifier; therefore removing the component of random agreement [59]. Finally,
classification performance is also evaluated using the F1 score (Equation (6)), which is the
harmonic mean of precision and recall [60].

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1score =
2

2 · TP + FP + FN
(6)
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Kappa =
po − pe

1− pe
(7)

where TP is the number of True Positive instances, FP the number of False Positive, FN the
number of False Negative, po is the relative observed agreement between the ground truth
and the prediction, and pe is the hypothetical probability of chance agreement.

3.4. Supervised Classification Using Pseudo-Labels

The Random Forest (RF) is an ensemble classifier based on the decision tree model.
The training data are split into multiple different subsets, using the bootstrap method,
and each subset creates a new decision tree. Finally, a forest is constructed from the different
decision trees and predictions are made through majority voting [61].

In this study, a distributed RF implementation was employed in order to address
the great complexity that comes with the large scale application of paddy rice classifica-
tion. The algorithm utilized MLLib, a library of Apache SPARK, in which many of the
optimizations are based upon Google’s PLANET project [62]. First of all, each tree of the
RF ensemble is trained independently, thus multiple trees can be trained simultaneously
on different nodes. Further, MLLib enables the parallelization on each single tree of the
ensemble, allowing for the concurrent training of multiple sub-trees. The optimal number
of these sub-trees is optimized on each iteration of the algorithm, depending on memory
constraints [63].

MLLib optimizes the algorithm using techniques to avoid unnecessary parses on data.
For example, splits for every tree node of the same level are computed simultaneously with
only one pass over the data, rather than one pass for each node individually. For the best
split computation, features are separated into bins, which are then used to calculate useful
statistics for the splitting. These bins are precomputed for each of the instances, thereby
saving computational time.

The distributed RF classification pipeline has been deployed on an HPDA environ-
ment, which gives the ability to train a model in significantly less time than a conventional
machine. In this study, we used the Cray-Urika-GX of the High-Performance Computing
Center Stuttgart (HLRS). The Cray-Urika-GX comprises 41 nodes, with 512GB of RAM
and 2TB of disk capacity each. Each node is composed of 2 Intel BDW 18-Core (2.1 GHz)
processors. For this work, up to 16 nodes were utilized for the experiments, making it
possible to explore multiple parameterizations of the RF model in a short amount of time.

The model was trained on the pseudo-labels generated in the Seosan-Dangjin site.
The hyperpameters were optimized using half of the labeled samples for the Haenam and
Cheorwon sites (validation set). The other half was used for testing the performance of the
optimized model, as presented in Sections 4 and 5 (test set). Figures 10 and 11 demonstrate
how the kappa coefficient responds to the depth size and number of trees of the RF model.

For the Haenam site, the kappa coefficient increases for larger depth sizes. This is true
until the depth parameter becomes equal to 8, after which the kappa coefficient slightly
decreases. For the Cheorwon site, the kappa coefficient increases almost linearly with an
increasing depth, until it reaches a plateau for depth values larger than 12.

The response of the kappa coefficient for a varying number of trees, in combina-
tion with several depth values, was observed for tens of experiments in the range 10–400.
In Figures 10 and 11, we depict five indicative cases that fully describe the relevant response
of the RF. For 15 trees, the kappa values for both sites are less than optimal, although satis-
factory. For 35 or more trees, however, the performance stabilizes and displays marginal
differences for all different depth values.
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Figure 10. Kappa coefficient of the Haenam site for models trained on pseudo-labels of the Seosan-
Dangjin site, with various depth sizes and number of trees.

Figure 11. Kappa coefficient of the Cheorwon site for models trained on pseudo-labels of the
Seosan-Dangjin site, with various depth sizes and number of trees.

The value of choice for the number of trees parameter was 50, as a trade-off between
accuracy and computational complexity. In Figure 12 is displayed the relative performance
between the two sites for increasing depth size. The precision and recall evolution plots
are run for a fixed number of trees equal to 50.

It is observed that for increasing depth values, the scores decrease for precision and
increase for recall, as expected. However, the performance for the Haenam site and for
depth sizes larger than 12 appears to lose not only in precision but also in recall. This
indicates model overfitting. This phenomenon is evident in the Haenam site mostly because
the transplanting period commences later in the year. Starting the time-series that makes
up the feature space from June, and not earlier, partly resolved the issue. Nonetheless,
large depth sizes capture more of the Seosan-Dangjin site particularities that has a negative
impact in the generalization of the model to areas with different characteristics, such as the
Haenam site. For this reason the depth parameter used was set to 12.
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Figure 12. Recall and Precision of the Haenam and Cheorwon sites, for models trained with pseudo-labels of the Seosan-
Dangjin site, with 50 trees, various depths.

4. Results
4.1. K-Means Clustering

As mentioned in Section 3.2, we perform dynamic clustering for multiple k values to
generate pseudo-labels. The RF model was then trained on the pseudo-labels that come
from the Seosan-Dangjin site. Nevertheless, the k-means algorithm was executed for all
three study sites. This was done in order to showcase the robustness of the pseudo-labeling
method, while at the same time generate local pseudo-labels for training individual RF
models for the Haenam and Cheorwon sites. The locally trained models for these two sites
are then compared to the predictions of the Seosan-Dangjin site model to demonstrate the
success of the generalization (Section 5).

In Table 2 is shown the precision, recall, F1-score and the optimal number of clusters
for the k-means clustering in each of the sites. It can be observed that for all sites the
performance scores are satisfactory for both the rice and non-rice classes.

Table 2. Pseudo-labeling performance metrics and the optimal number of clusters for the rice and
non-rice class per site.

Class Site Precision Recall F1-Score Clusters

Rice
Seosan/Dangjin 97.01% 91.82% 94.35% 7

Haenam 94.16% 88.09% 91.03% 8
Cheorwon 97.63% 88.59% 92.89% 7

Non Rice
Seosan/Dangjin 93.91% 97.81% 95.82% 7

Haenam 96.45% 98.34% 97.93% 8
Cheorwon 98.02% 99.62% 98.81% 7

The implemented unsupervised classification method is dynamic, as it tries out mul-
tiple k values and selects the most appropriate. It is also robust, as it returns predictions
of comparable accuracy for different areas of application. The best k is selected to appro-
priately balance precision and recall. This trade-off combination of the two metrics was
defined by observing the results of multiple experiments.

The experiments were evaluated using the RF accuracy metrics, therefore examining
the quality of the pseudo-labels in their capacity as training samples. The experiments
revealed particular sensitivity to the recall metric. Experiments of recall smaller than
85% yielded sub-optimal RF classification results, as the training set was not adequately
representative. Therefore, the first condition for selecting the best clustering was that recall
must be larger than 85%. Precision is also very important, securing the minimization of
noise in the pseudo-labels. Thus the second condition was for precision to be larger than
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90%. If both conditions were satisfied for more than one clustering, we chose the one with
the highest F1-score.

4.2. Model Performance for Varying Training Set Size

Figure 13 shows how the precision, recall and F-1 score respond to the training set size.
The scores were calculated against the labeled data of the Haenam and Cheorwon sites that
were not used in fine-tuning the hyperparameters of the generalized model. The training
set size on the x-axis refers to the number of samples on which the model was trained.
The site comprises 41,645,772 pixels and the different training sets of increasing number of
samples are randomly selected.

Figure 13. Precision, Recall and F-1 score of RF for varying training set size—for a feature space that includes acquisitions
from June until the end of July—with depth = 12 and number of trees = 50.

It is observed that with higher training set sizes the precision slightly decreases, while
recall increases. It can also be seen that the performance scores are high even with only a
limited number of training data. A model that uses a training set of 0.4 M pixels, including
approximately 90,000 rice pixels, reaches near-optimal recall values. The precision and the
F1-score get high values even for surprisingly small training sets, e.g., 0.002 M. However,
the associated recall value is substantially lower that indicates overfitting, which is expected
for such small training sets. The results presented from this point on were trained with
roughly 4 M training pixels.

4.3. Feature Importance

Figures 14–16 show the RF importances for the optimized model of 50 trees and depth
equal to 12.

The importance values have been averaged for running the same algorithm 10 times
with the same hyper-parameters using 10 different random seeds. Figure 14 shows the RF
importances of the top 20 ranked features, which include the Sentinel-2 bands B08, B8A,
B11, B07 and B06, all vegetation indices (NDVI, NDWI, PSRI) and the Sentinel-1 backscatter
coefficients VH and VV.

It is observed that bands B08 and B08A (NIR) and the vegetation index NDVI for
5 June, along with the NDVI index for July15 and July25, are the most important features
for the paddy rice classification. The Sentinel-1 features (VH June15 and VH June5) appear
in the tenth and eleventh position, with significant contribution.
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Figure 14. Average RF importance of the top ranked features, along with the respective standard deviation for 10 differ-
ent runs.

Figure 15. RF importances aggregated by feature type, along with the respective standard deviation
for 10 different runs.
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Figure 16. RF importances aggregated by time-step of the interpolated time-series, along with the
respective standard deviation for 10 different runs.

Figure 15 illustrates the aggregated importance values for the different feature cate-
gories. NDVI appears to be by far the most important, followed by the red-edge and NIR
bands of Sentinel-2 and the VH backscatter coefficient of Sentinel-1. In the same fashion,
Figure 16 aggregates the importance values with respect to time. The June5 instance ap-
pears to dominate the importances. This is expected, as by that date the rice fields are fully
inundated, allowing for their discrimination among other crop types.

4.4. Accuracy Evolution

Figure 17 shows the evolution of precision and recall for incrementally larger feature
spaces. The four different feature spaces, for which the classification performance is com-
pared, are composed of features from the first acquisition of June until the last acquisitions
of July, August, September and October, respectively. As expected, richer feature spaces
achieve both better recall and precision. Nonetheless, it can be concluded that near-optimal
performance is achieved early in the year, allowing for the timely decision making on
food security matters. The model generalizes successfully even with short time-series that
merely include the months of June and July.

Figure 17. RF recall and precision for incrementally larger feature spaces. Classifications were run in July, August, September
and October.
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Table 3 shows the total predicted paddy rice area for each of the three sites, compared
with the official KOSIS statistics for the year 2018. The last column of the table shows the
deviation of the predicted area against the KOSIS equivalent, which is minimal for all sites.

Table 3. Paddy rice area for the Seosan-Dangjin, Haenam and Cheorwon sites from the official
Korean Statistical Information Service (KOSIS) compared to the total paddy rice area predicted by
this study’s model (using images until July).

Site KOSIS Area (ha) Predicted Area (ha) Deviation

Seosan & Dangjin 37,728 37,033 –1.84%
Haenam 18,484 17,969 –2.78%

Cheorwon 9429 9854 +4.50%

4.5. Model Generalization

In order to evaluate the model performance at national scale, we have used 10 labeled
sites in different agro-climatic zones across the country. Each site consists of four plots
of diverse landscape characteristics, as described in Section 2.3. Table 4 shows the total
accuracy and kappa coefficient of the optimized model for each different plot of the test set.

Table 4. Total accuracy and kappa coefficient of the model when run in (i) July and (ii) October. Highlighted with light
blue are the plots for which the optimized model of this study performs better (>0.5%) than the Data-Augmented Learning
Material Fully Connected Recurrent Neural Network (DALM-FCRNN) in [21]. Highlighted with light orange are the plots
with inferior performance (<0.5%).

Model Type A B C D E F G H I J Total

July

Agriculture 87.47 93.16 93.04 90.67 89.14 90.10 84.56 91.71 83.33 88.10 89.13
Urban 99.60 99.97 99.99 99.66 98.43 95.80 94.03 99.65 100.00 99.84 98.70

Forestry 100.00 100.00 100.00 99.66 99.95 99.65 99.53 99.90 100.00 100.00 99.87
Water 100.00 100.00 99.99 99.91 100.00 90.67 100.00 100.00 100.00 100.00 99.05

Sites Acc. 96.77 98.28 98.26 97.48 96.88 94.05 94.53 97.81 95.83 96.99 96.69
Cohen’s Kappa 0.80 0.80 0.86 0.86 0.91 0.84 0.78 0.93 0.84 0.89 0.87

October

Agriculture 87.77 93.37 93.19 90.41 89.37 90.33 84.39 91.84 82.79 89.64 89.21
Urban 99.69 99.96 100.00 99.67 98.40 95.89 94.20 99.60 100.00 99.83 98.72

Forestry 100.00 100.00 100.00 99.65 99.94 99.66 99.51 99.91 100.00 100.00 99.87
Water 100.00 100.00 100.00 100.00 100.00 90.77 100.00 100.00 99.99 100.00 99.05

Sites Acc. 96.87 98.33 98.30 97.43 96.92 94.16 94.53 97.15 96.12 97.37 96.65
Cohen’s Kappa 0.80 0.80 0.87 0.86 0.91 0.84 0.78 0.93 0.84 0.91 0.87

The authors in [21] have evaluated the performance of multiple deep learning models
for paddy rice mapping against this particular test set. The values in light blue and
light orange show the instances for which this study’s model performs better or worse
than the top performing model in [21], respectively. The improvements when using this
study’s model range from 0.5% to 10% (kappa for D), while the decreases in accuracy range
from 0.5% to 4% (Accuracy for I: Agriculture). This study’s model achieves a total kappa
coefficient of 0.87; while the overall precision and recall of the rice class is 88.91% and
88.19%, respectively. The results are comparable to the corresponding test scores for the
Haenam and Cheorwon sites. The predicted paddy rice maps for all 40 test plots can be
found in Figure S4 of the Supplementary Material.

Figure 18 shows a good (E: Agriculture) and a bad (G: Agriculture) example of the
predicted rice maps. In plot E, where the rice paddies are spatially continuous there are
only few misclassifications. On the other hand, plot G is characterized by fragmented,
small and narrow rice parcels, yielding some errors as a result of mixed pixels.
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Figure 18. Paddy rice prediction maps for E (left) and G (right) test plots.

5. Discussion

It should be noted that using unsupervised classification for generating training data
(pseudo-labels) allows for producing samples over very large areas. In the alternative
case of using ground truth data from field visits, the samples would have been limited in
number, fragmented in space and thus potentially less representative.

Despite the high accuracy of the k-means clustering, some rice instances are still
mislabeled. However, these instances do not belong to a single cluster, yet they are split
among other robust clusters. This suggests that there is not any specific pattern of rice
paddy that is left out. Moreover, RF successfully manages to correctly classify a significant
number of those mislabeled pseudo-labels. Specifically, the RF precision and recall scores
for the rice class, when tested in the Seosan-Dangjin site, were 98.66% and 93.99%; offering
an improvement over the pseudo-labels of +1.65% and +2.17%, respectively.

It is the excellent performance of unsupervised classification that allows for the
generation of high quality labeled data to train an RF model. The success of clustering can
be attributed to the nature of the target. Paddy rice is a distinctive crop type, mainly due to
its inundation period, constituting it a particularly easy target to discriminate. This can be
further supported by Figure 16 that shows that features from the June5 instance are by far
the most important.

Another important characteristic is the abundance of paddy rice in the study sites.
For the year of inspection, paddy rice made up 78.2% of the agricultural land of the Dangjin
region, 71% of the Seosan region, 54.19% of the Haenam region and 74.6% of the Cheorwon
region. Paddy rice is the most dominant cultivation in the areas of inspection, which further
enhances the performance of unsupervised classification. Additionally, South Korea is
characterized by spatially continuous rice fields with minimal fragmentation. This again
contributes to realizing satisfactory clustering results.

Therefore, it could be argued that for binary classification problems, which share simi-
lar characteristics, the implemented pseudo-labeling approach can be applicable. In fact,
pseudo-labeling constitutes the overall methodology transferable. The three study sites
of different agro-climatic conditions, geomorphological characteristics and land cover
abundances, yielded excellent and comparable results; showcasing the robustness of the
method. The idea of pseudo-labeling for crop classification could be even extended to
multi-class scenarios. Multi-crop classification problems could be reduced to multiple
OnevsAll binary classifiers, such as the one implemented in this work.

Finally, it should be noted that this approach can be employed even in cases that
there is no available labeled data, using the photo-interpretation approach suggested in
Section 2.3. This way one can annotate a very small amount of rice and non-rice pixels to
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then use for choosing the best k value for the unsupervised classifier. Table 5 presents the F1
scores for multiple k-means classifications in the Seosan-Dangjin site, calculated against a
varying size of the photo-interpreted set of samples. Each experiment is evaluated against a
spatially continuous subset of the labeled set across the Seosan-Dangjin site, which includes
at least 5000 pixels. Figure S2 depicts the locations of the seven sites (Site id 1–7) of Table 5.
Site id 8 refers to the entire labeled set for the Seosan-Dangjin site (Figure S1).

Table 5. F1-score for the rice cluster of different k-means classifications against a varying size of the labeled data.

k—Clusters

Site Id Labeled Set Size (Pixels) 5 6 7 8 9 10 11 12

1 8 K 57.56 88.23 89.93 87.62 88.11 61.99 60.97 63.34
2 17 K 66.01 96.15 96.86 95.59 96.2 80.14 79.69 80.85
3 39 K 95.60 96.98 96.98 96.79 96.7 87.65 87.21 87.99
4 51 K 88.96 93.71 93.85 93.00 93.07 85.40 85.21 85.59
5 60 K 97.94 99.62 99.56 99.55 99.56 96.57 96.5 96.67
6 85 K 93.10 95.47 95.92 94.78 95.2 84.74 84.48 85.01
7 260 K 96.46 96.57 96.68 95.98 96.13 90.26 90.12 90.55
8 2.5 M 90.12 95.03 95.29 94.59 94.74 87.88 87.71 88.15

It is observed that for all eight experiments, the models with k ∈ [6, 9] exhibit the best
performance, with marginal differences in their F-1 scores (<1%). More specifically though,
the model with k = 7 achieves the best performance for all experiments, regardless of the
size of the labeled set used. This indicates the potential for easily generating confined labels
through visual interpretation that is solely based on freely available earth observations
(Sentinel-1 and Sentinel-2 data).

To further investigate the generalization of the RF model, a comparison analysis was
conducted between the performance of the transferred model, from the reference site of
Seosan-Dangjin, and the locally trained models in the Haenam and Cheorwon sites. The lat-
ter refer to trained models with locally sampled pseudo-labels (Table 2). Figure 19 shows
the precision and recall for both the locally trained models, which have been individually
optimized, and the generalized model of the Seosan-Dangjin site. The differences between
the local models and transferred model are minimal. Therefore, it could be argued that
a single model from only a small region can be applicable to other areas. This is further
supported by the results against the test set in Section 4.5.

Furthermore, Figure 20 illustrates the execution times for the k-means clustering and
RF predictions for the Seosan-Dangjin site. The k-means execution time includes both
levels, namely the binary land/water clustering (k = 2) and the succeeding clustering
on the land mask (k = 7). Clearly, the RF model inference is significantly more efficient.
The computational complexity reduction by not performing k-means clustering in each
area is supported by the very good performance of the transferred model when compared
to the local ones.

Figure 21 illustrates the RF training time for the Seosan-Dangjin site against an increas-
ing number of employed nodes in the HPDA. The training set used for these measurements
comprise roughly 4 M pixels.
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Figure 19. RF precision and recall for then Haenam and Cheorwon sites with predictions based on
the (i) Seosan-Dangjin model and (ii) locally trained models.

Figure 20. Computation time of k-means, showing Level 1—land vs. water clustering—and Level 2—
for k = 7 on the land cluster. Computation time of RF in Cheorwon site with depth = 50 and
trees = 12.

Each node is composed of 36 CPUs and 512 GB of memory. It is observed that
the training time decreases exponentially with an increasing number of nodes, until it
converges to approximately 50 s for more than 12 nodes. Additionally, applying the trained
model to the Haenam and Cheorwon sites takes less than one minute for approximately
65 M pixels. Therefore, it would take at most one hour to produce a nationwide rice map
for South Korea.
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Figure 21. RF training time for a varying number of computing nodes—4 M entities, 36 CPUs and
512 GB memory.

6. Conclusions

A distributed RF classifier that was trained with pseudo-labels on a Sentinel-1 and
Sentinel-2 data time-series offered an accurate, generalized and thereby transferable model
for high spatial resolution paddy rice mapping. The model was trained in the reference
site of Seosan-Dangjin and then fine-tuned for nationwide applicability based on two
other sites of diverse characteristics. When tested in these two sites the model achieved
more than 88% recall and more than 91% precision scores. The model was further tested
on 40 test plots, evenly distributed across South Korea. The results revealed a successful
model generalization, with an overall classification accuracy 96.7% and kappa coefficient
0.87. Furthermore, the results were returned early in the year that in turn allows for timely
decision making.

The implemented pseudo-labeling method is fully dynamic and requires only a
confined set of labeled data. Unsupervised classification alone proved to be effective
in accurately classifying paddy rice. However, the exhaustive nature of k-means adds
significant computational overhead, when framed in the context of large-scale applications.
Nevertheless, it was shown that pseudo-labels can be extracted for only a small area and
supervised learning models, such as RF, can generalize well to produce accurate rice maps
in other areas. Finally, a distributed implementation of the entire semi-supervised pipeline
was used in a HPDA environment to ensure the computational scalability of our approach.

All in all, it could be argued that the implemented paddy rice classification pipeline
was designed to be dynamic, site independent and computationally scalable, exploiting
exclusively satellite data that are freely available. Accurate, detailed and timely information
on the paddy rice extent over large areas is instrumental to the national food security
management and decision making.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/9/1769/s1, Figure S1: (1) Labeled maps of Cheorwon (A), Seosan-Dangjin (B) and Haenam (C)
produced with photo-interpretation (Section 2.3). Blue color represents the rice class, while yellow
the non rice class. (2) Rice maps produced by applying the optimized RF model trained on the
Seosan-Dangjin site. Figure S2: Locations of the Seosan-Dangjin labeled subsets used to evaluate
k-means clustering experiments in Table 5—Site IDs. Figure S3: Climatic and agro-climatic zones in
South Korea’s (modified from [30]). Figure S4: Paddy rice maps produced by applying the optimized
RF model on 40 test plots across the country. The locations of sites (a)–(j) can be seen in Figure 7.
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